ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (412,532)
  • American Institute of Physics (AIP)  (136,237)
  • Wiley  (133,485)
  • American Geophysical Union  (53,935)
  • Molecular Diversity Preservation International  (51,415)
  • Copernicus  (35,124)
  • American Society of Civil Engineers
  • Canadian Center of Science and Education
  • 2015-2019  (184,427)
  • 2010-2014  (156,541)
  • 1995-1999  (71,564)
  • Physics  (285,581)
  • Geography  (100,260)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (44,681)
Collection
  • Articles  (412,532)
Publisher
Years
Year
Topic
  • 1
  • 2
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
  • 6
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: ABSTRACT Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate the behavior of regional hydrological cycle components, including precipitation, evapotranspiration, soil water storage and runoff. Recent model developments have focused on coupled atmospheric‐hydrological modeling systems, such as WRF‐Hydro, in order to account for subsurface, overland, and river flow and potentially improve the representation of land‐atmosphere interactions. The aim of this study is to investigate the contribution of lateral terrestrial water flow to the regional hydrological cycle, with the help of a joint soil‐vegetation‐atmospheric water tagging (SVA‐TAG) procedure newly developed in the so‐called WRF‐tag and WRF‐Hydro‐tag models. An application of both models for the high precipitation event on 15 August 2008 in the German and Austrian parts of the upper Danube river basin (94,100 km2) is presented. The precipitation that fell in the basin during this event is considered as a water source, is tagged and subsequently tracked for a 40 month‐period until December 2011. At the end of the study period, in both simulations, approximately 57% of the tagged water has run off, while 41% has evaporated back to the atmosphere, including 2% that has recycled in the upper Danube river basin as precipitation. In WRF‐Hydro‐tag, the surface evaporation of tagged water is slightly enhanced by surface flow infiltration, and slightly reduced by subsurface lateral water flow in areas with low topography gradients. This affects the source precipitation recycling only in a negligible amount.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: Abstract Snow acts as a vital source of water especially in areas where streamflow relies on snowmelt. The spatio‐temporal pattern of snow cover has tremendous value for snowmelt modeling. Instantaneous snow extent can be observed by remote sensing. Cloud cover often interferes. Many complex methods exist to resolve this, but often have requirements which delay the availability of the data and prohibit its use for real‐time modeling. In this research, we propose a new method for spatially modeling snow cover throughout the melting season. The method ingests multiple years of MODIS snow cover data and combines it using principal component analysis (PCA) to produce a spatial melt‐pattern model. Development and application of this model relies on the inter‐annual recurrence of the seasonal melting pattern. This recurrence has long been accepted as fact, but to our knowledge has not been utilized in remote sensing of snow. We develop and test the model in a large watershed in Wyoming using 17 years of remotely sensed snow cover images. When applied to images from two years that were not used in its development, the model represents snow covered area with accuracy of 84.9‐97.5% at varied snow covered areas. The model also effectively removes cloud cover if any portion of the interface between land and snow is visible in a cloudy image. This new PCA method for modeling the inter‐annually recurring spatial melt pattern exclusively from remotely sensed images possesses its own intrinsic merit, in addition to those associated with its applications.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: Abstract The development of the unconventional gas and CO2 sequestration is moving to deep formations. Because of the small flow pathways in the matrix, the Knudsen number might be high even though the gas is dense. In fact, due to the relatively high pressure at in situ conditions, gas flow in microfractures usually manifests a strong slip and nonideal gas effects. Therefore, understanding the coupling mechanism of these two on gas flow in rough‐walled microfractures is required to accurately model subsurface flow behavior. In this study, pressure‐driven gas flow in rough‐walled microfracture is analyzed in depth. Starting from the local governing equations for gas flow, a local flow model that includes gas slip and nonideal gas effects is derived by solving the Stokes equation with a first‐order slip boundary condition. Focusing at the representative elementary volume scale, the upscaled solutions to gas flow in a fracture with sinusoidal surface are derived to obtain the apparent permeability. The impact of nonideal gas effects, fracture roughness and aperture, and the tangential momentum accommodation coefficient on CH4 and CO2 flow is analyzed. The results show that fracture roughness introduces a high degree of heterogeneity in gas flow. At in situ conditions effects of gas slip, fracture roughness and tangential momentum accommodation coefficient on gas flow are reduced. The ideal gas law is capable of estimating CH4 flow to some extent. However, it fails to estimate CO2 flow in microfractures.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: Abstract In recent years, climatology, variability, hydrological impact, and climatic drivers of atmospheric rivers (ARs) are widely explored based on various AR identification algorithms. Different algorithms, varying in their tracing variables, thresholds, and geometric metrics criteria, will introduce uncertainty in further study of AR. Herein, a novel AR identification algorithm is proposed to address some current limitations. A coupled quantile and Gaussian kernel smoothing technique is proposed to make a balance in capturing the spatiotemporal variation of integrated water vapor transport climatology and avoiding largely biased estimation. In spite of variety of AR shape, orientation, and curvature, more reliable AR metrics (e.g., length and width) can be calculated based on the generated smooth AR trajectory, which is realized by modifying and integrating the concepts of local regression and K‐nearest neighbors. An unprecedented and novel metric (i.e., turning angle series) is delivered to quantify AR curvature, serves as the key to distinguish tropical cyclone‐like features, which often indicate occurrences of tropical cyclones. It also bridges ARs to their associated atmospheric circulation patterns. A pilot application of the algorithm is presented to identify persistent AR events related to flood triggering extreme precipitation sequences in the Yangtze River Basin (YRB). A dominating AR route, which connects Arabian Sea, Bay of Bengal, South China Sea, to Southeast China and YRB, terminates in the North Pacific, is found principal to the flood triggering extreme precipitation sequences in the YRB. In addition, this algorithm is extensible to other regions, even global domain.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: Abstract The Ultralong‐Wavelength (ULW) regime of longer than 10 m (corresponding to frequencies below 30 MHz) remains as the last virtually unexplored window in radio astronomy and is presently attracting considerable attention as an area of potentially rewarding studies. However, the opaqueness of the Earth's ionosphere makes the ULW celestial radio emission very difficult to detect with ground‐based instrumentation. The impact of the ionosphere on ULW radio emission depends on the solar cycle activities and varies with time. In addition, the ULW spectrum region is densely populated by intensive artificial radio frequency interference. An obvious solution of these problems is to place an ULW radio telescope in space. However, this solution is expensive and poses nonnegligible technological challenges. An alternative approach is triggered by recent studies showing that the period of post 2020 will be most suitable for exploratory ground‐based ULW radio observations due to the expected “calm” state of the ionosphere; the ionospheric cutoff frequency could be well below 10 MHz, even in the day time. In anticipation of this upcoming opportunity, we propose and present in this paper a concept of an experimental ULW radio array, with the intention of setting it up in Inner Mongolia, China. This ULW facility will use the infrastructure of the currently operational Mingantu spectral radio heliograph. The proposed ULW array covers the frequency range from 1 to 72 MHz. This experimental array will be used for exploratory studies of celestial radio emission in the ULW range of the spectrum.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: Abstract Dust devils are convective vortices with a vertical axis of rotation made visible by lifted soil particles. Currently, there is great uncertainty about the extent to which dust devils contribute to the atmospheric aerosol input and thereby influence Earth's radiation budget. Past efforts to quantify the aerosol transport and study their formation, maintenance, and statistics using large‐eddy simulation (LES) have been of limited success. Therefore, some important features of dust devil‐like vortices simulated with LES still do not compare well with those of observed ones. One major difference is the simulated value of the core pressure drop, which is almost 1 order of magnitude smaller compared to the observed range of 250 to 450 Pa. However, most of the existing numerical simulations are based on highly idealized setups and coarse grid spacings. In this study, we investigate the effects of various factors on the simulated vortex strength with high‐resolution LES. For the fist time, we are able to reproduce observed core pressures by using a high spatial resolution of 2 m, a model setup with moderate background wind and a spatially heterogeneous surface heat flux. It is found that vortices mainly appear at the lines of horizontal flow convergence above the centers of the strongly heated patches, which is in contrast to some older observations in which vortices seemed to be created along the patch edges.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: Abstract Location information from super‐pressure balloons flown by Project Loon provide an unprecedented opportunity to analyze wind fields in the mid‐latitude stratosphere. Horizontal velocity spectra from the balloons' quasi‐intrinsic frame of reference show clear evidence of a persistent peak in the intrinsic wind spectrum around the inertial frequency. In the Southern Hemisphere mid‐latitudes, peak‐to‐peak amplitudes of horizontal velocity perturbations (on the order of 20 ms‐1) are larger than those seen in previous super‐pressure balloon campaigns in polar regions and similar to those observed in vertical soundings in the mid‐latitudes. A rotary spectral analysis shows that near‐circular anti‐cyclonic rotation of horizontal wind perturbations around the inertial frequency dominate at most times and locations. The strongest anti‐cyclonic rotation is more common in balloon flight segments with weak zonal winds and during the austral summer. Flight segments with strong eastward zonal velocities during austral winter and spring are more likely to have mixed cyclonic and anti‐cyclonic power around the inertial frequency. These results confirm previous model and radiosonde observations of the peak in horizontal kinetic energy at the inertial frequency, and demonstrate they are associated with increased anti‐cyclonic wave power indicative of near‐inertial oscillations or inertia‐gravity waves. Flight segments with mixed cyclonic and anti‐cyclonic power around the inertial frequency display a continuum of wave power from planetary to gravity‐wave scales. These results help explain the divergence of actual and modelled balloon trajectories in previous studies and provide a baseline against which reanalysis or meteorological model realizations of the intrinsic velocity field can be assessed.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: Abstract From 17–22 August 2017 simultaneous enhancements of ammonia (NH3), carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) were detected from ground‐based solar absorption Fourier transform infrared (FTIR) spectroscopic measurements at two high‐Arctic sites: Eureka (80.05°N, 86.42°W) Nunavut, Canada, and Thule (76.53°N, 68.74°W), Greenland. These enhancements were attributed to wildfires in British Columbia and the Northwest Territories of Canada using FLEXPART back‐trajectories and fire locations from Moderate Resolution Imaging Spectroradiometer (MODIS) and found to be the greatest observed enhancements in more than a decade of measurements at Eureka (2006–2017) and Thule (1999–2017). Observations of gas‐phase NH3 from these wildfires illustrate that boreal wildfires may be a considerable episodic source of NH3 in the summertime high Arctic. Comparisons of GEOS‐Chem model simulations using the Global Fire Assimilation System (GFASv1.2) biomass burning emissions to FTIR measurements and Infrared Atmospheric Sounding Interferometer (IASI) measurements showed that the transport of wildfire emissions to the Arctic was underestimated in GEOS‐Chem. However, GEOS‐Chem simulations showed that these wildfires contributed to surface layer NH3 and NH enhancements of 0.01–0.11 ppbv and 0.05–1.07 ppbv, respectively, over the Canadian Archipelago from 15–23 August 2017.