ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (2)
  • Springer  (2)
  • American Institute of Physics (AIP)
  • Cambridge University Press
  • Periodicals Archive Online (PAO)
  • 2020-2023  (2)
  • 1965-1969
  • 2021  (2)
  • 1
    Publication Date: 2022-03-16
    Description: In this work, we assess ground shaking in the wider Zagreb area by computing simulated seismograms at regional distances. For the purposes of the simulations, we assemble the 3D velocity and density model and test its performance. First, we compare the low-frequency simulations obtained using deterministic method for both new 3D model and a simple 1D model. We then continue the performance test by computing the full broadband seismo- grams. To do that, we apply the hybrid technique in which the low frequency (f〈1 Hz) and high frequency (f=1–10 Hz) seismograms are obtained separately using deterministic and stochastic method, respectively, and then reconciled into a single time series. We apply this method to the MW=5.3 event and four smaller (3.0〈MW〈5.0) events that occurred in the studied region. We compare simulated data with the recorded seismograms and vali- date our results by calculating the goodness of fit score for peak ground velocity and shak- ing duration. Next, to improve the understanding of the strong ground motion in this area, we simulate seismic shaking scenarios for the 1880, MW = 6.2 earthquake. From computed low-frequency waveforms, we generate shakemaps and compare the ground-motion fea- tures of the two possible sources of this event, Kašina fault and North Medvednica fault. We conduct a preliminary study to determine which fault is a more probable source of the 1880 historic event by comparing the peak ground velocities and Arias intensity with the observed intensities.
    Description: Croatian Science Foundation under the Project No. IP-2020-02-3960 European Commission, H2020 Excel- lence Science [ChEESE (Grant No. 823844)]
    Description: Published
    Description: 167–192
    Description: 1T. Struttura della Terra
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Numerical simulation ; 3D ground motion ; Earthquake ; Central Croatia ; Zagreb ; Seismic wave propagation ; 3D crustal model ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-16
    Description: A new analysis of high-resolution multibeam and seismic reflection data, collected during several oceanographic expeditions starting from 1999, allowed us to compile an updated morphotectonic map of the North Anatolian Fault below the Sea of Marmara. We reconstructed kinematics and geometries of individual fault segments, active at the time scale of 10 ka, an interval which includes several earthquake cycles, taking as stratigraphic marker the base of the latest marine transgression. Given the high deformation rates relative to sediment supply, most active tectonic structures have a morphological expression at the seafloor, even in presence of composite fault geometries and/or overprinting due to mass-wasting or turbidite deposits. In the frame of the right-lateral strike-slip domain characterizing the North Anatolian fault system, three types of deformation are observed: almost pure strike-slip faults, oriented mainly E–W; NE/SW-aligned axes of transpressive structures; NW/SE-oriented trans-tensional depressions. Fault segmentation occurs at different scales, but main segments develop alongthree major right-lateral oversteps, which delimit main fault branches, from east to west: (i) the transtensive Cinarcik segment; (ii) the Central (East and West) segments; and (iii) the westernmost Tekirdag segment. A quantitative morphometric analysis of the shallow deformation patterns observed by seafloor morphology maps and high-resolution seismic reflection profiles along the entire basin allowed to determine nature and cumulative lengths of individual fault segments. These data were used as inputs for empirical relationships, to estimate maximum expected Moment Magnitudes, obtaining values in the range of 6.8–7.4 for the Central, and 6.9–7.1 for the Cinarcik and Tekirdag segments, respectively. We discuss these findings considering analyses of historical catalogues and available paleoseismological studies for the Sea of Marmara regionto formulate reliable seismic hazard scenarios.
    Description: Published
    Description: 29–44
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: N/A or not JCR
    Keywords: North Anatolian fault · ; Sea of Marmara ; Earthquakes ; Active fault segments ; Marine geophysics ; Seismic hazard ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...