ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ecology  (3)
  • Frontiers Media  (2)
  • Springer  (1)
  • American Association for the Advancement of Science (AAAS)
  • Institute of Physics
  • MDPI Publishing
  • Molecular Diversity Preservation International
  • PANGAEA
  • 2020-2023  (3)
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marlow, J., Anderson, R., Reysenbach, A.-L., Seewald, J., Shank, T., Teske, A., Wanless, V., & Soule, S. New opportunities and untapped scientific potential in the abyssal ocean. Frontiers in Marine Science, 8, (2022): 798943, https://doi.org/10.3389./fmars.2021.798943
    Description: The abyssal ocean covers more than half of the Earth’s surface, yet remains understudied and underappreciated. In this Perspectives article, we mark the occasion of the Deep Submergence Vehicle Alvin’s increased depth range (from 4500 to 6500 m) to highlight the scientific potential of the abyssal seafloor. From a geologic perspective, ultra-slow spreading mid-ocean ridges, Petit Spot volcanism, transform faults, and subduction zones put the full life cycle of oceanic crust on display in the abyss, revealing constructive and destructive forces over wide ranges in time and space. Geochemically, the abyssal pressure regime influences the solubility of constituents such as silica and carbonate, and extremely high-temperature fluid-rock reactions in the shallow subsurface lead to distinctive and potentially unique geochemical profiles. Microbial residents range from low-abundance, low-energy communities on the abyssal plains to fast growing thermophiles at hydrothermal vents. Given its spatial extent and position as an intermediate zone between coastal and deep hadal settings, the abyss represents a lynchpin in global-scale processes such as nutrient and energy flux, population structure, and biogeographic diversity. Taken together, the abyssal ocean contributes critical ecosystem services while facing acute and diffuse anthropogenic threats from deep-sea mining, pollution, and climate change.
    Description: We would like to thank the National Science Foundation for their support through grants NSF 2009117 and 2129431 to SAS.
    Keywords: Abyssal ocean ; Geochemistry ; Microbiology ; Geology ; Ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aguado, M. T., Ponz-Segrelles, G., Glasby, C. J., Ribeiro, R. P., Nakamura, M., Oguchi, K., Omori, A., Kohtsuka, H., Fisher, C., Ise, Y., Jimi, N., & Miura, T. Ramisyllis kingghidorahi n. Sp., a new branching annelid from Japan. Organisms Diversity & Evolution. (2022), https://doi.org/10.1007/s13127-021-00538-4.
    Description: Among over 20,000 species of Annelida, only two branching species with a highly modified body-pattern are known until now: the Syllidae Syllis ramosa McIntosh, 1879, and Ramisyllis multicaudata Glasby et al. (Zoological Journal of the Linnean Society, 164, 481–497, 2012). Both have unusual ramified bodies with one head and multiple branches and live inside the canals of host sponges. Using an integrative approach (combining morphology, internal anatomy, ecology, phylogeny, genetic divergence, and the complete mitochondrial genome), we describe a new branching species from Japan, Ramisyllis kingghidorahi n. sp., inhabiting an undescribed species of Petrosia (Porifera: Demospongiae) from shallow waters. We compare the new species with its closest relative, R. multicaudata; emend the diagnosis of Ramisyllis; and discuss previous reports of S. ramosa. This study suggests a much higher diversity of branching syllids than currently known. Finally, we discuss possible explanations for the feeding behaviour in the new species in relation to its highly ciliated wall of the digestive tubes (especially at the distal branches and anus), and provide a hypothesis for the evolution of branching body patterns as the result of an adaptation to the host sponge labyrinthic canal system.
    Description: Open Access funding enabled and organized by Projekt DEAL. This study was financed by the Biodiversitätsmuseum (PI:MTA), Georg August University, Göttingen, and by Grant-in Aid for Scientific Research A (No. 18H04006) (PI:TM) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. GP-S was supported by the “Contratos Predoctorales para la Formación de Doctores 2016” program of MINECO, Spain (code: BES-2016–076419), co-financed by the European Social Found. RPR was supported by the program “Contratos predoctorales para Formación de Personal Investigador, FPI-UAM,” Universidad Autónoma de Madrid.
    Keywords: Mitochondrial genome ; Phylogenetics ; Sponge ; Syllidae ; Symbiosis ; Morphology ; Anatomy ; Ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., Armenteros, M., Soule, M. K., Longnecker, K., Kujawinski, E. B., & Apprill, A. Extracellular reef metabolites across the protected Jardines de la Reina, Cuba Reef System. Frontiers in Marine Science, 7, (2020): 582161, https://doi.org/10.3389/fmars.2020.582161.
    Description: Coral reef ecosystems are incredibly diverse marine biomes that rely on nutrient cycling by microorganisms to sustain high productivity in generally oligotrophic regions of the ocean. Understanding the composition of extracellular reef metabolites in seawater, the small organic molecules that serve as the currency for microorganisms, may provide insight into benthic-pelagic coupling as well as the complexity of nutrient cycling in coral reef ecosystems. Jardines de la Reina (JR), Cuba is an ideal environment to examine extracellular metabolites across protected and high-quality reefs. Here, we used liquid chromatography mass spectrometry (LC-MS) to quantify specific known metabolites of interest (targeted metabolomics approach) and to survey trends in metabolite feature composition (untargeted metabolomics approach) from surface and reef depth (6 – 14 m) seawater overlying nine forereef sites in JR. We found that untargeted metabolite feature composition was surprisingly similar between reef depth and surface seawater, corresponding with other biogeochemical and physicochemical measurements and suggesting that environmental conditions were largely homogenous across forereefs within JR. Additionally, we quantified 32 of 53 detected metabolites using the targeted approach, including amino acids, nucleosides, vitamins, and other metabolic intermediates. Two of the quantified metabolites, riboflavin and xanthosine, displayed interesting trends by depth. Riboflavin concentrations were higher in reef depth compared to surface seawater, suggesting that riboflavin may be produced by reef organisms at depth and degraded in the surface through photochemical oxidation. Xanthosine concentrations were significantly higher in surface reef seawater. 5′-methylthioadenosine (MTA) concentrations increased significantly within the central region of the archipelago, displaying biogeographic patterns that warrant further investigation. Here we lay the groundwork for future investigations of variations in metabolite composition across reefs, sources and sinks of reef metabolites, and changes in metabolites over environmental, temporal, and reef health gradients.
    Description: This work was supported by the Dalio Foundation (now “OceanX”) and the National Science Foundation (OCE-1736288) (award to Amy Apprill). The mass spectrometry samples were analyzed at the WHOI FT-MS Users’ Facility with instrumentation funded by the National Science Foundation (grant OCE-1058448 to EK and MK) and the Simons Foundation (Award ID #509042, EK). Lastly, a portion of the publication fees was supported by the Massachusetts Institute of Technology (MIT) Open Access Article Publication Subvention fund from MIT Libraries.
    Keywords: Metabolomics ; Coral reefs ; Microorganisms ; Ecology ; DOM cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...