ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Archean atmosphere
  • Earthquakes
  • Elsevier  (5)
  • Paris, France  (2)
  • American Physical Society
  • Annual Reviews
  • De Gruyter
  • 2020-2023  (7)
  • 1935-1939
  • 1
    Publication Date: 2022-12-01
    Description: An accurate survey of old and new datasets allowed us to probe the nature and role of fluids in the seismogenic processes of the Apennines mountain range in Italy. New datasets include the 1985–2021 instrumented seismicity catalog, the computed seismogenic thickness, and geodetic velocities and strains, whereas data from the literature comprise focal mechanism solutions, CO2 release, Moho depth, tomographic seismic velocities, heat flow and Bouguer gravity anomalies. Most of the inspected datasets highlight differences between the western and eastern domains of the Apennines, while the transition zone is marked by high geodetic strain, prevailing uplift at the surface and high seismic release, and spatially corresponds with the overlapping Tyrrhenian and Adriatic Mohos. Published tomographic models suggest the presence of a large hot asthenospheric mantle wedge which intrudes beneath the western side of the Apennines and disappears at the southern tip of the southern Apennines. This wedge modulates the thermal structure and rheology of the overlying crust as well as the melting of carbonate-rich sediments of the subducting Adriatic lithosphere. As a result, CO2-rich fluids of mantle-origin have been recognized in association with the occurrence of destructive seismic sequences in the Apennines. The stretched western domain of the Apennines is characterized by a broad pattern of emissions from CO2-rich fluids that vanishes beneath the axial belt of the chain, where fluids are instead trapped within crustal overpressurized reservoirs, favoring their involvement in the evolution of destructive seismic sequences in that region. In the Apennines, areas with high mantle He are associated with different degrees of metasomatism of the mantle wedge from north to south. Beneath the chain, the thickness and permeability of the crust control the formation of overpressurized fluid zones at depth and the seismicity is favored by extensional faults that act as high permeability pathways. This multidisciplinary study aims to contribute to our understanding of the fluid-related mechanisms of earthquake preparation, nucleation and evolution encouraging a multiparametric monitoring system of different geophysical and geochemical observables that could lead the creation of a data-constrained and reliable conceptual model of the role of fluids in the preparatory phase of earthquakes in the Apennines.
    Description: The INGV Earthquake Department Strategic Project FURTHER “The role of FlUids in the pReparaTory pHase of EaRthquakes in Southern Apennines”
    Description: Published
    Description: 104236
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 4T. Sismicità dell'Italia
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: CO2 Earth degassing ; Earthquakes ; Mantle wedge ; Subduction ; Apennines ; 04.06. Seismology ; Geochemistry ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-09
    Description: Near-continuous monitoring both of gas emissions (CO2, CH4 and H2S) and of water temperature at Santa Venera al Pozzo thermal springs (SE foot of Mt. Etna volcano, Sicily, Italy) was conducted from December 2017 to April 2019, using a novel and cheaper Chromatography Monitoring System (CMS) coupled with a water temperature sensor. The results showed methane as predominant gas and temporal changes in gas concentrations that were in part due to daily fluctuations, which caused small amplitude variations, and in part due to non-environmental causes. These latter were correlated with the occurrence of strong earthquakes and slow tectonic events related to magmatic intrusions, but not with input of magmatic gases into the thermal aquifer, given the nonmagmatic origin of all monitored gases. Methane spikes were observed during many volcano-tectonic events and call for a deep source of this gas. H2S was detected only during the strongest local tectonic events, including a Mw 4.9 earthquake, suggesting that this gas has a common origin as CH4 (i.e., mixing between microbial and thermogenic gas), but it is released only when tectonic stress is applied for sufficiently long periods as to cause H2S oversaturation in the hydrothermal aquifer. Water temperature decreases were also observed immediately after the two strongest earthquakes in the area, which helped us produce a comprehensive model to explain the observed geochemical variations. Our approach allowed revealing the great sensitivity of gases such as CH4 and especially H2S to tectonic stress, thus making them valuable indicators of impending strong tectonic or volcanotectonic events.
    Description: Published
    Description: 229388
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Earthquakes ; Volcanic activity ; Geothermal systems ; Fluids ; Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Broadley, M., Byrne, D., Ardoin, L., Almayrac, M., Bekaert, D., & Marty, B. High precision noble gas measurements of hydrothermal quartz reveal variable loss rate of Xe from the Archean atmosphere. Earth and Planetary Science Letters, 588, (2022): 117577, https://doi.org/10.1016/j.epsl.2022.117577.
