ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • 04.01. Earth Interior  (8)
  • Elsevier  (5)
  • Oxford University Press  (3)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2020-2023  (3)
  • 2020-2022  (5)
  • 1990-1994
  • 1970-1974
Collection
  • Articles  (8)
Publisher
Years
  • 2020-2023  (3)
  • 2020-2022  (5)
  • 1990-1994
  • 1970-1974
  • 2020-2024  (7)
Year
  • 1
    Publication Date: 2022-03-07
    Description: The investigation of the role played by CO2 circulating within the mantle during partial melting and metasomatic/refertilization processes, together with a re-consideration of its storage capability and re-cycling in the lithospheric mantle, is crucial to unravel the Earth's main geodynamic processes. In this study, the combination of petrology, CO2 content trapped in bulk rock- and mineral-hosted fluid inclusions (FI), and 3D textural and volumetric characterization of intra- and inter-granular microstructures was used to investigate the extent and modality of CO2 storage in depleted and fertile (or refertilized) Sub-Continental Lithospheric Mantle (SCLM) beneath northern Victoria Land (NVL, Antarctica). Prior to xenoliths entrainment by the host basalt, the Antarctic SCLM may have stored 0.2 vol% melt and 1.1 vol% fluids, mostly as FI trails inside mineral phases but also as inter-granular fluids. The amount of CO2 stored in FI varies from 0.1 μg(CO2)/g(sample) in olivine from the anhydrous mantle xenoliths at Greene Point and Handler Ridge, up to 187.3 μg/g in orthopyroxene from the highly metasomatized amphibole-bearing lherzolites at Baker Rocks, while the corresponding bulk CO2 contents range from 0.3 to 57.2 μg/g. Irrespective of the lithology, CO2 partitioning is favoured in orthopyroxene and clinopyroxene-hosted FI (olivine: orthopyroxene = 0.10 ± 0.06 to 0.26 ± 0.09; olivine: clinopyroxene = 0.10 ± 0.05 to 0.27 ± 0.14). The H2O/(H2O + CO2) molar ratios obtained by comparing the CO2 contents of FI to the H2O amount retained in pyroxene lattices vary between 0.72 ± 0.17 and 0.97 ± 0.03, which is well comparable with the values measured in olivine-hosted melt inclusions from Antarctic primary lavas and assumed as representative of the partition of volatiles at the local mantle conditions. From the relationships between mineral chemistry, thermo-, oxybarometric results and CO2 contents in mantle xenoliths, we speculate that relicts of CO2-depleted mantle are present at Greene Point, representing memory of a CO2-poor tholeiitic refertilization related to the development of the Jurassic Ferrar large magmatic event. On the other hand, a massive mobilization of CO2 took place before the (melt-related) formation of amphibole veins during the alkaline metasomatic event associated with the Cenozoic rift-related magmatism, in response to the storage and recycling of CO2-bearing materials into the Antarctica mantle likely induced by the prolonged Ross subduction.
    Description: Published
    Description: 106643
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: CO2 storage ; Sub-Continental Lithospheric Mantle ; Alkaline metasomatism ; Fluid inclusions ; Synchrotron X-ray microtomography ; Inter-granular fluids ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-15
    Description: The origin of magmatic fluids along the East African Rift System (EARS) is a long-lived field of debate in the scientific community. Here, we investigate the chemical composition of the volcanic gas plume and fumaroles at Nyiragongo and Nyamulagira (Democratic Republic of Congo), the only two currently erupting volcanoes set on the Western Branch of the rift. Our results are in line with earlier conceptual models proposing that volcanic gas emissions along the EARS mainly reflect variable contributions of either a Sub-Continental Lithospheric Mantle (SCLM) component or a Depleted Morb Mantle (DMM) component, and deeper fluid. At Nyiragongo and Nyamulagira, our study discards a major contribution of a high 3He/4He mantle plume component in the genesis of volcanic fluids beneath the area. High CO2/3He in fumaroles of both volcanoes is thought to reflect carbonate metasomatism in the lithospheric mantle source. As inferred by previous results obtained on the lava chemistry, this carbonate metasomatism would be more pronounced beneath Nyiragongo. This supports the idea of the presence of distinct metasomes within the lithospheric mantle beneath the Western Branch of the rift.
