ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sea ice  (10)
  • J strain
  • John Wiley & Sons  (7)
  • Elsevier  (6)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Springer Nature
  • 2015-2019  (13)
  • 1940-1944
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 90–109, doi:10.1002/2016JC012575.
    Description: Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84–95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.
    Description: National Science Foundation (NSF) Grant Numbers: PLR-1304563 , PLR-1303617; KEL; NSF Graduate Research Fellowship Program Grant Number: DGE-0645962
    Description: 2018-07-07
    Keywords: Phytoplankton ; Under-ice blooms ; Leads ; Convective mixing ; Arctic ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 1529–1548, doi:10.1002/2016JG003668.
    Description: During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, first year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida. The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice-free Arctic Ocean.
    Description: Norwegian Research Council Grant Number: 244646; Norwegian Ministry of Climate and Environment Grant Number: N-ICE; Norwegian Research Council Grant Number: 221961; Norwegian Ministry of Foreign Affairs Grant Number: ID Arctic; Norwegian Ministry of Foreign Affairs and Ministry of Climate and Environment, Norway; Polish-Norwegian Research Program Grant Number: Pol-Nor/197511/40/2013; Research Council of Norway project STASIS Grant Number: 221961; Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Canada Foundation for Innovation Investment in Science Fund; Research Council of Norway project Boom or Bust Grant Number: 244646; Centre of Ice, Climate and Ecosystems
    Keywords: Ice algae ; Arctic ; Sea ice ; N-ICE ; Multiyear ice ; Seeding
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 426 (2017): 188–193, doi:10.1016/j.ydbio.2016.03.006.
    Description: Completion of the Xenopus laevis genome sequence from inbred J strain animals has facilitated the generation of germline mutant X. laevis using targeted genome editing. In the last few years, numerous reports have demonstrated that TALENs are able to induce mutations in F0 Xenopus embryos, but none has demonstrated germline transmission of such mutations in X. laevis. In this report we used the oocyte host-transfer method to generate mutations in both tyrosinase homeologs and found highly-penetrant germline mutations; in contrast, embryonic injections yielded few germline mutations. We also compared the distribution of mutations in several F0 somatic tissues and germ cells and found that the majority of mutations in each tissue were different. These results establish that X. laevis J strain animals are very useful for generating germline mutations and that the oocyte host-transfer method is an efficient technique for generating mutations in both homeologs.
    Description: This work was supported by grants from the NIH (OD010997 and HD084409).
    Keywords: Xenopus laevis ; TALENs ; J strain ; Tyrosinase ; Oocyte host-transfer ; Genome editing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 426 (2017): 442–448, doi:10.1016/j.ydbio.2016.05.028.
    Description: Injection of human Chorionic Gonadotropin (hCG) directly into the dorsal lymph sac of Xenopus is a commonly used protocol for induction of ovulation, but recent shortages in the stocks of commercially available hCG as well as lack of a well tested alternative have resulted in frustrating experimental delays in laboratories that predominantly use Xenopus in their research. Mammalian Luteinizing Hormones (LH) share structural similarity, functional equivalency, and bind the same receptor as hCG; this suggests that LH may serve as a good alternative to hCG for promoting ovulation in Xenopus. LH has been found to induce maturation of Xenopus oocytes in vitro, but whether it can be used to induce ovulation in vivo has not been examined. Here we compared the ability of four mammalian LH proteins, bovine (bLH), human (hLH), ovine (oLH), porcine (pLH), to induce ovulation in Xenopus when injected into the dorsal lymph sac of sexually mature females. We find that both ovine and human LH, but not bovine or porcine, are good substitutes for hCG for induction of ovulation in WT and J strain Xenopus laevis and Xenopus tropicalis.
    Description: This work was supported by a grant from the NIHP40OD010997.
    Keywords: Xenopus laevis ; J strain ; Luteinizing Hormone ; Ovulation ; Chorionic gonadotropin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 426 (2017): 325-335, doi:10.1016/j.ydbio.2016.04.009.
    Description: The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.
    Description: This work was supported by the National Institutes of Health (P40 OD010997 to M.E.H., R01 HD084409 to M.E.H., R01 HL112618 to P.T. and F.C., and R01 HL127640 to P.T. and F.C.; and the U.S. Environmental Protection Agency (G11E10367 to D.F.).
