ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Calving  (1)
  • Eutrophication  (1)
  • American Association for the Advancement of Science  (1)
  • Springer Nature  (1)
  • American Chemical Society (ACS)
  • MDPI Publishing
  • Springer Science + Business Media
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Millette, N. C., Kelble, C., Linhoss, A., Ashby, S., & Visser, L. Using spatial variability in the rate of change of chlorophyll a to improve water quality management in a subtropical oligotrophic estuary. Estuaries and Coasts, 42(7), (2019): 1792-1803, doi:10.1007/s12237-019-00610-5.
    Description: Anthropogenic eutrophication threatens numerous aquatic ecosystems across the globe. Proactive management that prevents a system from becoming eutrophied is more effective and cheaper than restoring a eutrophic system, but detecting early warning signs and problematic nutrient sources in a relatively healthy system can be difficult. The goal of this study was to investigate if rates of change in chlorophyll a and nutrient concentrations at individual stations can be used to identify specific areas that need to be targeted for management. Biscayne Bay is a coastal embayment in southeast Florida with primarily adequate water quality that has experienced rapid human population growth over the last century. Water quality data collected at 48 stations throughout Biscayne Bay over a 20-year period (1995–2014) were examined to identify any water quality trends associated with eutrophication. Chlorophyll a and phosphate concentrations have increased throughout Biscayne Bay, which is a primary indicator of eutrophication. Moreover, chlorophyll a concentrations throughout the northern area, where circulation is restricted, and in nearshore areas of central Biscayne Bay are increasing at a higher rate compared to the rest of the Bay. This suggests increases in chlorophyll a are due to local nutrient sources from the watershed. These areas are also where recent seagrass die-offs have occurred, suggesting an urgent need for management intervention. This is in contrast with the state of Florida listing of Biscayne Bay as a medium priority impaired body of water.
    Description: Data provided by the SERC-FIU/SFWMD Water Quality Monitoring Network is supported by SFWMD/SERC Cooperative Agreement #4600000352 as well as EPA Agreement #X7-96410603-3. This research was also funded by a NOAA/Atlantic Oceanographic and Meteorological Laboratory grant to the Northern Gulf Institute (award number NA160AR4320199).
    Keywords: Chlorophyll a ; Eutrophication ; Oligotrophic ; Ecological indicators
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1601426, doi:10.1126/sciadv.1601426.
    Description: Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade−1), warmer (0.06° ± 0.01°C decade−1), and less dense (0.011 ± 0.002 kg/m3 decade−1). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade−1) compared to the 0.002 ± 0.001 kg/g decade−1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.
    Description: The 2016 I08S cruise and the analysis and science performed at sea, as well as the individual principal investigators were funded through multiple National Oceanic and Atmospheric Administration (NOAA) and NSF grants including NSF grant OCE-1437015. The research for this article was mainly completed at sea. For land-based work, V.V.M. relied on her postdoctoral funding through NSF grant OCE-1435665, and A.M.M. was supported in part by NSF grant OCE-1356630 and NOAA grant NA11OAR4310063.
    Keywords: Salinity ; AABW ; Changes ; Water masses ; T-S properties ; Iceberg ; Calving ; Antartica ; Abyss ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...