ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animal evolution
  • Antarctica
  • Oxford University Press  (2)
  • American Geophysical Union  (1)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
  • 2020-2023  (3)
  • 1990-1994
  • 1975-1979
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-09-01
    Description: In the last years the scientific literature has been enriched with new models of the Moho depth in the Antarctica Continent derived by the seismic reflection technique and refraction profiles, receiver functions and seismic surface waves, but also by gravimetric observations over the continent. In particular, the gravity satellite missions of the last two decades have provided data in this remote region of the Earth and have allowed the investigation of the crust properties. Meanwhile, other important contributions in this direction has been given by the fourth International Polar Year (IPY, 2007–2008) which started seismographic and geodetic networks of unprecedented duration and scale, including airborne gravimetry over largely unexplored Antarctic frontiers. In this study, a new model for the Antarctica Moho depths is proposed. This new estimation is based on no satellite gravity measures, thanks to the availability of the gravity database ANTGG2015, that collects gravity data from ground-base, airborne and shipborne campaigns. In this new estimate of the Moho depths the contribution of the gravity measures has been maximized reducing any correction of the gravity measures and avoiding constraints of the solution to seismological observations and to geological evidence. With this approach a pure gravimetric solution has been determined. The model obtained is pretty in agreement with other Moho models and thanks to the use of independent data it can be exploited also for cross-validating different Moho depths solutions.
    Description: Published
    Description: 1404–1420
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Antarctica ; Moho ; Gravity inversion ; Collocation ; ANTGG2015
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tassia, M. G., David, K. T., Townsend, J. P., & Halanych, K. M. TIAMMAt: leveraging biodiversity to revise protein domain models, evidence from innate immunity. Molecular Biology and Evolution, 38(12), (2021): 5806–5818, https://doi.org/10.1093/molbev/msab258.
    Description: Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.
    Description: This work was supported by The National Science Foundation (Grant No. IOS—1755377 to K.M.H., Rita Graze, and Elizabeth Hiltbold Schwartz), and K.T.D. was supported by The National Science Foundation’s Graduate Research Fellowship Program.
    Keywords: Protein evolution ; Domain annotation ; Animal evolution ; Innate immunity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dragone, N. B., Diaz, M. A., Hogg, I., Lyons, W. B., Jackson, W. A., Wall, D. H., Adams, B. J., & Fierer, N. Exploring the boundaries of microbial habitability in soil. Journal of Geophysical Research: Biogeosciences, 126(6), (2021): e2020JG006052, https://doi.org/10.1029/2020JG006052.
    Description: Microbes are widely assumed to be capable of colonizing even the most challenging terrestrial surface environments on Earth given enough time. We would not expect to find surface soils uninhabited by microbes as soils typically harbor diverse microbial communities and viable microbes have been detected in soils exposed to even the most inhospitable conditions. However, if uninhabited soils do exist, we might expect to find them in Antarctica. We analyzed 204 ice-free soils collected from across a remote valley in the Transantarctic Mountains (84–85°S, 174–177°W) and were able to identify a potential limit of microbial habitability. While most of the soils we tested contained diverse microbial communities, with fungi being particularly ubiquitous, microbes could not be detected in many of the driest, higher elevation soils—results that were confirmed using cultivation-dependent, cultivation-independent, and metabolic assays. While we cannot confirm that this subset of soils is completely sterile and devoid of microbial life, our results suggest that microbial life is severely restricted in the coldest, driest, and saltiest Antarctic soils. Constant exposure to these conditions for thousands of years has limited microbial communities so that their presence and activity is below detectable limits using a variety of standard methods. Such soils are unlikely to be unique to the studied region with this work supporting previous hypotheses that microbial habitability is constrained by near-continuous exposure to cold, dry, and salty conditions, establishing the environmental conditions that limit microbial life in terrestrial surface soils.
    Description: This work was supported by grants from the U.S. National Science Foundation (ANT 1341629 to B. J. Adams, N. Fierer, W. Berry Lyons, and D. H. Wall and OPP 1637708 to B. J. Adams) with additional support provided to N. B. Dragone from University Colorado Department of Ecology and Evolutionary Biology.
    Keywords: Antarctica ; Soils ; Bacteria ; Fungi ; Extremophiles ; Astrobiology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...