    Keywords: CRISPR-Cas ; TALENs ; J strain ; Xenopus laevis ; Xenopus tropicalis ; Knock-in ; Human disease model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3696–3714, doi:10.1002/2016JC012460.
    Description: We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d−1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d−1 with mean-weighted wind speed of 6.4 m s−1. We show how ice cover changes the mixed-layer radon budget, and yields an “effective gas transfer velocity.” We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.
    Description: NSF Arctic Natural Sciences program Grant Number: 1203558
    Description: 2017-11-05
    Keywords: Radon-deficit ; Air-sea gas exchange ; Sea ice ; Gas transfer velocity ; Air-sea flux ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 121 (2016): 2172–2191, doi:10.1002/2016JF003893.
    Description: Snow distribution over sea ice is an important control on sea ice physical and biological processes. We combine measurements of the atmospheric boundary layer and blowing snow on an Antarctic sea ice floe with terrestrial laser scanning to characterize a typical storm and its influence on the spatial patterns of snow distribution at resolutions of 1–10 cm over an area of 100 m × 100 m. The pre-storm surface exhibits multidirectional elongated snow dunes formed behind aerodynamic obstacles. Newly deposited dunes are elongated parallel to the predominant wind direction during the storm. Snow erosion and deposition occur over 62% and 38% of the area, respectively. Snow deposition volume is more than twice that of erosion (351 m3 versus 158 m3), resulting in a modest increase of 2 ± 1 cm in mean snow depth, indicating a small net mass gain despite large mass relocation. Despite significant local snow depth changes due to deposition and erosion, the statistical distributions of elevation and the two-dimensional correlation functions remain similar to those of the pre-storm surface. Pre-storm and post-storm surfaces also exhibit spectral power law relationships with little change in spectral exponents. These observations suggest that for sea ice floes with mature snow cover features under conditions similar to those observed in this study, spatial statistics and scaling properties of snow surface morphology may be relatively invariant. Such an observation, if confirmed for other ice types and conditions, may be a useful tool for model parameterizations of the subgrid variability of sea ice surfaces.
    Description: AAD Science Grant Number: 4073; NSF Grant Numbers: OPP-1142075, EAR-0735156; NASA Grant Number: NNX15AC69G; Swiss National Science Foundation
    Description: 2017-05-15
    Keywords: Lidar ; Sea ice ; Snow ; Snow distribution ; Blowing snow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016); 934–948, doi:10.1002/2015JC011183.
    Description: Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980–2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades.
    Description: NASA Grant Number: NNX13AE81G; the NSF Office of Polar Programs Grant Number: (ARC-0968676, PLR-1417925, PLR-1417677 and PLR-1416920); the NASA Cryosphere Grant Number: (NNX12AB31G); Climate and Biological Response Grant Number: (NNX11AO91G)
    Description: 2016-07-27
    Keywords: Ecosystem modeling ; Sea ice ; Under-ice production ; Phenology ; Primary production ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 105 (2016): 1-12, doi:10.1016/j.ocemod.2016.02.009
    Description: The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
    Description: This work was supported by the Office of Naval Research, Code 322, “Arctic and Global Prediction”, directed by Drs. Martin Jeffries and Scott Harper. (Grant numbers and Principal Investigators are: Ackley, N000141310435; Babanin, N000141310278; Doble, N000141310290; Fairall, N0001413IP20046; Gemmrich, N000141310280; Girard-Ardhuin and Ardhuin, N000141612376; Graber, N000141310288; Guest, N0001413WX20830; Holt, N0001413IP20050; Lehner, N000141310303; Maksym, N000141310446; Perrie, N00014-15-1-2611; Rogers, N0001413WX20825; Shen, N000141310294; Squire, N000141310279; Stammerjohn, N000141310434; Thomson, N000141310284; Wadhams, N000141310289.)
    Keywords: Sea ice ; Arctic Ocean ; Ocean surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8619–8626, doi:10.1002/2014GL062107.
    Description: We describe the recent occurrence of a region of diminished sea ice cover or “notch” offshore of the Kangerdlugssuaq Fiord, the site of the largest tidewater glacier along Greenland's southeast coast. The notch's location is consistent with a topographically forced flux of warm water toward the fiord, and the decrease of the sea ice cover is shown to be associated with a regional warming of the upper ocean that began in the mid-1990s. Sea ice in the vicinity of the notch also exhibits interannual variability that is shown to be associated with a seesaw in surface temperature and sea ice between southeast and northeast Greenland that is not describable solely in terms of the North Atlantic Oscillation. We therefore argue that other modes of atmospheric variability, including the Lofoten Low, are required to fully document the changes to the climate that are occurring along Greenland's east coast.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. F.S. and M.O. were supported by NSF OCE 1130008 and NASA NNX13AK88G.
