ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Arctic  (3)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (2)
  • Arctic Institute of North America  (1)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • 2020-2023  (3)
Collection
  • Articles  (3)
Publisher
Years
Year
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kourantidou, M., Hoagland, P., & Bailey, M. Inuit food insecurity as a consequence of fragmented marine resource management policies? Emerging lessons from Nunatsiavut. Arctic, 74(5), (2022): 40–55, https://doi.org/10.14430/arctic74372.
    Description: Historically, Inuit communities of the Arctic have relied significantly on the living marine resources of their coastal waters for nutrition, underpinning community cohesion and enhancing individual and collective well-being. Inadequate understanding of the conditions of coastal marine stocks and their dynamics, along with failed past fisheries management practices, now threatens secure access to these resources for food and nutrition. We examine the degree of integration of modern Canadian federal food and marine resource management policies, which heretofore have been unable to lessen food insecurity in the Arctic, suggesting that causes rather than symptoms need to be treated. Using evidence from Nunatsiavut, northern Labrador, we assess the limits to marine resource governance affecting access to traditionally important food sources. We explore the potential for both increased subsistence harvests and enhanced access to commercial fisheries in mitigating Inuit food insecurity, arguing for the relevance of expanded marine resource assessments, more focused fisheries management, and integration with policies designed to mitigate food insecurity. Crucially, the absence of methods for tracking changes in locally harvested marine resources threatens not only individual and household nutrition but also the social, economic, and cultural integrity of Inuit communities. We further describe the needs for monitoring and propose the use of indicators that capture the contributions of locally harvested marine resources to increased food security along with a framework that allows for utilizing local knowledge and observations. Relying on emerging lessons from research in Nunatsiavut, we build a foundation for a better understanding of both the political and institutional legacies that contribute to Labrador Inuit food insecurity and discuss how the deeper integration of food and marine resource management policies could help mitigate it.
    Description: This research was undertaken with funding from the Canada First Research Excellence Fund through the Ocean Frontier Institute (MK and MB) and the Johnson Endowment of the Woods Hole Oceanographic Institution’s (WHOI) Marine Policy Center (PH).
    Keywords: Food insecurity ; Food sovereignty ; Labrador Inuit ; Arctic ; traditional ecological knowledge ; Western science observations ; Monitoring ; Nunatsiavut ; Marine resource management ; Governance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Operations in the Arctic Ocean are increasingly important due to the changing environment and the resulting global implications. These changes range from the availability of new global trade routes, accessibility of newly available resources in the area, and national security interests of the United States in the region. It’s necessary to build a greater understanding of the undersea environment and how it’s changing since these environmental changes have a direct impact on adjusting future operations in the region and looming global changes as less Arctic ice is present. The recent presence of the Beaufort Lens is changing the acoustic propagation paths throughout the Arctic region. Here a network of buoys were employed to communicate with an Autonomous Undersea Vehicle (AUV) while it operated under the ice throughout the Beaufort Lens with the goal of achieving near GPS quality navigation. The acoustic communications paths were compared using a vertical array throughout the Beaufort Lens. This beam forming was compared to the prediction from BELLHOP. As well, since acoustic communications are affected by multi-path, attenuation and interference from other sources it was interesting to note that bottom bounce was sometimes a reliable acoustic path.
    Keywords: Arctic ; Beaufort Lens ; Acoustic communications
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Arctic marine and lacustrine systems are experiencing rapid warming due to climate change. These changes are especially important at the interface between sediments and surface waters because they are hotspots for biogeochemical transformations such as redox reactions, nutrient consumption and regeneration, organic matter leaching and degradation, and mineral weathering. Radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) and radon-222, naturally occurring radioactive isotopes produced in sediments, are well-suited as tracers of nutrients, trace metals, and organic matter cycling processes at the sediment-water interface. In this thesis, I have applied radon-222 and the quartet of radium isotopes to study fundamental processes in subarctic lakes and on the Arctic continental shelf. First, radon-222 is used to quantify groundwater discharge into a shallow, tundra lake on the Yukon-Kuskokwim Delta in Alaska in summer of 2017. Radon-derived groundwater fluxes were then paired with methane (CH4) measurements to determine delivery rates of methane into the lake via groundwater. Groundwater CH4 fluxes significantly exceeded diffusive air-water fluxes from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Higher CH4 emissions were observed compared to those reported previously in high latitude lakes, like due to higher CH4 concentrations in groundwater. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for methane release across Arctic landscapes. Then, the quartet of radium isotopes is used to study the impacts of storms and sea ice formation as drivers of sediment-water interaction on the Alaskan Beaufort shelf. The timeseries presented in this study is among the first to document the combined physical and chemical signals of winter water formation in the Beaufort Sea, made possible by repeat occupations of the central Beaufort shelf. Radium measurements are combined with inorganic nitrogen and hydrographic measurements to elucidate the episodic behavior of winter water formation and its ability to drive exchange with bottom sediments during freeze-up.
    Description: Financial support for Chapter 2 was funded by National Science Foundation awards OCE-1458305 to M.A.C., 1561437 to S.M.N, J.D.S., and R.M.H and 1624927 to S.M.N., P.J.M. and R.M.H. The work completed for Chapter 3 was funded by the Montrym Fund at the Massachusetts Institute of Technology, the Academic Programs Office at Woods Hole Oceanographic Institution, and the NSF Arctic GEOTRACES (OCE-1458305), Pacific GEOTRACES (OCE-1736277), and Arctic Observing Network programs (OPP-1733564).
    Keywords: Arctic ; Sediment ; Radionuclides
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...