    Description: Determining the composition of the Archean atmosphere and oceans is vital to understanding the environmental conditions that existed on the surface of the early Earth. The analysis of atmospheric remnants in fluid inclusions trapped in Archean-aged samples has shown that the Xe isotopic signature of the Archean atmosphere progressively evolved via mass-dependent fractionation, arriving at a modern atmospheric composition around the Archean-Proterozoic transition. The mechanisms driving this evolution are however not well constrained, and it is not yet clear whether the evolution proceeded continuously or via episodic bursts. Providing further constraints on the evolution of Xe in the Archean atmosphere is hampered by the limited amounts of atmospheric gas trapped within fluid inclusions during mineral formation, which impacts the precision at which the Archean atmosphere can be determined. Here, we develop a new crush-and-accumulate extraction technique that enables the heavy noble gases (Ar, Kr and Xe) released from crushing large quantities of hydrothermal quartz to be accumulated and analysed to a higher precision than was previously possible. Using this new technique, we re-evaluate the composition of atmospheric gases trapped within fluid inclusions of 3.3 Ga quartz samples from Barberton, South Africa. We find that the Xe isotopic signature is fractionated by +10.3 ± 1.0‰u−1 (2 SE) relative to modern atmosphere, which is within uncertainty of, but slightly lower than, the previous determination of 12.9 ± 2.4‰u−1 for this sample (Avice et al., 2017). We show for the first time that the Kr/Xe ratio measured within Archean quartz samples is enriched in Xe compared to the modern atmosphere, demonstrating that the atmosphere has lost Xe since the Archean. This further reinforces the proposal of atmospheric escape as the primary mechanism for Earth's Xe loss. We further show that the atmospheric Kr/Xe and Xe isotope fractionation recorded in the Barberton quartz at 3.3 Ga is incompatible with a model describing atmospheric loss at a continuous rate under a constant fractionation factor. This gives credence to numerical models of hydrodynamic escape, which suggest that Xe was lost from the Archean atmosphere in episodic bursts rather than at a constant rate. Refining the evolution curve of atmospheric Xe isotopes using the new technique presented here has the potential to shed light on discrete atmospheric events that punctuated the evolution of the Archean Earth and accompanied the evolution of life.
    Description: This study was supported by the European Research Council (PHOTONIS project, grant agreement No. 695618). This is CRPG contribution #2820.
    Keywords: Archean atmosphere ; Noble gases ; Xenon ; Atmospheric escape
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-12
    Description: A series of severe earthquakes hit Central Chile on Saturday, 27th February 2010. The main shock off Concepcion at 06:34 UTC (3:34 AM local time) had a magnitude of 8.8 Mw. The Pacific Tsunami Warning Center PTWC in Hawaii, USA issued a regional warning at 06:46 UTC (12 minutes after the event). This was the first ocean wide test of a system that was put in place nearly 45 years ago by UNESCO’s Member States through its Intergovernmental Oceanographic Commission (IOC), after a 9.5 magnitude earthquake on 22 May 22 1960 off Chile triggered a wide ocean tsunami that caused 61 fatalities in Hawaii and 142 fatalities in Japan, several hours after the earthquake. As indicated above, 12 minutes after the 27th February 2010 earthquake the Pacific Ocean Tsunami Warning System (PTWS) went into action, with timely and adequate information produced and disseminated across the Pacific Ocean. There were no fatalities reported far from the epicenter, however, near the epicenter off the Chilean coast, official accounts indicate over 156 fatalities due to the tsunami. Preliminary measures of a Rapid Survey Team deployed the week after the event by UNESCO showed run up measurements as high as 30 meters with most common measurements between 6 and 10 meters in the most affected area of the Chilean coast. This earthquake and tsunami event presented an ideal opportunity to assess the performance of the PTWS. To that end the UNESCO/IOC Secretariat for the PTWS sent out a post-event survey questionnaire to the Tsunami Warning Focal Points (TWFPs) and Tsunami National Contacts (TNCs) from its 32 Member States and territories. This report has been prepared by the Secretariat based on the responses received from 19 TWFPs and TNCs. Factual details of the earthquake event and the tsunami are presented and the results of the survey are listed in tables and displayed as timelines and maps. We underscore that all TWFPs received the first PTWC bulletin. In addition, most of the countries reported PTWC as source of awareness of the earthquake. Fourteen countries issued a tsunami warning and in 9 Member States coastal zones were evacuated. It would be pertinent that each Member State analyze if an evacuation would have been necessary in zones where no evacuation was made. In four countries, some areas were evacuated preventively (self-evacuation). Moreover, it was observed that sea level was monitored by most of the countries. In addition, some countries used results from numerical modelling and calculated earthquake parameters. Based on data and information collected from Member States the PTWS acted promptly and efficiently