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: Abstract Accurate estimates of NOx and SO2 emissions are important for air quality modeling and management. To incorporate chemical interactions of the two species in emission estimates, we develop a joint hybrid inversion framework to estimate their emissions in China and India (2005–2012). Pseudo observation tests and posterior evaluation with surface measurements demonstrate that joint assimilation of SO2 and NO2 can provide more accurate constraints on emissions than single‐species inversions. This occurs through synergistic change of O3 and OH concentrations, particularly in conditions where satellite retrievals of the species being optimized have large uncertainties. The percentage changes of joint posterior emissions from the single‐species posterior emissions go up to 242% at grid scales, although the national average of monthly emissions, seasonality, and interannual variations are similar. In China and India, the annual budget of joint posterior SO2 emissions is lower, but joint NOx posterior emissions are higher, because NOx emissions increase to increase SO2 concentration and better match Ozone Monitoring Instrument SO2 observations in high‐NOx regions. Joint SO2 posterior emissions decrease by 16.5% from 2008 to 2012, while NOx posterior emissions increase by 24.9% from 2005 to 2011 in China—trends which are consistent with the MEIC inventory. Joint NOx and SO2 posterior emissions in India increase by 15.9% and 19.2% from 2005 to 2012, smaller than the 59.9% and 76.2% growth rate using anthropogenic emissions from EDGARv4.3.2. This work shows the benefit and limitation of joint assimilation in emission estimates and provides an efficient framework to perform the inversion.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: Abstract By using 90 radiosonde stations with high vertical resolution data during the period 1998–2011, the latitudinal variation of the tropopause inversion layer (TIL) in different seasons and the interactions with the inertial gravity wave (IGW) activities in the region covering the Northern Hemispheric latitudes from 5° to 75° are studied. For the midlatitudes, the TIL features show obviously seasonal variations. In the Arctic region, TIL is strong and thick. The averaged Arctic TIL intensity peaks in summer. The intense interaction between the TIL and IGW is found in the region of 5°N to 75°N. The TIL could inhibit the upward propagation of IGWs from ~2 km below the tropopause in a larger region (40–75°N). It is found that for the middle‐latitude regions, the enhanced wind shear layer just above the tropopause could lead to instability and finally result in IGW breaking and intensive turbulence, which then leads to strong wave energy dissipation and a downward heat flux. The IGW‐induced cooling around the tropopause, which resulted from the downward heat flux, then makes a colder and sharper tropopause and finally form the TIL. The IGW‐associated strong downward heat flux is also found around the Arctic tropopause. However, there is no corresponding wind shear enhancement above the tropopause. This indicates that this strong heat flux may result from some other processes and then form the strong TIL in the Arctic.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: Abstract Proxy system models (PSMs) are an important bridge between climate simulations and climate records prior to the period where instrumental observations are available. PSMs help to interpret what proxies show and how they record climate. Although previous studies have evaluated PSMs for individual sites, their systematic evaluation on a global scale has not yet been conducted. This study evaluated the performance of PSMs for stable water isotopes in ice cores, corals, and tree‐ring cellulose for the period 1950–2007. Spatial distributions of the mean state were well simulated for all proxy types, albeit with a bias for tree‐ring cellulose. Interannual variability was well simulated for corals and tree‐ring cellulose. These results indicate that the models represent key mechanisms for the proxies. In contrast, the reproducibility of interannual variability in ice cores was markedly lower than that for the other proxies. Although the reproducibility was limited by the atmospheric forcing used to drive the model, the results suggest that the PSM may be missing post‐depositional processes, such as sublimation for ice cores on the interannual timescale.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: Abstract Three years of nighttime Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation data was used in synergy with CloudSat measurements to quantify how strongly aerosol type and aerosol load affect the cloud phase in low‐level clouds over the Arctic. Supercooled liquid layers were present in the majority of observed low‐level clouds (0.75 ≤ z ≤ 3.5 km) between −10 and −25 °C. Furthermore, based on the subset (6%) of data with high quality assurance for aerosol typing, ice formation is more common in the presence of dust or continental aerosols as opposed to marine or elevated smoke aerosols. With the first aerosol group, glaciated clouds were found at cloud top temperatures of 2 to 4 °C warmer than with the latter aerosol types. Further association of the aerosol concentration with the cloud phase showed that the aerosol concentration outweighs the aerosol type effect. Depending on the aerosol load, the temperature at which a cloud completely glaciates can vary by up to 6–10 °C. However, this behavior was most pronounced in stable atmospheric conditions and absent over open ocean with lower tropospheric stability values and probably less stratified clouds. Finally, more mixed‐phase clouds were associated with high aerosol load, suggesting that mixed‐phase clouds have an extended lifetime in the Arctic under high cloud condensation nuclei concentrations. This implies that in a pristine environment, with few or no local aerosol sources, and under the investigated conditions the amount of aerosol particles affects the cloud phase more than the aerosol type does.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: Abstract A series of five realistic, nested, hydrostatic numerical ocean model simulations are used to study semidiurnal internal tide generation and propagation from the continental slope, through the shelf break and to the midshelf adjacent to Point Sal, CA. The statistics of modeled temperature and horizontal velocity fluctuations are compared to midshelf observations (30‐ to 50‐m water depth). Time‐ and frequency‐domain methods are used to decompose internal tides into components that are coherent and incoherent with the barotropic tide, and the incoherence fraction is 0.5–0.7 at the midshelf locations in both the realistic model and observations. In contrast, the incoherence fraction is at the most 0.45 for a simulation with idealized stratification, and neither atmospheric forcing nor mesoscale currents. Negligible conversion from barotropic to baroclinic energy occurs at the local shelf break. Instead, the dominant internal tide energy sources are regions of small‐scale near‐critical to supercritical bathymetry on the Santa Lucia escarpment (1,000–3,000 m), 70–80 km from the continental shelf. Near the generation region, semidiurnal baroclinic energy is primarily coherent and rapidly decays adjacent to the shelf break. In the realistically forced model, incoherent energy is less than 10% in the generation region, with a steady increase in incoherence fraction from the continental slope to the midshelf. Backward ray tracing from the midshelf to the Santa Lucia escarpment identifies multiple energy pathways potentially leading to spatial interference. As internal tides shoal on the predominantly subcritical slope/shelf system, temporally variable stratification and Doppler shifting from mesoscale and submesoscale features appear equally important in leading to the loss of coherence.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: Abstract Aerosol pH is a useful diagnostic of aerosol chemistry for formation of secondary aerosol and has been hypothesized to be a key factor in specific chemical reaction routes producing sulfate and nitrate (Yue et al., 2009; Zhang et al., 2012; Hu et al., 2014). In this study, we measured hourly concentrations of water soluble ions (WS‐ions) in PM2.5, along with gaseous pollutants in Tianjin, China, from 4th January to 31st January 2015. The following source contributions to WS ions were estimated by PMF (Positive Matrix Factorization): secondary sulfate (13%), secondary nitrate (44%), coal (14%), vehicle (16%), and dust (13%). ISORROPIA‐II was used to investigate the complex relationships among aerosol pH, ammonia, and secondary aerosol formation. The estimated hourly aerosol pH varied from ‐0.3 to 7.7, with an average of 4.9 (±0.78); the median value was 4.89, and the interquartile range (IQR) was 0.72. During less polluted conditions, aerosol pH ranged from less than 0 to about 7; during heavily polluted conditions, pH was close to 5 (3.9‐7.9) despite large amounts of sulfate. Sufficient ammonia/ammonium were present to balance high sulfate and nitrate formation. NH4+/NH3 (g) helped stabilize pH while nonvolatile cations contributed less to decreasing aerosol acidity. High acidy (pH〈3), light pollution (Total water soluble ions (TWI)〈30 μg m‐3), and low water content (less than 5μg m‐3) were more correlated with higher rates of sulfate formation than nitrate formation in the winter.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: Abstract Understanding the mechanisms by which earthquake cycles produce folding and accommodate shortening is essential to quantify the seismic potential of active faults and integrate aseismic slip within our understanding of the physical mechanisms of the long‐term deformation. However, measuring such small deformation signals in mountainous areas is challenging with current space‐geodesy techniques, due to the low rates of motion relative to the amplitude of the noise. Here we successfully carry out a multitemporal Interferometric Synthetic Aperture Radar analysis over the North Qaidam fold‐thrust system in NE Tibet, where eight Mw〉 5.2 earthquakes occurred between 2003 and 2009. We report various cases of aseismic slip uplifting the thickened crust at short wavelengths. We provide a rare example of a steep, shallow, 13‐km‐long and 6‐km‐wide afterslip signal that coincides spatially with an anticline and that continues into 2011 in response to a Mw 6.3 event in 2003. We suggest that a buried seismic slip during the 2003 earthquake has triggered both plastic an‐elastic folding and aseismic slip on the shallow thrusts. We produce a first‐order two‐dimensional model of the postseismic surface displacements due to the 2003 earthquake and highlight a segmented slip on three fault patches that steepen approaching the surface. This study emphasizes the fundamental role of shallow aseismic slip in the long‐term and permanent deformation of thrusts and folds and the potential of Interferometric Synthetic Aperture Radar for detecting and characterizing the spatiotemporal behavior of aseismic slip over large mountainous regions.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: Abstract Structural details of the crust play an important role in controlling the distribution of volcanic activity in arc systems. In southwest Washington, several different regional structures associated with accretion and magmatism have been invoked to explain the broad distribution of Cascade volcanism in this region. In order to image these regional structures in the upper crust, Pg and Sg travel times from the imaging Magma Under St. Helens (iMUSH) active‐source seismic experiment are inverted for Vp, Vs, and Vp/Vs models in the region surrounding Mount St. Helens. Several features of these models provide new insights into the regional structure of the upper crust. A large section of the Southern Washington Cascades Conductor is imaged as a low Vp/Vs anomaly that is inferred to represent a broad sedimentary/metasedimentary sequence that composes the upper crust in this region. The accreted terrane Siletzia is imaged west of Mount St. Helens as north/south trending high Vp and Vp/Vs bodies. The Vp/Vs model shows relatively high Vp/Vs regions near Mount St. Helens and the Indian Heaven Volcanic Field, which could be related to the presence of magmatic fluids. Separating these two volcanic regions below 6‐km depth is a northeast trending series of high Vp and Vs bodies. These bodies have the same orientation as several volcanic/magmatic features at the surface, including Mount St. Helens and Mount Rainier, and it is argued that these high‐velocity features are a regional‐scale group of intrusive bodies associated with a crustal weak zone that focuses magma ascent.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: Abstract SO2 column densities from OMI provide important information on emission trends and missing sources, but there are discrepancies between different retrieval products. We employ three OMI SO2 retrieval products (NASA standard (SP), NASA prototype, and BIRA) to study the magnitude and trend of SO2 emissions. SO2 column densities from these retrievals are most consistent when viewing angles and solar zenith angles are small, suggesting more robust emission estimates in summer and at low latitudes. We then apply a hybrid 4D‐Var/mass balance emission inversion to derive monthly SO2 emissions from the NASA SP and BIRA products. Compared to HTAPv2 emissions in 2010, both posterior emission estimates are lower in US, India and Southeast China, but show different changes of emissions in North China Plain. The discrepancies between monthly NASA and BIRA posterior emissions in 2010 are less than or equal to 17% in China and 34% in India. SO2 emissions increase from 2005 to 2016 by 35% (NASA) ‐ 48% (BIRA) in India, but decrease in China by 23% (NASA) ‐ 33% (BIRA) since 2008. Compared to in‐situ measurements, the posterior GEOS‐Chem surface SO2 concentrations have reduced NMB in China, the US, and India but not in South Korea in 2010. BIRA posteriors have better consistency with the annual growth rate of surface SO2 measurement in China and spatial variability of SO2 concentration in China, South Korea and India, whereas NASA SP posteriors have better seasonality. These evaluations demonstrate the capability to recover SO2 emissions using OMI observations.