    Description: 2015-06-02
    Keywords: Greenland ; Sea ice ; Interannual variability ; Lofoten Low ; Icelandic Low
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3542-3566, doi:10.1002/2014JC010620.
    Description: We present the results of a 6 week time series of carbonate system and stable isotope measurements investigating the effects of sea ice on air-sea CO2 exchange during the early melt period in the Canadian Arctic Archipelago. Our observations revealed significant changes in sea ice and sackhole brine carbonate system parameters that were associated with increasing temperatures and the buildup of chlorophyll a in bottom ice. The warming sea-ice column could be separated into distinct geochemical zones where biotic and abiotic processes exerted different influences on inorganic carbon and pCO2 distributions. In the bottom ice, biological carbon uptake maintained undersaturated pCO2 conditions throughout the time series, while pCO2 was supersaturated in the upper ice. Low CO2 permeability of the sea ice matrix and snow cover effectively impeded CO2 efflux to the atmosphere, despite a strong pCO2 gradient. Throughout the middle of the ice column, brine pCO2 decreased significantly with time and was tightly controlled by solubility, as sea ice temperature and in situ melt dilution increased. Once the influence of melt dilution was accounted for, both CaCO3 dissolution and seawater mixing were found to contribute alkalinity and dissolved inorganic carbon to brines, with the CaCO3 contribution driving brine pCO2 to values lower than predicted from melt-water dilution alone. This field study reveals a dynamic carbon system within the rapidly warming sea ice, prior to snow melt. We suggest that the early spring period drives the ice column toward pCO2 undersaturation, contributing to a weak atmospheric CO2 sink as the melt period advances.
    Description: We acknowledge support from the Polar Continental Shelf Program (PCSP) of Natural Resources Canada, the Natural Sciences and Engineering Research Council of Canada, the Northern Scientific Training Program, Canada Economic Development, and Fisheries and Oceans Canada.
    Description: 2015-11-19
    Keywords: Sea ice ; Carbon cycling ; CO2 ; Brines ; Stable isotopes ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 122-135, doi:10.1016/j.dsr2.2015.02.008.
    Description: A coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
    Description: This work is supported by the NASA Cryosphere Program and Climate and Biological Response Program and the NSF Office of Polar Programs (Grant Nos. NNX12AB31G; NNX11AO91G; ARC-0901987).
    Keywords: Arctic Ocean ; Chukchi Sea ; Phytoplankton ; Blooms ; Sea ice ; Snow depth ; Light availability ; Nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cold Regions Science and Technology 109 (2015): 9-17, doi:10.1016/j.coldregions.2014.08.004.
    Description: Traditional measures for detecting oil spills in the open-ocean are both difficult to apply and less effective in ice-covered seas. In view of the increasing levels of commercial activity in the Arctic, there is a growing gap between the potential need to respond to an oil spill in Arctic ice-covered waters and the capability to do so. In particular, there is no robust operational capability to remotely locate oil spilt under or encapsulated within sea ice. To date, most research approaches the problem from on or above the sea ice, and thus they suffer from the need to ‘see’ through the ice and overlying snow. Here we present results from a large-scale tank experiment which demonstrate the detection of oil beneath sea ice, and the quantification of the oil layer thickness is achievable through the combined use of an upward-looking camera and sonar deployed in the water column below a covering of sea ice. This approach using acoustic and visible measurements from below is simple and effective, and potentially transformative with respect to the operational response to oil spills in the Arctic marine environment. These results open up a new direction of research into oil detection in ice-covered seas, as well as describing a new and important role for underwater vehicles as platforms for oil-detecting sensors under Arctic sea ice.
    Description: This work was funded through a competitive grant for the detection of oil under ice obtained from Prince William Sound Oil Spill Recovery Institute (OSRI) (11-10-09). Additional funding/resources was obtained through the EU FP7 funded ACCESS programme (Grant Agreement n°. 265863).
    Keywords: Arctic ; Oil spill ; Sea ice ; Oil detection ; Sonar ; Camera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...