throughout the Pacific. However, and at the same time, this event demonstrated the need to reinforce the work of PTWS for near field events, particularly with denser sea level real time networks close to active subduction areas. Indeed, as it has been demonstrated by the case of the sea level station located in Talcahuano, Chile, sea level stations close to the epicenter may be partially or totally destroyed by the impact of an earthquake and/or a tsunami. Given the critical role sea level readings have in all tsunami warning systems, the sea level monitoring networks should be densified close to active subduction areas and redundancy of sensors and transmission paths be strongly considered. Most of the issues revealed by the survey can be addressed both by the PTWS and at the national level through increased regional cooperation and training where needed. Post-event assessments assist in this process by highlighting the strengths and weaknesses of the PTWS at regional, national and local levels and by raising the awareness of how Member States responded, both individually and collectively. The true value of such assessments is that it allows Member States to share information and experiences for the mutual benefit of improving the PTWS performance for all members.
    Description: OpenASFA input
    Description: Published
    Description: Non Refereed
    Keywords: Tsunami ; PTWS ; Earthquakes ; Pacific Tsunami Warning and Mitigation System (PTWS) ; ASFA_2015::T::Tsunamis ; ASFA_2015::E::Earthquakes
    Repository Name: AquaDocs
    Type: Report
    Format: 159pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-12
    Description: The 26 December 2004 tsunami in the Indian Ocean killed over 230,000 people, displaced more than 1 million people and left a trail of destruction. Considering that the Caribbean is a region prone to tsunamis, and recognising the need for an early warning system, the Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 as a subsidiary body of the IOC-UNESCO with the purpose of providing assistance to all Member States of the region to establish their own regional early warning system. The main objective of the CARIBE EWS is to identify and mitigate the hazards posed by local and distant tsunamis. The goal is to create a fully integrated end-to-end warning system comprising four key components: hazard monitoring and detection; hazard assessment; warning dissemination; and community preparedness and response. The Pacific Tsunami Warning Centre (PTWC) in Hawaii is the interim tsunami warning service provider for the Caribbean. The West Coast and Alaska Tsunami Warning Centre (WC/ATWC) is providing tsunami warning service for the USA territories in the Caribbean region. The magnitude 7.0 earthquake in Haiti on the 12 January 2010 was one of the most severe earthquakes that occurred in this country in the last 100 years. It caused a large number of casualties and material destruction.In addition, the earthquake generated a tsunami that caused a runup of 3m at both Jacmel and Petit Paradis, Haiti and 1m in Pedernales, Dominican Republic. Furthermore, it was recorded with an amplitude of 12 cm (peak to trough) at the Santo Domingo sea level station in the Dominican Republic. The arrival time was at 22:40 UTC, namely 47 minutes after the earthquake occurred. This tsunami recalled the need to effectively implement the CARIBE EWS to be prepared for future potentially destructive tsunamis in the region. The event therefore presented an ideal opportunity to evaluate the performance of the CARIBE EWS to highlight both the strengths and weaknesses of the system, to identify areas that require further attention, and to provide a benchmark of the present status of the system. The UNESCO IOC Secretariat for the CARIBE EWS sent out a post-event survey questionnaire to Member States and territories that have identified their Tsunami Warning Focal Points (TWFP). Out of 28 questionnaires sent out, 23 responses were returned to the CARIBE EWS Secretariat in Paris. The objectives of the survey were to confirm that the NTWCs received bulletins from the interim advisory service in a timely manner, to determine what actions were taken by the NTWCs, and to find out if the Member States activated their emergency response plans based on the available information. The survey was very useful to get an overview of the current status of the CARIBE EWS. Tsunami bulletins were received timely by most of the countries that answered the survey. On the other hand, it was identified that sea level was scarcely monitored during the event, and that some National Warning Centres (NWC) do not know how to access sea level data over the GTS or over the IOC Sea Level Observation Facility website. Most NWCs did not use any numerical models during the event. It was observed, as well, that countries placed in watch level were able to distribute warnings and even preventively evacuate some areas. It is beyond the scope of this report to conduct a detailed interpretation of the results, and the survey results have been presented so that individual Member States and the ICG can draw conclusions from this exercise and decide on future action. Although progress has been made since 2005, it should be recognized that the CARIBE EWS is not yet fully implemented and much remains to be done to bring the system to full operational status. The ICG will continue to monitor the system to ensure continuous improvement during the development phase.
