ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Earth Sciences; Geology ; Geophysics/Geodesy  (4)
  • Springer-Verlag  (4)
  • American Chemical Society (ACS)
  • Nature Publishing Group
  • 2015-2019  (4)
Collection
  • Other Sources  (4)
Source
Keywords
Publisher
  • Springer-Verlag  (4)
  • American Chemical Society (ACS)
  • Nature Publishing Group
  • Berlin/Heidelberg  (3)
Language
Years
  • 2015-2019  (4)
Year
  • 1
    Publication Date: 2021-03-29
    Description: The Sierra Ballena Shear Zone (SBSZ) is part of a high-strain transcurrent system that divides the Neoproterozoic Dom Feliciano Belt of South America into two different domains. The basement on both sides of the SBSZ shows a deformation stage preceding that of the transcurrent deformation recognized as a high temperature mylonitic foliation associated with migmatization. Grain boundary migration and fluid-assisted grain boundary diffusion enhanced by partial melting were the main deformation mechanisms associated with this foliation. Age estimate of this episode is 〉658 Ma. The second stage corresponds to the start of transpressional deformation and the nucleation and development of the SBSZ. During this stage, pure shear dominates the deformation, and is characterized by the development of conjugate dextral and sinistral shear zones and the emplacement of syntectonic granites. This event dates to 658–600 Ma based on the age of these intrusions. The third stage was a second transpressional event at about 586 to 〈560 Ma that was associated with the emplacement of porphyry dikes and granites that show evidence of flattening. Deformation in the SBSZ took place, during the late stages, under regional low-grade conditions, as indicated by the metamorphic paragenesis in the supracrustals of the country rocks. Granitic mylonites show plastic deformation of quartz and brittle behavior of feldspar. A transition from magmatic to solid-state microstructures is also frequently observed in syntectonic granites. Mylonitic porphyries and quartz mylonites resulted from the deformation of alkaline porphyries and quartz veins emplaced in the shear zone. Quartz veins reflect the release of silica associated with the breakdown of feldspar to white mica during the evolution of the granitic mylonites to phyllonites, which resulted in shear zone weakening. Quartz microstructures characteristic of the transition between regime 2 and regime 3, grain boundary migration and incipient recrystallization in feldspar indicate deformation under lower amphibolite to upper greenschist conditions (550–400°C). On the other hand, the mylonitic porphyries display evidence of feldspar recrystallization suggesting magmatic or high-T solid-state deformation during cooling of the dikes.
    Keywords: Brasiliano; Pan-African; Shear zone; Dom Feliciano Belt; Uruguay; Kinematic analysis ; 551 ; Earth Sciences; Geology ; Geophysics/Geodesy
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions 〈2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous.
    Keywords: Argillic alteration; Fault zone; K–Ar illite; Apatite fission track; (U–Th)/He thermochronology ; 551 ; Earth Sciences; Geology ; Geophysics/Geodesy
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-29
    Description: The application of the SHRIMP U/Pb dating technique to zircon and monazite of different rock types of the Sierras de Córdoba provides an important insight into the metamorphic history of the basement domains. Additional constraints on the Pampean metamorphic episode were gained by Pb/Pb stepwise leaching (PbSL) experiments on two titanite and garnet separates. Results indicate that the metamorphic history recorded by Crd-free gneisses (M2) started in the latest Neoproterozoic/earliest Cambrian (553 and 543 Ma) followed by the M4 metamorphism at ~530 Ma that is documented in the diatexites. Zircon ages of 492 Ma in the San Carlos Massif correlate partly with rather low Th/U ratios (〈0.1) suggesting their growth by metamorphic fluids. This age is even younger than the PbSL titanite ages of 506 Ma. It is suggested that the fluid alteration relates to the beginning of the Famatinien metamorphic cycle in the neighbouring Sierra de San Luis and has not affected the titanite ages. The PTt evolution can be correlated with the plate tectonic processes responsible for the formation of the Pampean orogene, i.e., the accretion of the Pampean basement to the Río de La Plata craton (M2) and the later collision of the Western Pampean basement with the Pampean basement.
    Keywords: Eastern Sierras Pampeanas; Sierras de Córdoba; Pampean and Famatinian cycles; Geodynamic evolution; SHRIMP dating; Titanite and Garnet Pb–Pb step-wise leaching ; 551 ; Earth Sciences; Geology ; Geophysics/Geodesy
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-29
    Description: The Kristallbrocken are a characteristic centimetre- to decimetre-sized, laminated halite fabric type occurring in the Stassfurt Formation in the Zechstein Basin. Up to now, the nature of the Kristallbrocken, i.e. if they are relics of fine-grained, polycrystalline halite beds or clasts of ‘single crystal-layers’, as well as the deformation mechanisms of this halite type, were not clear from the literature. Drill core material from the salt deposit Teutschenthal at the southern rim of the Zechstein Basin now allowed investigating less intensely deformed samples for the first time. The deformational behaviour of these Kristallbrocken ranges from brittle to ductile, which is evidenced by fractured Kristallbrocken on the one hand and weakly bent or even folded Kristallbrocken on the other hand. Local X-ray texture measurements demonstrated that the Kristallbrocken are definitely single crystals and that they can be regarded as relics of formerly larger ‘single crystal-layers’ of up to several dm2 in size. The folded Kristallbrocken clearly display by their single grain texture characteristics that their crystal lattice is bent, which was most likely enabled by a kind of flexural-shear folding, and did not develop after deformation from a fine-grained aggregate by recrystallisation. Due to their monocrystallinity, their originally large size, and the solid inclusions forming the internal lamination, the Kristallbrocken have clearly stronger rheological properties than the surrounding fine- to coarse-grained polycrystalline rock salt, and thus also deform by fracturing.
    Keywords: Halite; Zechstein salt; Kristallbrocken; X-ray texture goniometry; Deformation mechanism; Crystallography ; 551 ; Earth Sciences; Geology ; Geophysics/Geodesy
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...