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: Abstract Seismicity of several intraplate seismic zones in the North American midcontinent is believed to be related to reactivation of ancient faults in Precambrian continental rifts by the contemporary stress field. Existence of such a rift system beneath the Wabash Valley Seismic Zone (WVSZ) is not clear. Here we obtained a crustal structural image along a 300‐km‐long profile across WVSZ using a dense linear seismic array. We first calculated teleseismic receiver functions of stations and applied the Common‐Conversion‐Point stacking method to image crustal interfaces and the Moho. We then used ambient noise cross correlation to obtain phase and group velocities of Rayleigh and Love waves. Finally, we jointly inverted the receiver function and surface wave dispersion data to determine shear wave velocity structure along the profile. The results show a thick (50‐ to 60‐km) crust with a typical Proterozoic crustal layering: a 1‐ to 2‐km thick Phanerozoic sedimentary layer, an upper crust ∼15 km thick, and a 30‐ to 40‐km‐thick lower crust. The unprecedented high‐resolution image also reveals a 50‐km‐wide high‐velocity body above an uplifted Moho and several velocity anomalies in the upper and middle crust beneath the La Salle Deformation Belt. We interpreted them as features produced by magmatic intrusions in a failed, immature continental rift during the end of Precambrian. Current seismicity in WVSZ is likely due to reactivation of ancient faults of the rift system by a combination of stress fields from the far‐field plate motion and prominent crustal and upper mantle heterogeneities in the region.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: Abstract The Charlevoix Seismic Zone (CSZ) is located along the early Paleozoic St. Lawrence rift zone in southeastern Quebec at the location of a major Devonian impact structure. The impact structure superimposed major, steeply dipping basement faults trending approximately N35°E. Approximately 250 earthquakes are recorded each year and are concentrated within and beneath the impact structure. Most M4+ earthquakes associated with the rift faults occurred outside the impact structure. Apart from the unique distribution of earthquakes, stress inversion of focal mechanisms shows stress rotations within the CSZ, and in the CSZ relative to the stress orientation determined from borehole breakouts. The primary goal of this research is to investigate the combined effects of the preexisting structures and regional stresses on earthquake activity and stress rotations in the CSZ. We approach this using PyLith, a finite‐element code for simulations of crustal deformation. Adopting the results from recent hypocenter relocation and 3‐D tomography studies, we modify the locations and dips of the rift faults and assess the effect of the new fault geometries on stress distributions. We also discuss the effects of resolved velocity anomalies. We find that the observed stress rotation is due to the combined effect of the rift faults and the impact structure. One‐dimensional velocity models of the CSZ with an embedded impact structure and a combination of 65°‐40°‐40° and constant 70° fault dip models with a very low friction coefficient of 0.3 and cohesion of 0 MPa can explain the observed seismicity and more than 50% of the stress rotations.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: Abstract Seismic anisotropy provides important information on the structure and geodynamics of the Earth. The forearc mantle wedge in subduction zones mainly exhibits trench‐parallel azimuthal anisotropy globally, which is inconsistent with the model of olivine a axis aligning with the slab‐driven corner flow. Its formation mechanism is currently unclear. Here we present high‐resolution 3‐D P wave anisotropic tomography of the Tohoku subduction zone. We suggest that ductile deformation of the forearc lithospheric mantle of the overriding plate induces the trench‐parallel azimuthal anisotropy and positive radial anisotropy (i.e., horizontal velocity 〉 vertical velocity) in Tohoku. Our results provide the first seismic anisotropic evidence for the slab‐mantle decoupling at a common depth of ~70 km. On the basis of the high‐resolution seismic images, we propose a geodynamic model suggesting that the forearc mantle wedge anisotropy is produced via ductile deformation of dry olivine or hydrous antigorite lithospheric mantle, which accords well with the trench‐parallel shear wave splitting measurements dominant in subduction zones globally.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: Abstract We investigate 3‐D seismic structures (Vp, Vs, and Poisson's ratio) and Vp azimuthal anisotropy in the source area of the 2018 Eastern Iburi earthquake (M 6.7) in Hokkaido, Japan. Its mainshock occurred at the edge of a high‐Vp (2–4%) seismogenic zone. Significant low‐Vs (−1% to −3%) and high Poisson's ratio (2–7%) anomalies are imaged in and below the source zone and extend to the upper surface of the subducting Pacific slab, most likely reflecting ascending fluids released by the slab dehydration. A high consistency between the fault plane and the low‐Vs and high Poisson's ratio anomalies indicates that the fluids may have entered the fault and affected the rupture nucleation. A high‐V (1–3%) anomaly is revealed in the fore‐arc mantle wedge and connects with the high‐V seismogenic zone, probably reflecting a lithospheric fragment and contributing to cool down the mantle wedge. Complex seismic anisotropy is revealed in the crust in and around the source area, which may reflect complicated stress regime and strong structural heterogeneities there.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: Abstract Deep convective clouds similar to those arising in the TC eyewall are simulated using a parcel model and 2D slab symmetric cloud model with spectral bin microphysics (the Hebrew University Cloud Model, HUCM). The size distribution of sea spray particles (SSP) at cloud base is calculated using the Lagrangian‐Eulerian bin‐microphysics model (LEM). The model describes the SSP production, advection and formation of the size distribution of SSP in the hurricane atmospheric boundary layer at different strong wind speeds. The SSP distributions calculated by the LEM are used in the parcel model and the HUCM to investigate the microphysical and dynamical effects of SSP on clouds. The SSP ascending in cloud updrafts dramatically increase the number concentration of cloud drops within a wide range of drop sizes. As a result, sea spray creates clouds with unique property combinations of both maritime and continental types. These clouds have droplet size distributions characterized by a high drop concentration and a low effective radius, as in continental clouds. At the same time, the presence of SSP of a few hundred microns in radii triggers intense rain just above the cloud base, which is typical of extreme maritime clouds. In the presence of large sea spray drops, the smallest cloud condensational nuclei, including the smallest SSP, are activated, giving rise to the permanent in‐cloud nucleation of small droplets which produce a high concentration of small ice crystals above the level of homogeneous freezing. We showed that the SSP substantially increased the maximum vertical velocity, cloud water content and mass contents of ice particles. The results are compared with available observed data.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: Abstract Terrestrial gamma ray flashes (TGFs) are very short bursts of gamma radiation associated to thunderstorm activity and are the manifestation of the highest‐energy natural particle acceleration phenomena occurring on Earth. Photon energies up to several tens of megaelectronvolts are expected, but the actual upper limit and high‐energy spectral shape are still open questions. Results published in 2011 by the AGILE team proposed a high‐energy component in TGF spectra extended up to ≈100 MeV, which is difficult to reconcile with the predictions from the Relativistic Runaway Electron Avalanche (RREA) mechanism at the basis of many TGF production models. Here we present a new set of TGFs detected by the AGILE satellite and associated to lightning measurements capable to solve this controversy. Detailed end‐to‐end Monte Carlo simulations and an improved understanding of the instrument performance under high‐flux conditions show that it is possible to explain the observed high‐energy counts by a standard RREA spectrum at the source, provided that the TGF is sufficiently bright and short. We investigate the possibility that single high‐energy counts may be the signature of a fine‐pulsed time structure of TGFs on time scales ≈4 μs, but we find no clear evidence for this. The presented data set and modeling results allow also for explaining the observed TGF distribution in the (Fluence × duration) parameter space and suggest that the AGILE TGF detection rate can almost be doubled.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: Abstract Deltaic deposits mapped along the martian crustal dichotomy boundary scarp have been suggested to delineate an ancient ocean in the northern lowlands of Mars. Using recently acquired orbital data, we have expanded the dichotomy delta inventory and performed an updated analysis of delta front elevations, a proxy for paleo‐water levels. Our analysis focused near Gale crater, home of the Curiosity rover. We found that delta front elevations vary by ca. 2400 meters, but these elevation variations do not correspond to modeled deformation from true polar wander or Tharsis. Locally, delta front elevations vary by ≤60 meters, and using present‐day topography, they correspond to distinct enclosed basins. We infer that these deltas formed in paleo‐lakes up to ca. 13,000 km2 and ca. 0.4 kilometers deep, perhaps coeval with paleo‐lakes in Gale. Our results suggest that a northern ocean is not needed to explain the deltaic deposits in the Gale crater region.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: Abstract On 3 January 1975, the largest shallow moonquake (MW 4.1) occurred at Laue impact crater on the Moon. The fault responsible for the moonquake and origins of coseismic boulder avalanches are unknown. Our study reveals a set of previously unreported, seismically active, young lobate scarps near the epicenter. In addition, hundreds of boulder falls are observed on the interior walls of two impact craters on either side of the lobate scarps. The varying preservation levels and crater size‐frequency distributions of impact craters superimposed on the boulder falls indicate their episodic origins at 1.6 Ma and during the 1975 shallow moonquake. Our ground motion simulations confirm that the MW 4.1 moonquake along the lobate scarp at 1‐ to 5‐km focal depths produced strong ground shaking that triggered the boulder avalanches. Also, the fault slip along the Lorentz basin wall beneath the Laue crater floor produced the lobate scarps and the shallow moonquakes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: Abstract High‐speed video and electric field change data have been used to examine the initiation and propagation of 21 recoil leaders, 7 of which evolved into dart (or dart‐stepped) leaders (DLs) initiating return strokes and 14 were attempted leaders (ALs), in a Canton‐Tower upward flash. Three DLs and two ALs clearly exhibited bidirectional extension. Each DL was preceded by one or more ALs and initiated near the extremity of the positive end of the preceding AL. The positive end of each bidirectional DL generally appeared to be inactive (stationary) or intermittently propagated along the positive part of the preceding AL channel and extended into the virgin air. A sequence of two floating channel segments were formed ahead of the approaching positive end of one DL, causing its abrupt elongation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: Abstract On 24 December 2018, a violent eruption started at Mount Etna from a fissure on the southeastern flank. The intrusive phenomenon, accompanied by intense Strombolian and lava fountain activity, an ash‐rich plume, and lava flows, was marked by significant ground deformation and seismicity. In this work, we show how an integrated investigation combining high‐rate GPS data, volcano‐tectonic earthquakes, volcanic tremor, infrasound tremor, and infrasound events allows tracking the magma intrusion phenomenon spatially and temporally with unprecedented resolution. Moreover, it enabled showing how the central magma column lowered as a response to the flank eruption and to constrain the zone of interaction between the dike and the central plumbing system at a depth of 2–4 km below sea level. This is important for understanding flank and summit interaction, suggesting that explosive summit activity may in some cases be driven by lateral dike intrusions.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: Abstract Arctic amplification (AA) is typically associated with Planck, lapse rate, and ice albedo feedbacks. However, the relative importance of poleward energy transport on AA remains uncertain. Here, we analyze integrations from a Chemistry Climate Model to investigate the impact of the Montreal Protocol on forcing, feedback, and transport contributions to AA. Two ensembles of future integrations are considered—one projecting decreasing ozone‐depleting substance concentrations and stratospheric ozone recovery and another assuming that ozone‐depleting substances are not regulated (the “World Avoided”). We find similar degrees of AA in both ensembles, despite a negative radiative forcing over the Arctic in the “World Avoided” from massive ozone loss. That negative radiative forcing is primarily balanced from positive atmospheric energy flux convergence and long‐wave cloud feedbacks. Our results highlight the impact of inhomogeneous radiative forcing on regional differences in forcing and feedback strength and the importance of radiative forcing meridional structure on poleward energy transport.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: Abstract We examine oceanic drivers of widespread droughts over the contiguous United States (herein pan‐CONUS droughts) during the Common Era in what is one of the first analyses of the new Paleo Hydrodynamics Data Assimilation (PHYDA) product. The canonical understanding of oceanic influences on North American hydroclimate suggests that pan‐CONUS droughts are forced by a contemporaneous cold tropical Pacific Ocean and a warm tropical Atlantic Ocean. We test this hypothesis using the paleoclimate record. Composite analyses find a robust association between pan‐CONUS drought events and cold tropical Pacific conditions, but not with warm Atlantic conditions. Similarly, a self‐organizing map analysis shows that pan‐CONUS drought years are most commonly associated with a global sea surface temperature pattern displaying strong La Niña and cold Atlantic Multidecadal Oscillation (AMO) conditions. Our results confirm previous model‐based findings for the instrumental period and show that cold tropical Pacific Ocean conditions are the principal driver of pan‐CONUS droughts on annual timescales.