    Description: Published
    Description: 120811
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: East African Rift System ; Volcano ; Gas chemistry ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: erratum paper
    Description: Published
    Description: 1090-1092
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Theoretical seismology ; Seismic attenuation ; Seismic noise ; Surface waves ; Free oscillations ; Seismic interferometry ; 04.06. Seismology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-24
    Description: The possibility of constraining the composition and evolution of specific portions of the Sub-Continental Lithospheric Mantle (SCLM) by means of an integrated study of petrography, mineral chemistry, and concentrations of volatiles in fluid inclusions (FI) is a novel approach that can provide clues on the recycling of volatiles within the lithosphere. This approach is even more important in active or dormant volcanic areas, where the signature of the gaseous emissions at the surface can be that of the underlying lithospheric mantle domains. In this respect, the ultramafic xenoliths brought to the surface in West Eifel (~0.5–0.01 Ma) and Siebengebirge (~30–6 Ma) volcanic fields (Germany) are ideal targets, as they provide direct information on one of the most intriguing portions of SCLM beneath the Central European Volcanic Province (CEVP). Five distinct populations from these localities were investigated using petrographic observations, mineral phase analyses and determination of He, Ne, Ar and CO2 contents in olivine-, orthopyroxene-, and clinopyroxene-hosted FI. The most refractory Siebengebirge rocks have highly forsteritic olivine, high-Mg#, low-Al pyroxene, and spinel with high Cr#, reflecting high extents (up to 30%) of melt extraction. In contrast, xenoliths from West Eifel are modally and compositionally heterogeneous, as indicated by the large forsterite range of olivine (Fo83–92), the Cr# range of spinel (0.1–0.6), and the variable Al and Ti contents of pyroxene. Equilibration temperatures vary from 870 ◦C to 1070 ◦C in Siebengebirge, and from ⁓900 ◦C to ⁓1190 ◦C in West Eifel xenoliths, at oxygen fugacity values generally between 􀀀 0.5 and + 1.3 ΔlogƒO2 [FMQ]. In both areas, the FI composition was dominated by CO2, with clinopyroxene, and most of the orthopyroxene had the highest concentrations of volatiles, while olivine was gas-poor. The noble gas and CO2 distributions suggest that olivine is representative of a residual mantle that experienced one or more melt extraction episodes. The 3He/4He ratio corrected for air contamination (Rc/Ra values) varied from 6.8 Ra in harzburgitic lithotypes to 5.5 Ra in lherzolites and cumulate rocks, indicating that the original MORB-like mantle signature was progressively modified by interaction with crustal-related components and melts having 3He/4He and 4He/40Ar* values consistent with those published for magmatic gaseous emissions. The Ne and Ar isotope systematics indicated that most of the data were consistent with mixing between a recycled atmospheric component and a MORB-like mantle, which does not necessarily require the involvement of a lower mantle plume beneath this portion of the CEVP. The major element distribution in mineral phases from West Eifel and Siebengebirge, together with the systematic variations in FI composition, the positive correlation between Al enrichment in pyroxene and equilibration temperatures, and the concomitant Rc/Ra decrease with increasing temperature, suggest that the SCLM beneath Siebengebirge represented the Variscan lithosphere in CEVP prior to the massive infiltration of melts/fluids belonging to the Quaternary Eifel volcanism. In contrast, West Eifel xenoliths reflect multiple heterogeneous metasomatism/refertilisation events that took place in the regional SCLM between ~6 and ~ 0.5 Ma.
    Description: Published
    Description: 120400
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Eifel ; Siebengebirge ; Noble gas and CO2 measurements ; Fluid inclusions ; Mantle xenoliths ; European SCLM ; Partial melting ; Metasomatism ; Refertilisation ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: We have constructed a 3-D shear wave velocity (Vs) model for the crust and uppermost mantle beneath the Middle East using Rayleigh wave records obtained from ambient-noise cross-correlations and regional earthquakes. We combined one decade of data collected from 852 permanent and temporary broad-band stations in the region to calculate group-velocity dispersion curves. A compilation of 〉54 000 ray paths provides reliable group-velocity measurements for periods between 2 and 150 s. Path-averaged group velocities calculated at different periods were inverted for 2-D group-velocity maps. To overcome the problem of heterogeneous ray coverage, we used an adaptive grid parametrization for the group-velocity tomographic inversion. We then sample the period-dependent group-velocity field at each cell of a predefined grid to generate 1-D group-velocity dispersion curves, which are subsequently inverted for 1-D Vs models beneath each cell and combined to approximate the 3-D Vs structure of the area. The Vs model shows low velocities at shallow depths (5–10 km) beneath the Mesopotamian foredeep, South Caspian Basin, eastern Mediterranean and the Black Sea, in coincidence with deep sedimentary basins. Shallow high-velocity anomalies are observed in regions such as the Arabian Shield, Anatolian Plateau and Central Iran, which are dominated by widespread magmatic exposures. In the 10–20 km depth range, we find evidence for a band of high velocities (〉4.0 km s–1) along the southern Red Sea and Arabian Shield, indicating the presence of upper mantle rocks. Our 3-D velocity model exhibits high velocities in the depth range of 30–50 km beneath western Arabia, eastern Mediterranean, Central Iranian Block, South Caspian Basin and the Black Sea, possibly indicating a relatively thin crust. In contrast, the Zagros mountain range, the Sanandaj-Sirjan metamorphic zone in western central Iran, the easternmost Anatolian plateau and Lesser Caucasus are characterized by low velocities at these depths. Some of these anomalies may be related to thick crustal roots that support the high topography of these regions. In the upper mantle depth range, high-velocity anomalies are obtained beneath the Arabian Platform, southern Zagros, Persian Gulf and the eastern Mediterranean, in contrast to low velocities beneath the Red Sea, Arabian Shield, Afar depression, eastern Turkey and Lut Block in eastern Iran. Our Vs model may be used as a new reference crustal model for the Middle East in a broad range of future studies.
