ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Radiocarbon  (5)
  • Cambridge University Press  (5)
  • 2020-2023  (5)
  • 1970-1974
  • 1950-1954
  • 1
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McNichol, A., Key, R., & Guilderson, T. Global ocean radiocarbon programs. Radiocarbon, (2022): 1–13, https://doi.org/10.1017/rdc.2022.17.
    Description: The importance of studying the radiocarbon content of dissolved inorganic carbon (DI14C) in the oceans has been recognized for decades. Starting with the GEOSECS program in the 1970s, 14C sampling has been a part of most global survey programs. Early results were used to study air-sea gas exchange while the more recent results are critical for helping calibrate ocean general circulation models used to study the effects of climate change. Here we summarize the major programs and discuss some of the important insights the results are starting to provide.
    Description: Authors received funding from the National Science Foundation OCE-85865400 (APM) and a Woods Hole Oceanographic Technical Staff Award (APM).
    Keywords: Dissolved inorganic carbon ; Ocean models ; Oceanography ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Druffel, E., Beaupre, S., Grotheer, H., Lewis, C., McNichol, A., Mollenhauer, G., & Walker, B. Marine organic carbon and radiocarbon – present and future challenges. Radiocarbon, (2022): 1-17, https://doi.org/10.1017/RDC.2021.105.
    Description: We discuss present and developing techniques for studying radiocarbon in marine organic carbon (C). Bulk DOC (dissolved organic C) Δ14C measurements reveal information about the cycling time and sources of DOC in the ocean, yet they are time consuming and need to be streamlined. To further elucidate the cycling of DOC, various fractions have been separated from bulk DOC, through solid phase extraction of DOC, and ultrafiltration of high and low molecular weight DOC. Research using 14C of DOC and particulate organic C separated into organic fractions revealed that the acid insoluble fraction is similar in 14C signature to that of the lipid fraction. Plans for utilizing this methodology are described. Studies using compound specific radiocarbon analyses to study the origin of biomarkers in the marine environment are reviewed and plans for the future are outlined. Development of ramped pyrolysis oxidation methods are discussed and scientific questions addressed. A modified elemental analysis (EA) combustion reactor is described that allows high particulate organic C sample throughput by direct coupling with the MIniCArbonDAtingSystem.
    Keywords: CSRA ; Dissolved organic carbon ; Methodology ; Organic carbon ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, L., Roberts, M., Elder, K., Hansman, R., Gagnon, A., & Kurz, M. Radiocarbon in dissolved organic carbon by UV oxidation: an update of procedures and blank characterization at NOSAMS. Radiocarbon, 64(1), (2022): 195-199, https://doi.org/10.1017/rdc.2022.4.
    Description: This note describes improvements of UV oxidation method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). The procedural blank is reduced to 2.6 ± 0.6 μg C, with Fm of 0.42 ± 0.10 and δ13C of –28.43 ± 1.19‰. The throughput is improved from one sample per day to two samples per day.
    Description: We gratefully acknowledge support from the U.S. National Science Foundation, via NSF-OCE-1755125.
    Keywords: Blank ; Dissolved organic carbon ; Radiocarbon ; UV-oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hughen, K. A., & Heaton, T. J. Updated Cariaco Basin C-14 calibration dataset from 0-60 cal kyr BP. Radiocarbon, 62(4), (2020): 1001-1043, doi:10.1017/RDC.2020.53.
    Description: We present new updates to the calendar and radiocarbon (14C) chronologies for the Cariaco Basin, Venezuela. Calendar ages were generated by tuning abrupt climate shifts in Cariaco Basin sediments to those in speleothems from Hulu Cave. After the original Cariaco-Hulu calendar age model was published, Hulu Cave δ18O records have been augmented with increased temporal resolution and a greater number of U/Th dates. These updated Hulu Cave records provide increased accuracy as well as precision in the final Cariaco calendar age model. The depth scale for the Ocean Drilling Program Site 1002D sediment core, the primary source of samples for 14C dating, has been corrected to account for missing sediment from a core break, eliminating age-depth anomalies that afflicted the earlier calendar age models. Individual 14C dates for the Cariaco Basin remain unchanged from previous papers, although detailed comparisons of the Cariaco calibration dataset to those from Hulu Cave and Lake Suigetsu suggest that the Cariaco marine reservoir age may have shifted systematically during the past. We describe these recent changes to the Cariaco datasets and provide the data in a comprehensive format that will facilitate use by the community.
    Description: K.A. Hughen was supported by funds from U.S. NSF grant #OCE-1657191, and by the Investment in Science Fund at WHOI. T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”.
    Keywords: Calibration ; Climate ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Buentgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Koehler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., & Talamo, S. The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), (2020): 725-757, doi:10.1017/RDC.2020.41.
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Description: We would like to thank the National Natural Science Foundation of China grants NSFC 41888101 and NSFC 41731174, the 111 program of China (D19002), U.S. NSF Grant 1702816, and the Malcolm H. Wiener Foundation for support for research that contributed to the IntCal20 curve. The work on the Swiss and German YD trees was funded by the German Science foundation and the Swiss National Foundation (grant number: 200021L_157187). The operation in Aix-en-Provence is funded by the EQUIPEX ASTER-CEREGE, the Collège de France and the ANR project CARBOTRYDH (to EB). The work on the correlation of tree ring 14C with ice core 10Be was partially supported by the Swedish Research Council and the Knut and Alice Wallenberg foundation. M. Butzin was supported by the German Federal Ministry of Education and Research (BMBF) as Research for Sustainable Development (FONA; http://www.fona.de) through the PalMod project (grant number: 01LP1505B). S. Talamo and M. Friedrich are funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 803147-RESOLUTION, awarded to ST). CA. Turney would like to acknowledge support of the Australian Research Council (FL100100195 and DP170104665). P. Reimer and W. Austin acknowledge the support of the UKRI Natural Environment Research Council (Grant NE/M004619/1). T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9. Other datasets and the IntCal20 database were created without external support through internal funding by the respective laboratories. We also would like to thank various institutions that provided funding or facilities for meetings.
    Keywords: Calibration curve ; Radiocarbon ; IntCal20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...