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: Abstract The cavi unit at the north pole of Mars is a deposit of aeolian sand and water ice underlying the Late Amazonian north polar layered deposits. Its strata of Middle to Late Amazonian age record wind patterns and past climate. The Mars Reconnaissance Orbiter Shallow Radar (SHARAD) reveals extensive internal and basal layering within the cavi unit, allowing us to determine its general structure and relative permittivity. Assuming a basalt composition for the sand (ε′ = 8.8), results indicate that cavi contains an average ice fraction between 62% in Olympia Planum and 88% in its northern reaches beneath the north polar layered deposits and thus represents one of the largest water reservoirs on the planet. Internal reflectors indicate vertical variability in composition, likely in the form of alternating ice and sand layers. The ice layers may be remnants of former polar caps and thus represent a unique record of climate cycles predating the north polar layered deposits.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: Abstract In recent years, experimental results have consistently shown evidence of electromagnetic ion cyclotron (EMIC) wave‐driven electron precipitation down to energies as low as hundreds of keV. However, this is at odds with the limits expected from quasi‐linear theory. Recent analysis using nonlinear theory has suggested energy limits as low as hundreds of keV, consistent with the experimental results, although to date this has not been experimentally verified. In this study, we present concurrent observations from Polar‐orbiting Operational Environmental Satellite, Radiation Belt Storm Probes, Global Positioning System, and ground‐based instruments, showing concurrent EMIC waves and sub–MeV electron precipitation, and a global dropout in electron flux. We show through test particle simulation that the observed waves are capable of scattering electrons as low as hundreds of keV into the loss cone through nonlinear trapping, consistent with the experimentally observed electron precipitation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: Abstract Modelling and observations have shown that energy diffusion by chorus waves is an important source of acceleration of electrons to relativistic energies. By performing long‐term simulations using the three‐dimensional Versatile Electron Radiation Belt code, in this study, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modelling of MeV electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high‐latitude chorus waves can tip the balance between acceleration and loss towards acceleration, or alternatively, the increase in high‐latitude waves can result in a net loss of MeV electrons. Variations in high‐latitude chorus may account for some of the variability of MeV electrons.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: Abstract Wet scavenging of black carbon (BC) has been subject to large uncertainty, which importantly determines its atmospheric lifetime and indirect forcing impact on cloud microphysics. This study reveals the complex BC‐hydrometeor interactions in mixed‐phase clouds via single particle measurements in the real‐world environment, by capturing precipitation processes throughout cloud formation, cold rain/graupel, and subsequent snow events at a mountain site influenced by anthropogenic sources in wintertime. We found highly efficient BC wet scavenging during cloud formation, with large and thickly coated BC preferentially incorporated into droplets. During snow processes, BC core sizes in the interstitial phase steadily increased. A mechanism was proposed whereby the BC mass within each droplet was accumulated through droplet collision, leading to larger BC cores, which were then released back to the interstitial air through the Wegener‐Bergeron‐Findeisen processes when ice dominated. These results provide fundamental basis for constraining BC wet scavenging.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: This paper explores temperature variability over southern South America. Four states of temperature variability are revealed in both winter and summer seasons. Synoptic‐scale meteorological patterns help diagnose the temperature variability states with low‐level temperature and moisture advection are closely related to patterns of temperature variability. Large‐scale modes of climate variability show some connection to temperature variability states, no single mode appears to be a primary driver. Abstract Key spatiotemporal patterns of monthly scale temperature variability are characterized over southern South America using k‐means clustering. The resulting clusters reveal patterns of temperature variability, referred to as temperature variability states. Analysis is performed over summer and winter months separately using data covering the period 1980–2015. Results for both seasons show four primary temperature variability states. In both seasons, one state is primarily characterized by warm temperature anomalies across the domain while another is characterized by cold anomalies. The other two patterns tend to be characterized by a warm north–cold south and cold north–warm south feature. This suggests two primary modes of temperature variability over the region. Composites of synoptic‐scale meteorological patterns (wind, geopotential height, and moisture fields) are computed for months assigned to each cluster to diagnose the driving meteorology associated with these variability states. Results suggest that low‐level temperature advection promoted by anomalies in atmospheric circulation patterns is a key process for driving these variability states. Moisture‐related processes also are shown to play a role, especially in summer. The El Niño–Southern Oscillation and the Southern Annular Mode exhibit some relationship with temperature variability state frequency, with some states more common during amplified phases of these two modes than others. However, the climate modes are not a primary driver of the temperature variability states.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: Abstract Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to the dayside. The current study shows that AKR emissions from the remote sources are closely associated with electron injections.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: Abstract In a metal, as in Earth's core, the thermal and electrical conductivities are assumed to be correlated. In a planetary dynamo this implies a contradiction: that both electrical conductivity, which makes it easier to induce current and magnetic field, and conductive heat transport, which hinders thermal convection, should increase simultaneously. Here we show that this contradiction implies that the magnetic induction rate peaks at a particular value of electrical and thermal conductivity and derive the low‐ and high‐conductivity limits for thermal dynamo action. A dynamo regime diagram is derived as a function of electrical conductivity and temperature for Earth's core that identifies four distinct dynamo regimes: no dynamo, thermal dynamo, compositional dynamo, and thermocompositional dynamo. Estimates for the temperature‐dependent electrical conductivity of the core imply that the geodynamo may have come close to its high‐conductivity “no dynamo” limit prior to inner core nucleation, consistent with recent paleomagnetic observations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: Abstract High‐intensity precipitation represents a threat for several regions of the world because of the related risk of natural disasters (e.g., floods and landslides). This work focuses on low‐level precipitation enhancement that occurs in the cloud warm layer and has been observed in relation to collision‐coalescence (CC) leading to flash floods and extreme rainfall events in tropical and temperate latitudes. Specifically, signatures of precipitation enhancement (referred to as CC‐dominant precipitation) are investigated in the observations from the Global Precipitation Measurement (GPM) core mission Dual‐frequency Precipitation Radar (DPR) over the central/eastern Contiguous United States (CONUS) during June 2014 – May 2018. A classification scheme for CC‐dominant precipitation, developed for dual‐polarization S‐band radar measurements and applied in a previous work to X‐band radar observations in complex terrain, is used as a benchmark. The scheme is here applied to the GPM ground validation dataset that matches ground‐based radar observations across CONUS to space‐borne DPR retrievals. The occurrence of CC‐dominant precipitation is documented and the corresponding signatures of CC‐dominant precipitation at Ku‐ and Ka‐band are studied. CC‐dominant profiles show distinguishing features when compared to profiles not dominated by CC, e.g., characteristic vertical slopes of reflectivity at Ku‐ and Ka‐band in the liquid layer, lower freezing level height, and shallower ice layer, which are linked to environmental conditions driving the peculiar CC microphysics. This work aims at improving satellite quantitative precipitation estimation, particularly GPM retrievals, by targeting CC development in precipitation columns. This article is protected by copyright. All rights reserved.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: Abstract The processes that control the isotopic composition of precipitation in the mid‐latitudes are complicated, but can provide valuable insights into precipitation‐generating processes and are critical for interpreting stable isotope‐based paleoclimate records. In this study, we investigated the controls on changes in the isotopic composition of rainwater in central Texas using a combination of existing monthly stable isotope data from the global network of isotopes in precipitation (GNIP) and 20 months of event‐based rainwater collection from Austin, TX. We find that the strongest control on the isotopic composition of precipitation is the varying proportion of convective and stratiform rainfall, with other factors such as precipitation amount, temperature, storm track playing a secondary role. Isotopic values are generally lower in the cold season than the warm season precipitation because cold season precipitation is predominantly stratiform often associated with a northerly storm track. However, the majority of the precipitation in the south‐central United States (US) occurs during the warm season in association with mesoscale convective systems (MCS) that are fed with moisture by the southerly winds. MCS are characterized by a combination of a leading edge of organized deep convection and trailing stratiform precipitation. Stronger MCS tend to contain higher proportions of stratiform rainfall and as a result, have more isotopically depleted values. Therefore, changes in the stable isotopic composition of rainfall may be interpreted as reflecting changes in the intensity of MCS.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: Abstract A storage‐discharge relation tells us how discharge will change when new water enters a hydrologic system, but not which water is released. Does an incremental increase in discharge come from faster turnover of older water already in storage? Or are the recent inputs rapidly delivered to the outlet, ‘short‐circuiting’ the bulk of the system? Here I demonstrate that the concepts of storage‐discharge relationships and transit time distributions can be unified into a single relationship that can usefully address these questions: the age‐ranked storage‐discharge relation. This relationship captures how changes in total discharge arise from changes in the turn‐over rate of younger and older water in storage, and provides a window into both the celerity and velocity of water in a catchment. This leads naturally to a distinction between cases where an increase in total discharge is accompanied by an increase (old water acceleration), no change (old water steadiness), or a decrease in the rate of discharge of older water in storage (old water suppression). The simple theoretical case of a power‐law age‐ranked storage‐discharge relations is explored to illustrate these cases. Example applications to data suggest that the apparent presence of old water acceleration or suppression is sensitive to the functional form chosen to fit to the data, making it difficult to draw decisive conclusions. This suggests new methods are needed that do not require a functional form to be chosen, and provide age‐dependent uncertainty bounds.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: Abstract Atmospheric nitrate (NO3− = particulate NO3− + gas‐phase nitric acid [HNO3]) and sulfate (SO42−) are key molecules that play important roles in numerous atmospheric processes. Here, the seasonal cycles of NO3− and total suspended particulate sulfate (SO42−(TSP)) were evaluated at the South Pole from aerosol samples collected weekly for approximately 10 months (26 January to 25 October) in 2002 and analyzed for their concentration and isotopic compositions. Aerosol NO3− was largely affected by snowpack emissions in which [NO3−] and δ15N(NO3−) were highest (49.3 ± 21.4 ng/m3, n = 8) and lowest (−47.0 ± 11.7‰, n = 5), respectively, during periods of sunlight in the interior of Antarctica. The seasonal cycle of Δ17O(NO3−) reflected tropospheric chemistry year‐round with lower values observed during sunlight periods and higher values observed during dark periods, reflecting shifts from HOx‐ to O3‐dominated oxidation chemistry. SO42−(TSP) concentrations were highest during austral summer and fall (86.7 ± 73.7 ng/m3, n = 18) and are indicated to be derived from dimethyl sulfide (DMS) emissions, as δ34S(SO42−)(TSP) values (18.5 ± 1.0‰, n = 10) were similar to literature δ34S(DMS) values. The seasonal cycle of Δ17O(SO42−)(TSP) exhibited minima during austral summer (0.9 ± 0.1‰, n = 5) and maxima during austral fall (1.3 ± 0.3‰, n = 6) and austral spring (1.6 ± 0.1‰, n = 5), indicating a shift from HOx‐ to O3‐dominated chemistry in the atmospheric derived SO42− component. Overall, the budgets of NO3− and SO42−(TSP) at the South Pole were complex functions of transport, localized chemistry, biological activity, and meteorological conditions, and these results will be important for interpretations of oxyanions in ice core records in the interior of Antarctica.