    Description: OpenASFA input
    Description: Published
    Description: Non Refereed
    Keywords: Tsunami ; Earthquakes ; CARIBE EWS ; Tsunami warning ; ASFA_2015::E::Earthquakes ; ASFA_2015::T::Tsunamis
    Repository Name: AquaDocs
    Type: Report
    Format: 78pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Almayrac, M. G., Broadley, M. W., Bekaert, D. V., Hofmann, A., & Marty, B. Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chemical Geology, 581, (2021): 120405, https://doi.org/10.1016/j.chemgeo.2021.120405.
    Description: The Earth's atmosphere has continually evolved since its formation through interactions with the mantle as well as through loss of volatile species to space. Atmospheric xenon isotopes show a unique and progressive evolution during the Archean that stopped around the Archean-Proterozoic transition. The Xe isotope composition of the early atmosphere has been previously documented through the analysis of fluid inclusions trapped within quartz and barite. Whether this evolution was continuous or not is unclear, requiring additional analyses of ancient samples, which may potentially retain remnants of the ancient atmosphere. Here we present new argon, krypton and xenon isotopic data from a suite of Archean and Proterozoic barites ranging in age from 3.5 to 1.8 Ga, with the goal of providing further insights in to the evolution of atmospheric Xe, whilst also outlining the potential complications that can arise when using barites as a record of past atmospheres. Xenon released by low temperature pyrolysis and crushing of two samples which presumably formed around 2.8 and 2.6 Ga show Xe isotope mass dependent fractionation (MDF) of 11‰.u−1 and 3.4‰.u−1, respectively, relative to modern atmosphere. If trapped Xe is contemporaneous with the respective formation age, the significant difference in the degree of fractionation between the two samples provides supporting evidence for a plateau in the MDF-Xe evolution between 3.3 Ga and 2.8 Ga, followed by a rapid evolution at 2.8–2.6 Ga. This sharp decrease in MDF-Xe degree suggests the potential for a discontinuous temporal evolution of atmospheric Xe isotopes, which could have far reaching implications regarding current physical models of the early evolution of the Earth's atmosphere.
    Description: This work was funded by the ERC grant No. 695618 to B.M. We thank the S.A.R.M for providing elemental bulk analyses of the barites. We thank Laurent Zimmerman for technical mentorship and assistance.
    Keywords: Archean barite ; Noble gases ; Xenon anomalies ; Archean atmosphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-09
    Description: Young and tectonically active chains like the Central Apennines (Italy) are featured by high structural complexity as a result of the overprint of subsequent deformational stages, making interpretation of seismotectonics challenging. The Central Apennines are characterized by the stacking of tectono-sedimentary units organized in thrust sheets. However, extensional tectonics is currently affecting the axial sector of the thrust belt, mostly expressing in extensional earthquakes. Using a large subsurface dataset acquired for hydrocarbon exploration in the region struck by the 2016–2017 Central Italy seismic sequence, we built a comprehensive 3D geological model and compared it with the seismicity. The model primarily shows a series of thrusts developed during the Miocene-Pliocene Apennines orogenesis and inherited normal faults developed during the Mesozoic extensional phase and the Miocene foreland flexural process. These normal faults were segmented and transported within the thrust sheets, and sometimes they still show a clear surface expression. The succession of tectonic stages resulted in a widespread reactivation of inherited structures, sometimes inverting their kinematics with different styles and rates, and disarticulating pre-existing configurations. Such evolution has a strong impact on the seismicity observed in the area, as demonstrated by some examples that show how the seismicity is aligned on segments of inherited faults, both compressional and extensional. Their reactivation can be explained by their favorable orientation within the current extensional stress field. Results feed the debate about the seismogenic potential of faults identified both at depth and surface, which can impact the seismic hazard of the Apennines.
    Description: Published
    Description: 228861
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Normal faults ; Thrust sheets ; Inherited faults ; Earthquakes ; Central Apennines ; 3D geological model ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...