    Description: Published
    Description: 1349-1365
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-24
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Ambient-noise records from the AlpArray network are used to measure Rayleigh wave phase velocities between more than 150,000 station pairs. From these, azimuthally anisotropic phase-velocity maps are obtained by applying the Eikonal tomography method. Several synthetic tests are shown to study the bias in the Ψ2 anisotropy. There are two main groups of bias, the first one caused by interference between refracted/reflected waves and the appearance of secondary wavefronts that affect the phase travel-time measurements. This bias can be reduced if the amplitude field can be estimated correctly. Another source of error is related to the incomplete reconstruction of the travel-time field that is only sparsely sampled due to the receiver locations. Both types of bias scale with the magnitude of the velocity heterogeneities. Most affected by the spurious Ψ2 anisotropy are areas inside and at the border of low-velocity zones. In the isotropic velocity distribution, most of the bias cancels out if the azimuthal coverage is good. Despite the lack of resolution in many parts of the surveyed area, we identify a number of anisotropic structures that are robust: in the central Alps, we find a layered anisotropic structure, arc-parallel at midcrustal depths and arc-perpendicular in the lower crust. In contrast, in the eastern Alps, the pattern is more consistently E-W oriented which we relate to the eastward extrusion. The northern Alpine forleand exhibits a preferential anisotropic orientation that is similar to SKS observations in the lowermost crust and uppermost mantle.
    Description: German Science Foundation (SPP-2017, Project Ha 2403/21-1); Swiss National Science Foundation SINERGIA Project CRSII2-154434/1 (Swiss-AlpArray); Progetto Pianeta Dinamico, finanziamento MUR-INGV, Task S2 – 2021
    Description: Published
    Description: 151–170
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismic anisotropy ; Seismic interferometry ; Seismic tomography ; Wave propagation ; Continental tectonics: compressional ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-01
    Description: The tectonic evolution of the European Eastern Alps within the Alpine orogeny is still under debate. Open ques- tions include: the link between surface, crustal and mantle structures; the nature of the Moho gap between the two plates; the relationship between the Alps, the adjacent foreland basin and the Bohemian Massif lithospheric blocks. We collected one year of continuous data recorded by ~250 broadband seismic stations –55 of which installed within the EASI AlpArray complementary experiment– in the Eastern Alpine region. Exploiting surface wave group velocity from seismic ambient noise, we obtained an high-resolution 3D S-wave crustal model of the area. The Rayleigh-wave group-velocity from 3 s to 35 s are inverted to obtain 2-D group velocity maps with a resolution of ~15 km. From these maps, we determine a set of 1D velocity models via a Neighborhood Algorithm, resulting in a new 3D model of S-wave velocity with associated uncertainties. The vertical parameterization is a 3-layer crust with the velocity properties in each layer described by a gradient. Our final model finds high correlation with specific geological features in the Eastern Alps up to 20 km depth, the deep structure of the Molasse basin and important variations of crustal thickness and velocities as a result of the Alpine orogeny post-collisional evolution. The strength of our new information relies on the absolute S-wave crustal velocity and the velocity gradient unambiguously sampled along the Moho, only limited by the amount and quality distribution of the data available.
    Description: Published
    Description: 100006
    Description: 1T. Struttura della Terra
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: N/A or not JCR
    Keywords: 3D crustal structure ; Ambient-noise tomography ; Surface wave ; Alps ; Moho ; Molasse basin ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-30
    Description: Quantification of the CO2 released by the volcanoes to the atmosphere is relevant for the evaluation of the balance between deep-derived, biogenic and anthropogenic contributions. The current study estimates the CO2 released from Furnas do Enxofre degassing area (Terceira Island, Azores archipelago) by applying an approach that integrates the flux of CO2 fromthe soilwith the δ13C-CO2 values. A deep-derived CO2 output of 2.54 t d−1 is estimated for an area of ~23,715 m2. High biogenic-derived CO2 flux values (~45 g m−2 d−1) associated with light carbon isotopic content (δ13C=−28‰±1.1‰) are detected and explained by the type of vegetation that characterizes the study site. Carbon isotopic compositions of the CO2 (−6.4‰±1.2‰) measured in olivine-hosted fluid inclusions of the Terceira basalts are presented for the first time and contribute to defining the mantle-CO2 signature. Differences between these values and heavier carbon isotope values from gas in fumaroles at Furnas do Enxofre (−4.66‰to−4.27‰) are explained by the carbon isotopic fractionation occurring when CO2 reacts to form calcite in the geothermal reservoir at temperatures N180 °C. A clear correlation between the soil temperature and deep CO2 fluxes is observed and the integration of the diffuse degassing information with the composition of the fumarolic emissions allows estimating a thermal energy flux of 1.1 MW.
    Description: Published
    Description: 106968
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Soil diffuse degassing ; CO2 fluxes ; Carbon isotopic composition ; Hydrothermal systems ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...