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: Abstract Variability of the flow across the Solomon Sea's southern entrance was examined using end point subsurface moorings and seafloor pressure sensors, reconstructed velocity profiles based on satellite‐derived surface velocity and bottom pressure‐derived subsurface velocity, and 1993–2017 proxy volume transport based on satellite altimetry. The reconstructed velocity correctly represents the fluctuating surface flow and subsurface core providing a high‐frequency continuous observing system for this sea. The mean equatorward volume transport over 0‐ to 500‐m depth layer is 15.2 Sv (1 Sv ≡ 106 m3/s) during July 2012 to May 2017. The measurements resolve the full spectrum of the volume transport including energetic subseasonal variability that fluctuates by as much as 25 Sv over one week. At low‐frequency timescales, the study finds that linear Rossby waves forced by Ekman pumping in the interior of the Pacific influence not only seasonal fluctuations as found by previous studies but also interannual variability. As found previously, the El Niño–Southern Oscillation highly influences interannual volume transport. During the 2015/2016 El Niño, observations show the seasonal cycle to be suppressed from the second half of 2014, prior to the mature phase of the El Niño, to September 2016 along with an increase in across‐transect transport. At subseasonal timescales, local Ekman pumping and remote wind stress curl are responsible for a third of the subseasonal variance. The study highlights the importance of high‐frequency observations at the southern entrance of the Solomon Sea and the ability of a linear Rossby model to represent the low‐frequency variability of the transport.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: Abstract A direct method is presented to obtain the meridional overturning and heat transport in oceanic basins from observations under the sole assumptions of geostrophy and hydrostatics,. The method is made possible because of the rising Argo float displacements data base which can provide a reference level at 1000 dbar for the time mean circulation at 1° × 1° resolution. To achieve the overturning and heat transport objectives, the absolute geostrophic time mean circulation must have non divergent barotropic transports and this requires the solutions of two Poisson equations with suitable boundary conditions, one for the geopotential at 1000 dbar and one for the barotropic streamfunction. Applied to the subpolar Atlantic for the period 2000‐2009, an overturning of 16‐18 Sv is found around 40o‐50oN, a meridional heat transport of 0.59 PW is found at 40oN (0.23 PW at 60oN) so that on average ~50 Wm‐2 are exported from ocean to atmosphere to feed the atmospheric storm track. The zonally averaged flow (the overturning) falls short of explaining the observed heat transport and the barotropic component of the circulation accounts for up to 50% of the heat transport poleward of 55oN. With the rising Argo float data base, the method offers high potential to reconstruct the World Ocean time mean circulation and its heat transport away from the equator at higher resolution. The drawback is that it requires in some critical places additional current observations on the shallow shelves which are not sampled by the Argo floats.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: Abstract The injection region's formation, scale size, and propagation direction have been debated throughout the years, with new questions arising with increased plasma sheet observations by missions like Cluster and THEMIS. How do temporally and spatially small‐scale injections relate to the larger injections historically observed at geosynchronous orbit? How to account for opposing propagation directions—earthward, tailward, and azimuthal—observed by different studies? To address these questions, we used a combination of multisatellite and ground‐based observations to knit together a cohesive story explaining injection formation, propagation, and differing spatial scales and timescales. We used a case study to put statistics into context. First, fast earthward flows with embedded small‐scale dipolarizing flux bundles transport both magnetic flux and energetic particles earthward, resulting in minutes‐long injection signatures. Next, a large‐scale injection propagates azimuthally and poleward/tailward, observed in situ as enhanced flux and on the ground in the riometer signal. The large‐scale dipolarization propagates in a similar direction and speed as the large‐scale electron injection. We suggest small‐scale injections result from earthward‐propagating, small‐scale dipolarizing flux bundles, which rapidly contribute to the large‐scale dipolarization. We suggest the large‐scale dipolarization is the source of the large‐scale electron injection region, such that as dipolarization expands, so does the injection. The 〉90‐keV ion flux increased and decreased with the plasma flow, which died at the satellites as global dipolarization engulfed them. We suggest the ion injection region at these energies in the plasma sheet is better organized by the plasma flow.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: Abstract Aims As global temperatures rise, the survival of many species may hinge on whether they can shift their climatic niches quickly enough to avoid extinction. Previous analyses among species and populations suggest that species’ niches change far slower than rates of projected climate change. However, it is unclear how quickly niches can change over the timeframe most relevant to global warming (decades instead of thousands or millions of years). Here, we use data from introduced species to assess how quickly climatic niches can change over decadal timescales. Location Global. Methods We analyse climatic data from 76 reptile and amphibian species introduced into the USA. We test for a relationship between species climatic‐niche values in their native and introduced ranges. We also quantify niche shifts in introduced populations relative to their native ranges and the rate of change associated with these shifts. We then compare these rate estimates to those estimated among species and to projected rates of future climate change. Results Remarkably, niche shifts in introduced species are roughly a million times faster than niche shifts among species in their native ranges and roughly 10 times faster than rates of projected climate change. Main conclusions Our results demonstrate that dramatic and rapid niche shifts are possible, although these may be limited in species’ native ranges by biotic interactions and other factors.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: ABSTRACT Blended acquisition along with efficient spatial sampling is capable of providing high‐quality seismic data in a cost‐effective and productive manner. While deblending and data reconstruction conventionally accompany this way of data acquisition, the recorded data can be processed directly to estimate subsurface properties. We establish a workflow to design survey parameters that account for the source blending as well as the spatial sampling of sources and detectors. The proposed method involves an iterative scheme to derive the survey design leading to optimum reflectivity and velocity estimation via joint migration inversion. In the workflow, we extend the standard implementation of joint migration inversion to cope with the data acquired in a blended fashion along with irregular detector and source geometries. This makes a direct estimation of reflectivity and velocity models feasible without the need of deblending or data reconstruction. During the iterations, the errors in reflectivity and velocity estimates are used to update the survey parameters by integrating a genetic algorithm and a convolutional neural network. Bio‐inspired operators enable the simultaneous update of the blending and sampling operators. To relate the choice of survey parameters to the performance of joint migration inversion, we utilize a convolutional neural network. The applied network architecture discards suboptimal solutions among newly generated ones. Conversely, it carries optimal ones to the subsequent step, which improves the efficiency of the proposed approach. The resultant acquisition scenario yields a notable enhancement in both reflectivity and velocity estimation attributable to the choice of survey parameters.
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: Abstract Hydrogeological field studies rely often on a single conceptual representation of the subsurface. This is problematic since the impact of a poorly chosen conceptual model on predictions might be significantly larger than the one caused by parameter uncertainty. Furthermore, conceptual models often need to incorporate geological concepts and patterns in order to provide meaningful uncertainty quantification and predictions. Consequently, several geologically‐realistic conceptual models should ideally be considered and evaluated in terms of their relative merits. Here, we propose a full Bayesian methodology based on Markov chain Monte Carlo (MCMC) to enable model selection among 2D conceptual models that are sampled using training images and concepts from multiple‐point statistics (MPS). More precisely, power posteriors for the different conceptual subsurface models are sampled using sequential geostatistical resampling and Graph Cuts. To demonstrate the methodology, we compare and rank five alternative conceptual geological models that have been proposed in the literature to describe aquifer heterogeneity at the MAcroDispersion Experiment (MADE) site in Mississippi, USA. We consider a small‐scale tracer test (MADE‐5) for which the spatial distribution of hydraulic conductivity impacts multilevel solute concentration data observed along a 2D transect. The thermodynamic integration and the stepping‐stone sampling methods were used to compute the evidence and associated Bayes factors using the computed power posteriors. We find that both methods are compatible with MPS‐based inversions and provide a consistent ranking of the competing conceptual models considered.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: Abstract As sea level rise and possible changes in storminess threaten coastal communities and infrastructure, the capacity for foredunes to provide protection depends on their geomorphology, which is determined by interactions between physical beach processes and vegetation. Here we use descriptive Bayesian network analyses to examine how sediment supply, beach characteristics, and two species of beachgrass (Ammophila arenaria and Ammophila breviligulata) alter foredune morphology and patterns of sand accretion on U.S. Pacific Northwest foredunes. We show that sediment supply and beach type primarily determine foredune morphology. Beachgrass density also influences foredune shape, but its effects differ among species: increasing density of A. arenaria was associated with steeper sloping dunes, whereas increasing density of A. breviligulata was associated with wider, more shallow sloping dunes. An examination of the change in foredune morphology over a 2‐year period found sand accretion was most strongly influenced by species‐specific patterns of vegetation growth and beach type. Specifically, A. breviligulata exhibited more lateral growth, resulting in greater sand accretion at the seaward margin of the foredune. In contrast, A. arenaria exhibited little lateral growth, resulting in comparatively more sand accretion near the foredune crest. Consequently, growth form‐generated sand accretion patterns resulted in steep, narrow A. arenaria‐dominated foredunes and shallow‐sloping, wider A. breviligulata‐dominated foredunes. These results illustrate that vegetation density and patterns of growth influence foredune morphology and its changes over time.
    Print ISSN: 2169-9003
    Electronic ISSN: 2169-9011
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: Abstract Convergent orogens exhibit high elevations and relief, features characteristic of active rock uplift, the latter influencing normalized channel steepness (Ksn). In systems with significant horizontal displacement, Ksn values and interfluves are elevated over a region of tens of kilometers and gradually decline in the direction of rock advection. To evaluate potential relationships between elevated Ksn, a gradual decline in interfluve elevation (i.e., tapered topography) and lateral advection, we integrated kinematic models that simulate advection over a mid‐crustal ramp with a 2D surface processes model. Varying convergence rate, bedrock erodibility and ramp angle, we tracked topographic evolution over time. The process of advection through the region of active rock uplift above a mid‐crustal ramp is preserved in the geomorphic record through transient legacy landscapes characterized by (i) high‐relief, advection‐parallel interfluves, (ii) tapered topography, (iii) elevated and gradually declining Ksn values, and (iv) higher Ksn in trunk relative to tributary streams likely reflecting the influence of increased sediment flux, elevated interfluves, and changes in drainage area. The width of legacy landscapes provides a minimum constraint on the total lateral displacement, controlled by the duration of ramp activity and the rates of advection and erosion. The development of legacy landscapes is facilitated by spatial variations in flow convergence that occur in a 2D setting but are not captured in idealized 1D approaches. The presence of elevated Ksn and high relief, advection‐parallel interfluves beyond the region of active rock uplift likely reflects the horizontal advection component inherent to convergent orogenic systems.
