ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.02. Exploration geophysics  (4)
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
  • JSTOR Archive Collection Business II
  • Wiley  (2)
  • Elsevier  (1)
  • INGV  (1)
  • American Chemical Society (ACS)
  • 2020-2022  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: Monitoring of hydrothermal fluid emissions can provide detailed information about convective upwelling of geothermal fluids and their geochemical characteristics, as a function of tectonic stress or deeper gas input. In particular, at the Salinelle of Mt. Etna Geosite (Paternò and Belpasso, Eastern Sicily) natural emissions mainly consist of a fluid phase made of salty water, mud, gas and liquid hydrocarbons from an admixture of magmatic and hydrothermal gases. In this framework, our study mainly focused on the thermal and geochemical monitoring of hydrothermal fluids of the most active site, Salinelle dei Cappuccini. Nearby hydrothermal vents (Salinelle del Fiume; Salinelle di San Biagio), were also investigated. Analysis of the magnitude and frequency of seismic events all around Mt. Etna were conducted as well. Analysis of daily temperatures showed a constant trend: higher values (〉 35° C) within the first monitoring period, followed by a strong decrease (down to 9° C), and a new gradual increase over the following months. This trend seems to be linked to magmatic processes occurring at depth below Mt. Etna, and could lead to a modification of the geochemical and thermal characteristics of the fluids issuing at the mud-pools and gas vents of Salinelle. The higher the frequency of seismic events corresponding to higher daily energy released, the higher fluid temperatures observed. Understanding how these fluids blend and what is their relationship with Mt. Etna volcanism can be of great importance in forecasting new eruptive cycles in the case they precede changes in volcanic activity.
    Description: Published
    Description: GD670
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Salinelle ; Mud volcanoes ; Mt. Etna ; Geothermal fluids ; Hydrothermal fluid emissions ; 04.02. Exploration geophysics ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-08
    Description: Soil gas and Electrical Resistivity Tomography (ERT) surveys were performed in Medolla (Emilia-Romagna Region, northern Italy) within a farming area characterized by macroseeps, absence of vegetation and anomalous temperatures of soil to investigate the soil gas migration mechanism and verify the presence of a buried fault intersecting the macroseeps. Soil gas (222Rn, 220Rn, He and C2H6) concentrations and flux (φCO2 and φCH4) measurements were carried out from 2008 to 2015, comprising the 2012 Emilia seismic sequence. Moreover, in 2016 a ERT survey, combined with new flux measurements, was performed along four profiles (ranging from 180 to 630 m long) centered on the main macroseep. We found that the seismic sequence sensibly influenced the soil gas distribution in the area. All investigated species, but He, increased their values early after the mainshocks, likely due to crustal deformation which promoted the geogas uprising. In 2015, when the stress has vanished, these concentrations gradually decreased toward pre-seismic values. Helium concentrations showed an opposite behavior as they decreased in May 2012 and then gradually increased over time. This trend may be reasonably due to the enhancement of the strain field which promoted the He dissipation from soil to the atmosphere, due to its high volatility. In all the geochemical surveys conducted from 2008 to 2015, soil gas high values around the main macroseeps were identified, delighting the presence of an alignment in the E-W direction. This trend, identified for several gas species, ultimately supports the theory of a hidden fault which favors the intensification of fluids migration along zones characterized by greater permeability. ERT results highlighted a sub-horizontal layering characterized by different resistivity intervals, roughly matching local stratigraphy. In most profiles we observed a slightly increase of resistivity and a sharp inter-ruption of the electro-layering in correspondence of the main macroseep, both near the surface and at depth. This implies that a fracture zone due to the presence of a buried fault cannot be excluded. The combined use of geochemical and geophysical techniques in this study confirmed the usefulness of such multiparametric approach for mapping out hidden structures in tectonically active areas, allowing to better understanding the fluid migration processes through preferential leakage pathways.
    Description: Published
    Description: 106678
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Soil gas survey ; Electrical Resistivity Tomography (ERT) survey ; Migration pathways ; Medolla ; 04.02. Exploration geophysics ; 03.04. Chemical and biological
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...