ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • dissolved gases
  • Springer  (2)
  • Copernicus  (1)
  • American Institute of Physics (AIP)
  • American Physical Society
  • 2010-2014  (1)
  • 1995-1999  (2)
Collection
Publisher
Years
  • 2010-2014  (1)
  • 1995-1999  (2)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Fire technology 33 (1997), S. 99-114 
    ISSN: 1572-8099
    Keywords: water ; spray ; cooling ; dissolved gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract An experimental investigation of the effect of nondegassed water used to cool a solid surface is presented. The solid surface is subjected to thermal radiant input from three panels positioned above it. The water is deposited on the surface in the form of a sparse spray with droplets of about 10 µl. Previous experiments with degassed water are compared to a new set of experiments. In addition, the effect of dissolved gases (air) is quantified in terms of the overall transient thermal behavior of the solid. A lower steady-state average temperature is achieved when gases remain in the water. This result suggests that the configuration of the liquid droplets on the surface and the radiant heat input into the droplet are altered by the gas bubbles in the deposited droplet. This information provides insight into fire control mechanisms by automatic sprinkler systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: aquatic plants ; decomposition ; dissolved gases ; floodplains ; methanogenesis ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract This study examines dissolved O2, CO2 and CH4 in waters of the Pantanal, a vast savanna floodplain in Brazil. Measurements are presented for 540 samples from throughout the region, ranging from areas of sheet flooding to sluggish marsh streams to the major rivers of the region. Dissolved O2 is often strongly depleted, particularly in waters filled with emergent vascular plants, which are the most extensive aquatic environment of the region. Median O2 concentrations were 35 μM for vegetated waters, 116 μM for the Paraguay River, 95 μM for tributary rivers, and 165 μM for open lakes (atmospheric equilibrium, 230–290 μM). Airwater diffusive fluxes were calculated from dissolved gas concentrations for representative vegetated floodplain waters, based on data collected over the course of an annual cycle. These fluxes reveal about twice as much CO2 evasion as can be accounted for by invasion of O2 (overall means in nmol cm-2 s-1: O2 0.18, CO2 0.34, and CH4 0.017). Methanogenesis is estimated to account for ca. 20% of the total heterotrophic metabolism in the water column and sediments, with the remainder likely due mostly to aerobic respiration. Anaerobic respiration is limited by the low concentrations of alternate electron acceptors. We hypothesize that O2 transported through the stems of emergent plants is consumed in aerobic respiration by plant tissues or microorganisms, producing CO2 that preferentially dissolves into the water, and thus explaining most of the excess CO2 evasion. This hypothesis is supported by measurements of gases in submersed stems of emergent plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...