    Print ISSN: 2169-9003
    Electronic ISSN: 2169-9011
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: Abstract Understanding global soil moisture‐air temperature (θ‐Ta) coupling is needed to improve the representation of land‐atmosphere interactions in Earth system models. Most studies on θ‐Ta coupling have focused on hot extremes, where precipitation‐related indices and model‐derived soil moisture products are commonly used. In this study, global θ‐Ta coupling is examined based on monthly air temperature anomalies and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS). A discrete wavelet decomposition is used to partition the TWS into different components. The results show that TWS is useful in revealing the spatial patterns of θ‐Ta coupling. Decomposed GRACE TWS shows improved skill compared to raw TWS in explaining temporal variability of monthly air temperature, which likely reflects different roles of soil moisture at different depths in the θ‐Ta coupling. The explanatory power improves further by using a combination of decomposed GRACE TWS and precipitation. Such improvement is observed particularly in places where vegetation tends to have a deeper rooting system, such as eastern region of South America, the southern tip of Africa, and north of the Tropic of Capricorn in Australia. The occurrence of θ‐Ta coupling is mainly constrained by the coupling of root zone moisture and land surface temperature. In addition to deeper rooting systems, clear wet and dry season alternation is another favorable factor for developing significant monthly θ‐Ta coupling.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: Abstract This study investigates heat wave variability over Korea during 1979‐2017. It is found that most of heat waves in Korea can be classified into two distinct types based on the spatial patterns of atmospheric circulation anomalies: the zonal wave (Z‐wave) type and the meridional wave (M‐wave) type. The Z‐wave type is accompanied by large‐scale atmospheric waves across the Eurasian continent, while the M‐wave type is associated with convective activities over the subtropical western North Pacific. The Z‐wave type occurs when the high‐pressure node of eastward propagating wave located around Korea and it seems that the associated wave energy could originate from North Atlantic Ocean. The M‐wave type, on the other hand, is driven by northward propagating wave train from subtropical western North Pacific to East Asia, which is triggered by anomalous convective activity over the subtropical western North Pacific. By analyzing thermodynamical as well as dynamical variables, detailed descriptions on the physical characteristics of two types of heat wave are presented in this study along with the possible implications for summer climate variability over Korea.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: Abstract Here we present an observation‐based study of the coupled land‐ocean regions of influence for the transformation of precipitation over land into coastal river plume structure in the Gulf of Mexico (GoM). First, we locate the regions on land for which precipitation and runoff generation have the strongest relationship with local river discharge. Then we map, on average, the apparent unique contribution of individual river discharge forcing to specific features of river plume structure across the GoM. To this end, we employ a spatial‐temporal lagged correlation analysis that relates satellite‐based precipitation, soil moisture, and sea surface salinity observations to in situ river discharge for the three primary freshwater input sources for the GoM. On land, we find a likely source region for the northeastern GoM in the southeastern Mississippi basin at 16‐day lead time, a likely source region for the northeastern GoM in the Mobile Bay basin at 3‐day lead time and a likely source region for the Central GoM from the Texas basin region at 4‐day lead time. In the ocean, we find statistically significant regions of distinct contribution for each of the three sources of freshwater on plume structure at lag times from weeks to several months. Though a statistical approach is limited in its interpretability, this result advances progress toward a predictive framework for mapping of the impacts of hydrological flood events from land into the ocean using observations alone.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: Abstract Recent laboratory evidence shows that compaction creep in porous rocks may develop through stages of acceleration, especially if the material is susceptible to strain localization. This paper provides a mechanical interpretation of compaction creep based on viscoplasticity and nonlinear dynamics. For this purpose, a constitutive operator describing the evolution of compaction creep is defined to evaluate the spontaneous accumulation of pore collapse within an active compaction band. This strategy enables the determination of eigenvalues associated with the stability of the response, i.e. able to differentiate decelerating from accelerating strain. This mathematical formalism was linked to a constitutive law able to simulate compaction localization. Material point simulations were then used to identify the region of the stress space where unstable compaction creep is expected, showing that accelerating strains correspond to pulses of inelastic strain rate. Such pulses were also found in full‐field numerical analyses of delayed compaction, revealing that they correspond to stages of inception and propagation of new bands across the volume of the simulated sample. These results illustrate the intimate relation between the spatial patterns of compaction and their temporal dynamics, showing that while homogeneous compaction develops with decaying rates of accumulation, localized compaction occurs through stages of accelerating deformation caused by the loss of strength taking place during the formation of a band. In addition, they provide a predictive modeling framework to simulate and explain the spatiotemporal dynamics of compaction in porous sedimentary formations.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: Abstract This paper evaluates the intraseasonal variability of sea surface temperature (SST) along the Sumatra‐Java southern coast using available satellite‐derived oceanic and atmospheric data combined with output from a numerical model. The result reveals that the intraseasonal variability of SST is greater during boreal summer–fall (June–October) than during boreal winter–spring (November–May). Composite analysis shows a correlation between positive/negative intraseasonal SST variabilities and coastal downwelling/upwelling, as well as onshore/offshore Ekman transport during summer–fall. During this period, with the significantly increasing role of oceanic advection, oceanic processes are evidently enhanced and dominate the intraseasonal variability of SST. Meanwhile, the contribution of atmospheric processes drops by 67%. During winter–spring, the intraseasonal SST is primarily contributed by atmospheric processes but has a nonsignificant relationship with sea level anomalies. Intraseasonal SST anomalies vary out of phase with surface wind anomalies. The result also shows a relatively small contribution by vertical processes throughout the year, with the maximum in April and the minimum during August–September. Further analysis reveals that the alternating dominance of atmospheric and oceanic processes on intraseasonal variability of SST is responsible for the seasonality along the Sumatra‐Java southern coast. Moreover, the result indicates that the seasonality in intraseasonal SST is different in the eastern Indonesian Seas, which tends to be relatively strong in boreal winter. Distinct dominance of atmospheric and oceanic processes in intraseasonal SST is the main reason for these differences in seasonal variation characteristics.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: Abstract Precise measurements of height changes (HCs) are important for improved estimates of mass balance of the Greenland Ice Sheet (GrIS). Here we determine 10 years of precise, high‐resolution HCs of the GrIS from Envisat radar altimeter using a subwaveform retracker and a modified repeat‐track method. The HCs show clear seasonal changes and monotonic declines over glaciers on the coasts such as Zachariae Isstrøm. We enhance mass‐change estimates from GRACE data using HCs and densities from interannual correlations between GRACE‐derived mass changes and HCs. We estimate the mass changes of eight drainage basins with our combined mass change. The largest mass change between 2002 and 2012 occurred in the northwest basin and the smallest in the northeast basin. We separate the ice and snow HC rates to derive a ratio (f) between them to characterize the relative importance of ice or snow to mass change. The snow HC rates are mostly positive over the GrIS, except on the margins of the west coast and Zachariae Isstrøm. The mean ice HC rate is ‐6.6±3.9 cm yr‐1 over 2002–2006, which accelerated to ‐13.9±2.4 cm yr‐1 over 2007–2012. The f factors show a clear post‐2006 ice dominance in the GrIS mass loss, particularly on the west coast, with a mean 91.4% ice contribution over 2002–2006, increasing to 94.5% over 2007–2012. This indicates increasing mass loss after 2006. A coincident radar altimeter and gravimetry mission is important for studying mass balance and separating snow and ice contributions over space and time.
    Print ISSN: 2169-9003
    Electronic ISSN: 2169-9011
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: ABSTRACT Detailed P wave velocity and anisotropy structure of the uppermost mantle below the central United States is presented based on a tomographic inversion of Pn traveltimes for earthquakes in the range 2 to 14°. Dense raypath coverage throughout the northern Mississippi Embayment is obtained using the Northern Embayment Lithosphere Experiment and U.S. Transportable Array data sets. A detailed analysis of the trade‐off between velocity and anisotropy variations demonstrates that both are well resolved over most of the study area. Anomalously fast Pn velocities are identified below the northern Mississippi Embayment, centered on the New Madrid seismic zone. A prominent region of low velocity coincides with the southwestern margin of the Illinois basin. Pn anisotropy displays complex patterns and differs from absolute plate motion directions and SKS splitting directions. A circular pattern of fast anisotropy directions is centered on the New Madrid seismic zone and may be related to the presence of the mafic “rift pillow.”
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: Abstract Laboratory experiments examined the impact of model vegetation on wave‐driven resuspension. Model canopies were constructed from cylinders with three diameters (d = 0.32, 0.64, and 1.26 cm) and 12 densities (cylinders/m2) up to a solid volume fraction (ϕ) of 10%. The sediment bed consisted of spherical grains with d50 = 85 μm. For each experiment, the wave velocity was gradually adjusted by increasing the amplitude of 2‐s waves in a stepwise fashion. A Nortek Vectrino sampled the velocity at z = 1.3 cm above the bed. The critical wave orbital velocity for resuspension was inferred from records of suspended sediment concentration (measured with optical backscatter) as a function of wave velocity. The critical wave velocity decreased with increasing solid volume fraction. The reduction in critical wave velocity was linked to stem‐generated turbulence, which, for the same wave velocity, increased with increasing solid volume fraction. The measured turbulence was consistent with a wave‐modified version of a stem‐turbulence model. The measurements suggested that a critical value of turbulent kinetic energy was needed to initiate resuspension, and this was used to define the critical wave velocity as a function of solid volume fraction. The model predicted the measured critical wave velocity for stem diameters d = 0.64 to 2 cm. Combining the critical wave velocity with an existing model for wave damping defined the meadow size for which wave damping would be sufficient to suppress wave‐induced sediment suspension within the interior of the meadow.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: Abstract An analysis of the counter‐electrojet occurrence (CEJ) during 2008–2014 is presented for the African and American sectors based on local daytime (0700–1700 LT) observations from the Communications and Navigation Outage Forecasting System (C/NOFS) vertical ion plasma drift (equivalent to vertical E×B at an altitude of about 400 km) and ground‐based magnetometers. Using quiet time (Kp≤ 3) data, differences and/or similarities between the two data sets with reference to local time and seasonal dependence are established. For the first time, it is shown that C/NOFS satellite data are consistent with magnetometer observations in identifying CEJ occurrences during all seasons. However, C/NOFS satellite data show higher CEJ occurrence rate for almost all seasons. With respect to local time, C/NOFS satellite observes more CEJ events than magnetometer observations by average of about 20% and 40% over the American and African sectors, respectively, despite both data sets showing similar trends in CEJ identification. Therefore, when a space weather event occurs, it is important to first establish the original variability nature and/or magnitude of the eastward electric field in equatorial regions before attributing the resulting changes to solar wind‐magnetosphere and ionosphere coupling processes since CEJ events can be present even during quiet conditions.
    Print ISSN: 1539-4964
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: Abstract Sedimentary relative paleointensity (RPI) records are often carried by complex magnetic mineral mixtures, including detrital and biogenic magnetic minerals. Recent studies have demonstrated that magnetic inclusions within larger detrital silicate particles can make significant contributions to sedimentary paleomagnetic records. However, little is known about the role such inclusions play in sedimentary paleomagnetic signal recording. We analyzed paleomagnetic and mineral magnetic data for marine sediment core MD01‐2421 from the North Pacific Ocean, offshore of central Japan, to assess how magnetic inclusions and other detrital magnetic minerals record sedimentary paleomagnetic signals. Stratigraphic intervals in which abundant magnetic inclusions dominate the magnetic signal are compared with other intervals to assess quantitatively their contribution to sedimentary RPI signals. The normalized remanence record from core MD01‐2421 does not correlate clearly with global RPI stacks, which we attribute to a demonstrated lower paleomagnetic recording efficiency of magnetic inclusions compared to other detrital magnetic minerals. We also carried out the first laboratory redeposition experiments under controlled Earth‐like magnetic fields for particles with magnetic inclusions using material from core MD01‐2421. Our results confirm that such particles can be aligned by ambient magnetic fields but with a lower magnetic recording efficiency compared to other detrital magnetic minerals, which is consistent with normalized remanence data from core MD01‐2421. Our demonstration of the role of sedimentary magnetic inclusions should have wide applicability for understanding sedimentary paleomagnetic recording.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: Abstract In this study, we estimate atmospheric turbulence in the free atmosphere in terms of the Thorpe scale (LT) and eddy dissipation rate (ε) using U.S. high vertical‐resolution radiosonde data over 4 years (September 2012 to August 2016) at 68 operational stations. In addition, same calculations are conducted for 12 years (October 2005 to September 2017) at four stations among the 68 stations. These high vertical‐resolution radiosonde data have a vertical resolution of approximately 5 m and extend to an altitude of approximately 33 km, and thus, turbulence can be retrieved in the entire troposphere and lower stratosphere. There are thicker and stronger turbulent layers in the troposphere than in the stratosphere, with mean ε values of 1.84 × 10−4 and 1.37 × 10−4 m2/s3 in the troposphere and stratosphere, respectively. The vertical structure of ε exhibits strong seasonal variations, especially in the upper troposphere and lower stratosphere, with the largest ε values in summer and the smallest in winter. In the horizontal distribution of ε, large ε is seen mainly above the mountainous region in the troposphere, but this pattern is not seen in the stratosphere. Although ε is estimated by the square of LT multiplied by the cube of the Brunt‐Väisälä frequency (N), the regions of large ε are matched with large LT regions where N is relatively small. For the time series of ε near the tropopause for 12 years at four stations, an annual variation is prominent at all stations without significant interannual variations. There is, however, a slightly increasing trend of ε at two stations.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: Abstract Abrupt swings in temperature can exert negative impacts, ranging from human health to agricultural production. Here, we focus on a global assessment of the extremes in the temperature swings at sub‐daily scales using Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA‐2) data. Overall, the regions with extremely large swings in hourly temperature (i.e., 99th percentile) are located in desert or arid regions, and the land masses exhibit larger temperature swings than the oceans. In contrast, the first percentile of the hourly temperature swings exhibits a different spatial pattern, with the lowest values (i.e., largest negative swings) located in the Rocky Mountain, South Australia, South and North Africa and some regions in Northwestern China. We identify a significant downward/upward trend in the 99th/1st percentile of sub‐daily (i.e., hourly and 12 hr) temperature changes in the midlatitudes in the Northern Hemisphere, particularly during boreal summer. Overall, the regions with significant trends in the Northern Hemisphere are collocated with the paths of the jet streams and storm tracks. The significant downward/upward trends in the 99th/1st percentile of the sub‐daily temperature swings over the Northern Hemisphere can be explained by a weakening in the Northern Hemisphere's summer circulation, as suggested by the downward trend in the eddy kinetic energy. These results indicate that a weak/strong persistence in the circulation may lead to less/more abrupt temperature swings (i.e., increase or decrease) caused by horizontal temperature advection.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: Abstract The presence of a seasonal snowpack determines the hydrology, geomorphology and ecology of wide parts of the Iberian Peninsula, with strong implications for the economy, transport and risk management. Thus, reliable information on snow is necessary from a scientific and operational point of view. This is the case of the Iberian Peninsula where, lack of observation has impeded proper analysis of snowpack duration, magnitude and interannual variability. In this study we present the first snow climatology of the entire Iberian Peninsula. The scarcity of in situ observations has been overcome, using a newly developed remote sensing snow database from MODIS satellite sensors for the period 2000 ‐ 2014 and a physically based snow model (Factorial Snow Model‐ FSM), driven by a regional atmospheric model (Weather Research and Forecast model‐ WRF) over the Iberian Peninsula for the period 1980 ‐ 2014. The snowpack of the main mountain areas (Pyrenees, Cantabrian, Central, Iberian range and Sierra Nevada) are described, estimated from the generated databases. The information has been processed using a k‐means cluster algorithm, looking for similarities in snow indices at different elevation bands. Results show four different types of snowpack in terms of depth, duration and interannual variability, lying over different elevation bands in the different ranges, proving the variability of the snowpack over Iberia. Analyses reveal areas characterised by ephemeral snowpacks, while in some sectors snowpack lasts, on average, 198 days per year with 3.02 meters of peak snow depth. The coefficient of variation of interannual peak snow depth oscillated between 35.2% and 162.4%. All the analysed indices show that at common elevations the Cantabrian range and the Pyrenees host the deepest and longest lasting snowpacks, followed by the Central and Iberian ranges. The Sierra Nevada exhibits the shortest, shallowest snowpack and more year‐to‐year variability. This article is protected by copyright. All rights reserved.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: Abstract The mechanical dynamics of volcanic systems can be better understood with detailed knowledge on strength of a volcanic edifice and subsurface. Previous work highlighting this on Mt. Etna has suggested that its carbonate basement could be a significant zone of widespread planar weakness. Here, we report new deformation experiments to better quantify such effects. We measure and compare key deformation parameters using Etna basalt (EB), which is representative of upper edifice lava flows, and Comiso limestone (CL), which is representative of the carbonate basement, under upper crustal conditions. These data are then used to derive empirical constitutive equations describing changes in rocks strength with pressure, temperature and strain rate. At a constant strain rate of 10‐5 s‐1 and an applied confining pressure of 50 MPa the brittle to ductile transitions were observed at 975 °C (EB) and 350 °C (CL). For the basaltic edifice of Mt. Etna, the strength is described with a Mohr‐coulomb failure criterion with μ ~0.704, C = 20 MPa. For the carbonate basement, strength is best described by a power law‐type flow in two regimes: a low‐T regime with stress exponent n ~5.4 and an activation energy Q ~ 170.6 kJ/mol and a high‐T regime with n~ 2.4 and Q ~ 293.4 kJ/mol. We show that extrapolation of these data to Etna's basement predicts a brittle to ductile transition that corresponds well with the generally observed trends of the seismogenic zone underneath Mt. Etna. This in turn may be useful for future numerical simulations of volcano‐tectonic deformation of Mt. Etna, and other volcanoes with limestone basements.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: Abstract We analyze the spatial variation in the response of the surface geomagnetic field (or the equivalent ionospheric current) to variations in the solar wind. Specifically, we regress a reanalysis of surface external and induced magnetic field (SEIMF) variations onto measurements of the solar wind. The regression is performed in monthly sets, independently for 559 regularly spaced locations covering the entire northern polar region above 50° magnetic latitude. At each location, we find the lag applied to the solar wind data that maximizes the correlation with the SEIMF. The resulting spatial maps of these independent lags and regression coefficients provide a model of the localized SEIMF response to variations in the solar wind, which we call “Spatial Information from Distributed Exogenous Regression.” We find that the lag and regression coefficients vary systematically with ionospheric region, season, and solar wind driver. In the polar cap region the SEIMF is best described by the By component of the interplanetary magnetic field (50–75% of total variance explained) at a lag ∼20–25 min. Conversely, in the auroral zone the SEIMF is best described by the solar wind ϵ function (60–80% of total variance explained), with a lag that varies with season and magnetic local time (MLT), from ∼15–20 min for dayside and afternoon MLT (except in Oct–Dec) to typically 30–40 min for nightside and morning MLT and even longer (60–65 min) around midnight MLT.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: Evergreen broadleaf forests (EBFs) illustrated higher temporal stability and resistance of EVI than other biomes. Preserving EBFs is beneficial for global vegetation productivity stability and climate mitigation. Abstract Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or land carbon sink is mainly driven by non‐evergreen ecosystems, such as semiarid grasslands, croplands, and boreal forests. Thus, we hypothesize that EBFs have higher stability than other biomes under the increasingly extreme droughts. Here we use long‐term Standardized Precipitation and Evaporation Index (SPEI) data and satellite‐derived Enhanced Vegetation Index (EVI) products to quantify the temporal stability (ratio of mean annual EVI to its SD), resistance (ability to maintain its original levels during droughts), and resilience (rate of EVI recovering to pre‐drought levels) at biome and global scales. We identified significantly increasing trends of annual drought severity (SPEI range: −0.08 to −1.80), area (areal fraction range: 2%–19%), and duration (month range: 7.9–9.1) in the EBF biome over 2000–2014. However, EBFs showed the highest resistance of EVI to droughts, but no significant differences in resilience of EVI to droughts were found among biomes (forests, grasslands, savannas, and shrublands). Global resistance and resilience of EVI to droughts were largely affected by temperature and solar radiation. These findings suggest that EBFs have higher stability than other biomes despite the greater drought exposure. Thus, the conservation of EBFs is critical for stabilizing global vegetation productivity and land carbon sink under more‐intense climate extremes in the future.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: Projected changes in coastal metacommunities driven by ocean warming and acidification based on the elements of the metacommunity structure framework of Leibold and Mikkelson (Oikos 97:237, 2002) and Presley, Higgins, and Willig (Oikos 119:908, 2010). Under present‐day conditions (a) metacommunity is structured by habitat environmental filtering. Under future climate conditions (b) metacommunity is randomly structured. Abstract Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e., metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow‐water habitats: sandy soft‐bottoms, marine vegetation, and rocky reef substrates. Primary producers and detritus—key food sources for meiofauna—increased in biomass under the combined effect of temperature and acidification. The enhanced bottom‐up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present‐day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast‐growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: Explaining interspecific variation in autumn bird migration phenology trends has been challenging. We performed a spatially explicit time window analysis of weather effects on mean autumn passage of four trans‐Saharan and six intra‐European passerines at the island of Heligoland (Germany) over a 55‐year period (1960–2014). Weather variables at the breeding and stopover grounds explained up to 80% of the species‐specific interannual variability in autumn passage. Overall, wind conditions were most important, but the climatic contributions to the temporal trend in autumn migration phenology consisted of a potpourri of wind, precipitation and temperature effects. Abstract Climate change has caused a clear and univocal trend towards advancement in spring phenology. Changes in autumn phenology are much more diverse, with advancement, delays, and ‘no change' all occurring frequently. For migratory birds, patterns in autumn migration phenology trends have been identified based on ecological and life‐history traits. Explaining interspecific variation has nevertheless been challenging, and the underlying mechanisms have remained elusive. Radar studies on non‐species‐specific autumn migration intensity have repeatedly suggested that there are strong links with weather. In long‐term species‐specific studies, the variance in autumn migration phenology explained by weather has, nevertheless, been rather low, or a relationship was even lacking entirely. We performed a spatially explicit time window analysis of weather effects on mean autumn passage of four trans‐Saharan and six intra‐European passerines to gain insights into this apparent contradiction. We analysed data from standardized daily captures at the Heligoland island constant‐effort site (Germany), in combination with gridded daily temperature, precipitation and wind data over a 55‐year period (1960–2014), across northern Europe. Weather variables at the breeding and stopover grounds explained up to 80% of the species‐specific interannual variability in autumn passage. Overall, wind conditions were most important. For intra‐European migrants, wind was even twice as important as either temperature or precipitation, and the pattern also held in terms of relative contributions of each climate variable to the temporal trends in autumn phenology. For the trans‐Saharan migrants, however, the pattern of relative trend contributions was completely reversed. Temperature and precipitation had strong trend contributions, while wind conditions had only a minor impact because they did not show any strong temporal trends. As such, understanding species‐specific effects of climate on autumn phenology not only provides unique insights into each species' ecology but also how these effects shape the observed interspecific heterogeneity in autumn phenological trends.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: Geophysical Prospecting, Volume 0, Issue ja, -Not available-.
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: Abstract Tectonic extension of continental lithosphere creates accommodation space in which sediments are deposited. Climate‐driven processes provide the mechanism by which mass is detached from hillslopes and sediments are transported into this accommodation space. These two forcings, climate and tectonics, act together to create either endorheic (internally drained) or exorheic (externally drained) rift basins. Here we use a large‐scale dynamic landscape evolution‐tectonics model to understand the contribution of tectonic processes in endorheic‐exorheic transitions. In the model, extension results in opening of an asymmetric half‐graben along a listric normal fault. Rift opening occurs in the models in wet, temperate, or semi‐arid climates where runoff and evapotranspiration are varied. Our numerical experiments show that slow rift‐opening rates, a slowing‐down of rift opening, or increase of headwater topography (e.g., upstream epeirogenic uplift), are tectonic situations that can cause a transition from an endorheic to an exorheic drainage state in a rift basin. Our results also show that wet climate conditions lead to a permanent exorheism that persists regardless of rift opening rates. In semi‐arid climates, endorheic conditions are favored, and may last for the duration of rifting except for when rift opening is very slow. These results form an interpretive framework to study endorheic and exorheic drainage systems in natural continental rifts. In the slow‐opening Rio Grande rift, the endorheic‐exorheic transition may have occurred without dramatic climate changes. Lake‐level variations in East African rift basins are predicted by our models to result from variations in climate.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: A climatology of the boundary‐layer wind‐turning angle over land is presented based on radiosonde observations from 800 stations in the Integrated Global Radiosonde Archive (IGRA). The dependence of the wind turning on a suite of parameters is analyzed. Results from previous studies indicating the importance of the planetary boundary layer (PBL) stratification for the angle of wind turning are confirmed here. A clear increase in the wind‐turning angle with wind speed, particularly for stratified conditions, is also evident. According to Rossby number similarity theory, the cross‐isobaric angle for a neutral and barotropic boundary layer decreases with the surface Rossby number, Ro. The IGRA observations indicate that this dependence on Ro might partly be linked to the dependence of the stratification on the wind speed, a dependence that seems to prevail even for the high wind speeds, a criteria that traditionally is used to approximate a neutral PBL. The vertical distribution of the turning of the wind is analyzed using the high resolution Stratospheric Processes And their Role in Climate (SPARC) data. For unstable cases, there is a maximum in the directional wind shear around the PBL top, whereas for the most stable class of cases there is a maximum near the surface. The wind‐turning angles from observations are also compared with values obtained from ERA‐Interim reanalysis fields, also presented over ocean. ERA‐Interim underestimates the magnitude of the wind‐turning angles as well as the range. Furtheremore, the midlatitude cross‐isobaric mass transport is estimated using the IGRA data. This transport is generally underestimated by ERA‐Interim, likely related to the too small wind‐turning angles. This article is protected by copyright. All rights reserved.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: We analyzed the effect of forest age on the climate sensitivity of carbon storage, timber growth rate, and species richness using a unique dataset of 18,507 plots in boreal–temperate forests of eastern North America. Old forests exhibited the highest combined performance and strongest association of the investigated indicators both under baseline and changed climatic conditions. Regions east and southeast of the Great Lakes were particularly vulnerable to climate change. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions in the region will help sustain ecosystem services and biodiversity in a changing world. Abstract Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old‐growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal–temperate forests of eastern North America. From pre‐existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (〉170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: Temperate plants are at risk of being exposed to late spring freezes—called false springs—which are a major factor determining range limits, can impose high ecological and economic damage, and may be increasing with climate change. Currently, many false spring studies simplify the myriad complexities involved in assessing false spring risks and damage. Here, we review major areas that could improve predictions: understanding how species have evolved to avoid or tolerate false springs (e.g., through shortening how long they are at risk), identifying the cues that underlie spring phenology, and studying how local climate impacts false spring risk. Abstract Temperate plants are at risk of being exposed to late spring freezes. These freeze events—often called false springs—are one of the strongest factors determining temperate plants species range limits and can impose high ecological and economic damage. As climate change may alter the prevalence and severity of false springs, our ability to forecast such events has become more critical, and it has led to a growing body of research. Many false spring studies largely simplify the myriad complexities involved in assessing false spring risks and damage. While these studies have helped advance the field and may provide useful estimates at large scales, studies at the individual to community levels must integrate more complexity for accurate predictions of plant damage from late spring freezes. Here, we review current metrics of false spring, and how, when, and where plants are most at risk of freeze damage. We highlight how life stage, functional group, species differences in morphology and phenology, and regional climatic differences contribute to the damage potential of false springs. More studies aimed at understanding relationships among species tolerance and avoidance strategies, climatic regimes, and the environmental cues that underlie spring phenology would improve predictions at all biological levels. An integrated approach to assessing past and future spring freeze damage would provide novel insights into fundamental plant biology and offer more robust predictions as climate change progresses, which are essential for mitigating the adverse ecological and economic effects of false springs.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: As ocean warming and El Niño events increase in intensity, coral reefs, the rainforests of the marine realm, are at the forefront of their associated impacts. The frequency, intensity and spatial extent of coral bleaching are projected to increase in tandem, yet many reefs are located in poorly monitored tropical regions. By tuning marine heatwaves (MHWs) to coral bleaching conditions, we created an atlas of MHWs over the data‐poor Red Sea region, revealing hotspots of reef zones susceptible to bleaching. As this methodology may be applied to any environment, it could help optimize management plans under global environmental change. Abstract As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat‐resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on 〉30 year satellite‐derived sea surface temperature observations (1985–2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching‐prone regions in other data‐limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: Global warming is rapidly advancing the timing of spring leaf‐out in temperate deciduous tree species; however, the interactive effects of temperature and daylength underlying this warming response remain unclear. Based on data from six tree species across 2,377 European phenology observation sites, we found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf‐out in all studied species. These results provide the first large‐scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf‐out phenology in temperate deciduous trees. Abstract Global warming has led to substantially earlier spring leaf‐out in temperate‐zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf‐out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf‐out in all studied species. In warm springs when leaf‐out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming‐induced advancement of leaf‐out and protects the tree against precocious leaf‐out and the associated risks of late frosts. In contrast, longer‐than‐average daylength (in cold springs when leaf‐out is late) reduces the heat requirement for leaf‐out, ensuring that trees do not leaf‐out too late and miss out on large amounts of solar energy. These results provide the first large‐scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf‐out phenology in temperate deciduous trees.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: We review the causes of variations in observed and modelled historical trends in water‐use efficiency of plants and ecosystems. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. We provide recommendations for improving observation‐based estimates of water‐use efficiency, which will better inform the representation of the exchange of carbon and water in the vegetation–atmosphere continuum in vegetation models. Abstract Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: We used satellite‐derived leaf chlorophyll content (Chlleaf) to infer leaf photosynthetic capacity () that varies temporally and spatially. The new Chlleaf‐based data set was then incorporated into an established terrestrial biosphere model (i.e. BEPS) to estimate global photosynthesis. Our results show that Chlleaf‐based and its seasonally average values (Chlavg‐based ) can both effectively improve the estimates of photosynthesis when validated against observations at 124 sites of different plant functional types across the globe. This study highlights that Chlleaf is a valuable leaf physiological trait to add in future models to better simulate the terrestrial carbon cycle. Abstract The terrestrial biosphere plays a critical role in mitigating climate change by absorbing anthropogenic CO2 emissions through photosynthesis. The rate of photosynthesis is determined jointly by environmental variables and the intrinsic photosynthetic capacity of plants (i.e. maximum carboxylation rate; ). A lack of an effective means to derive spatially and temporally explicit has long hampered efforts towards estimating global photosynthesis accurately. Recent work suggests that leaf chlorophyll content (Chlleaf) is strongly related to , since Chlleaf and are both correlated with photosynthetic nitrogen content. We used medium resolution satellite images to derive spatially and temporally explicit Chlleaf, which we then used to parameterize within a terrestrial biosphere model. Modelled photosynthesis estimates were evaluated against measured photosynthesis at 124 eddy covariance sites. The inclusion of Chlleaf in a terrestrial biosphere model improved the spatial and temporal variability of photosynthesis estimates, reducing biases at eddy covariance sites by 8% on average, with the largest improvements occurring for croplands (21% bias reduction) and deciduous forests (15% bias reduction). At the global scale, the inclusion of Chlleaf reduced terrestrial photosynthesis estimates by 9 PgC/year and improved the correlations with a reconstructed solar‐induced fluorescence product and a gridded photosynthesis product upscaled from tower measurements. We found positive impacts of Chlleaf on modelled photosynthesis for deciduous forests, croplands, grasslands, savannas and wetlands, but mixed impacts for shrublands and evergreen broadleaf forests and negative impacts for evergreen needleleaf forests and mixed forests. Our results highlight the potential of Chlleaf to reduce the uncertainty of global photosynthesis but identify challenges for incorporating Chlleaf in future terrestrial biosphere models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: Early warning metrics from satellites of drought‐induced tree mortality could be incredibly valuable. We test several metrics in an aspen mortality event and find that these metrics can explain both tree physiological stress during the drought and subsequent mortality after the drought. Abstract Climate change‐driven drought stress has triggered numerous large‐scale tree mortality events in recent decades. Advances in mechanistic understanding and prediction are greatly limited by an inability to detect in situ where trees are likely to die in order to take timely measurements and actions. Thus, algorithms of early warning and detection of drought‐induced tree stress and mortality could have major scientific and societal benefits. Here, we leverage two consecutive droughts in the southwestern United States to develop and test a set of early warning metrics. Using Landsat satellite data, we constructed early warning metrics from the first drought event. We then tested these metrics' ability to predict spatial patterns in tree physiological stress and mortality from the second drought. To test the broader applicability of these metrics, we also examined a separate drought in the Amazon rainforest. The early warning metrics successfully explained subsequent tree mortality in the second drought in the southwestern US, as well as mortality in the independent drought in tropical forests. The metrics also strongly correlated with spatial patterns in tree hydraulic stress underlying mortality, which provides a strong link between tree physiological stress and remote sensing during the severe drought and indicates that the loss of hydraulic function during drought likely mediated subsequent mortality. Thus, early warning metrics provide a critical foundation for elucidating the physiological mechanisms underpinning tree mortality in mature forests and guiding management responses to these climate‐induced disturbances.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: Most studies analyzing influences of climatic warming on crop yield have ignored that yield response to temperature is stage dependent. Here we integrate field census data, satellite‐derived data, statistical regressions and mechanistic models to investigate how heat stress nonlinearly influences maize yield and its components (biomass accumulation, phenological development and grain formation). Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the heat stress effects. Abstract Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: Are there non‐native marine species in Antarctica? With over 500 visits from more than 180 vessels annually and rapidly changing environmental conditions, Antarctica appears to be increasingly vulnerable to impacts from non‐native marine species. We explore factors that influence the likelihood of non‐native marine species establishing in the Antarctic region, present new estimates for human activity, and make recommendations to researchers, environmental managers and policy makers. Abstract Antarctica is experiencing significant ecological and environmental change, which may facilitate the establishment of non‐native marine species. Non‐native marine species will interact with other anthropogenic stressors affecting Antarctic ecosystems, such as climate change (warming, ocean acidification) and pollution, with irreversible ramifications for biodiversity and ecosystem services. We review current knowledge of non‐native marine species in the Antarctic region, the physical and physiological factors that resist establishment of non‐native marine species, changes to resistance under climate change, the role of legislation in limiting marine introductions, and the effect of increasing human activity on vectors and pathways of introduction. Evidence of non‐native marine species is limited: just four marine non‐native and one cryptogenic species that were likely introduced anthropogenically have been reported freely living in Antarctic or sub‐Antarctic waters, but no established populations have been reported; an additional six species have been observed in pathways to Antarctica that are potentially at risk of becoming invasive. We present estimates of the intensity of ship activity across fishing, tourism and research sectors: there may be approximately 180 vessels and 500+ voyages in Antarctic waters annually. However, these estimates are necessarily speculative because relevant data are scarce. To facilitate well‐informed policy and management, we make recommendations for future research into the likelihood of marine biological invasions in the Antarctic region.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: Global Change Biology, Volume 25, Issue 7, Page e5-e5, July 2019.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: The effect of legumes on soil nitrogen (N) cycling was much greater than that of N enrichment in this N‐limited grassland either across (a, c) or within (b, d) the experimental year. Legume effects were also greater than those of N enrichment in alleviating potential negative effects of species richness on mineralization (a). Abstract Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m−2 year−1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: Ecosystems can be characterized as complex systems that traverse a variety of functional and structural states in response to changing bioclimatic forcings. An ecosystem's functional state can be empirically described using Process Networks that use timeseries observations to determine the strength of process‐level functional couplings between ecosystem components by using the LaThuile FLUXNET synthesis dataset. The resulted elasticity maps provide theoretically novel resource to anticipate ecological state transitions in response to climate change and to validate process‐based models of ecological change. Tropical forests, hot deserts, savannas, and high elevations are most elastic to climate change. Abstract Ecosystems can be characterized as complex systems that traverse a variety of functional and structural states in response to changing bioclimatic forcings. A central challenge of global change biology is the robust empirical description of these states and state transitions. An ecosystem's functional state can be empirically described using Process Networks (PN) that use timeseries observations to determine the strength of process‐level functional couplings between ecosystem components. A globally extensive source of in‐situ observations of terrestrial ecosystem dynamics is the FLUXNET eddy‐covariance network that provides standardized observations of micrometeorology and carbon, water, and energy flux dynamics. We employ the LaThuile FLUXNET synthesis dataset to delineate each month's functional state for 204 sites, yielding the LaThuile PN version 1.0 database that describes the strength of an ecosystem's functional couplings from air temperature and precipitation to carbon fluxes during each site‐month. Then we calculate the elasticity of these couplings to seasonal scale forcings: air temperature, precipitation, solar radiation, and phenophase. Finally, we train artificial neural networks to extrapolate these elasticities from 204 sites to the globe, yielding maps of the estimated functional elasticity of every terrestrial ecosystem's functional states to changing seasonal bioclimatic forcings. These maps provide theoretically novel resource that can be used to anticipate ecological state transitions in response to climate change and to validate process‐based models of ecological change. These elasticity maps show that each ecosystem can be expected to respond uniquely to changing forcings. Tropical forests, hot deserts, savannas, and high elevations are most elastic to climate change, and elasticity of ecosystems to seasonal air temperature is on average an order of magnitude higher than elasticity to other bioclimatic forcings. We also observed a reasonable amount of moderate relationships between functional elasticity and structural state change across different ecosystems.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: Global Change Biology, Volume 25, Issue 7, Page e3-e4, July 2019.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...