ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coral  (2)
  • Evaporation  (2)
  • American Geophysical Union  (4)
  • 2015-2019  (4)
  • 1960-1964
  • 1930-1934
  • 2019  (4)
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Earth and Space Science, 6(7), (2019): 1220-1233, doi:10.1029/2018EA000436.
    Description: Ocean evaporative fluxes are a critical component of the Earth's energy and water cycle, but their estimation remains uncertain. Near‐surface humidity is a required input to bulk flux algorithms that relate mean surface values to the turbulent fluxes. Several satellite‐derived turbulent flux products have been developed over the last decade that utilize passive microwave imager observations to estimate the surface humidity. It is known, however, that these estimates tend to diverge from one another and from in situ observations. Analysis of current state‐of‐the‐art satellite estimates provided herein reveals that regional‐scale biases in these products remain significant. Investigations reveal a link between the spatial coherency of the observed biases to atmospheric dynamical controls of water vapor vertical stratification, cloud liquid water, and sea surface temperature. This information is used to develop a simple state‐dependent bias correction that results in more consistent ocean surface humidity estimates. A principal conclusion is that further improvements to ocean near‐surface humidity estimation using microwave radiometers requires incorporation of prior information on water vapor stratification and sea surface temperature.
    Description: Data products used in this study are made publicly available via multiple repositories hosted by individual data product producers. JOFUROv2 and JOFUROv3 data are available online (https://j‐ofuro.scc.u‐tokai.ac.jp/en/). IFREMERv4 and NOCS surface data are available through the OceanHeatFlux project (https://www.ifremer.fr/oceanheatflux/Data). GSSTFv3 (doi:10.5067/MEASURES/GSSTF/DATA301) and MERRA‐2 data are obtained from the Goddard Earth Sciences Data and Information Services Center. HOAPSv3.2 data are available from Satellite Application Facility on Climate Monitoring (https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001). SEAFLUXv2 data are accessed through the National Centers for Environmental Information (http://doi.org/10.7289/V59K4885). Daily surface observations were provided by David Berry and Elizabeth Kent. This work is supported under the NASA Physical Oceanography Program Grant NNX14AK48A.
    Keywords: Humidity ; Passive microwave ; Ocean ; Turbulent fluxes ; Evaporation ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019): 1322-1330, doi:10.1029/2018JC014106.
    Description: A Lagrangian model is constructed for a surface column of initial height h(0) that propagates at an average speed u and is subject to excess (i.e., net) evaporation of q m/year. It is shown that these parameters combine to form an evaporation length, L = uh(0)/q, which provides an estimate for the distance the column must travel before evaporating completely. While these changes in the surface water level due to evaporation are compensated by entrainment of water into the overall column, the changes in either near‐surface salinity or isotopic compositions are retained and can be measured. Observations of surface salinity and isotopic compositions of δ18O and δD along 1,000‐ to 3,500‐km long transects are used to estimate values of L in the Red Sea, Mediterranean Sea, Indian Ocean, and Gulf Stream. The variations of salinity, δ18O and δD in all four basins are linear. As anticipated, the estimated value of L is smallest in the slowly moving and arid Red Sea and is greatest in the fast‐moving Gulf Stream.
    Description: The salinity and δ18O data collected aboard the Indian Ocean cruise described in Srivastava et al. (2007) can be accessed at this website (https://www.nodc.noaa.gov). The salinity, δ18O and δD data collected during the Red Sea cruise of the Interuniversity Institute for Marine Sciences, Eilat, described in Steiner et al. (2014) and can be accessed in the supporting information section of doi: 10.1073/pnas.1414323111. H. B. acknowledges the support provided by the Eshkol Foundation of the Israel Ministry of Science.
    Description: 2019-07-26
    Keywords: Air-sea interaction ; Evaporation ; Semienclosed basins ; Salinity ; Stable isotopes ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Rodriguez, L. G., Cohen, A. L., Ramirez, W., Oppo, D. W., Pourmand, A., Edwards, R. L., Alpert, A. E., & Mollica, N. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanography and Paleoclimatology, 34(7), (2019): 1234-1245, doi:10.1029/2019PA003571.
    Description: The Holocene is considered a period of relative climatic stability, but significant proxy data‐model discrepancies exist that preclude consensus regarding the postglacial global temperature trajectory. In particular, a mid‐Holocene Climatic Optimum, ~9,000 to ~5,000 years BP, is evident in Northern Hemisphere marine sediment records, but its absence from model simulations raises key questions about the ability of the models to accurately simulate climate and seasonal biases that may be present in the proxy records. Here we present new mid‐Holocene sea surface temperature (SST) data from the western tropical Atlantic, where twentieth‐century temperature variability and amplitude of warming track the twentieth‐century global ocean. Using a new coral thermometer Sr‐U, we first developed a temporal Sr‐U SST calibration from three modern Atlantic corals and validated the calibration against Sr‐U time series from a fourth modern coral. Two fossil corals from the Enriquillo Valley, Dominican Republic, were screened for diagenesis, U‐series dated to 5,199 ± 26 and 6,427 ± 81 years BP, respectively, and analyzed for Sr/Ca and U/Ca, generating two annually resolved Sr‐U SST records, 27 and 17 years long, respectively. Average SSTs from both corals were significantly cooler than in early instrumental (1870–1920) and late instrumental (1965–2016) periods at this site, by ~0.5 and ~0.75 °C, respectively, a result inconsistent with the extended mid‐Holocene warm period inferred from sediment records. A more complete sampling of Atlantic Holocene corals can resolve this issue with confidence and address questions related to multidecadal and longer‐term variability in Holocene Atlantic climate.
    Description: This study was supported by NSF OCE 1747746 to Anne Cohen and by NSF OCE 1805618 to Anne Cohen and Delia Oppo. Eric Loss and his crew on Pangaea Exploration's Sea Dragon enabled fieldwork in Martinique, and George P. Lohman, Thomas DeCarlo, and Hanny Rivera assisted with coral coring. Kathryn Pietro and Julia Middleton assisted in the laboratory, and Louis Kerr provided technical support on the SEM at MBL. Gretchen Swarr provided technical support on the Element and iCap ICPMS at WHOI. We also thank Edwin Hernandez, Jose Morales, and Amos Winter for discussion. All data generated in this study will be made publicly available at http://www.ncdc.noaa.gov/data‐ access/paleoclimatology‐data/datasets
    Keywords: Mid‐Holocene ; Proxy SST ; Sr‐U thermometer ; Tropical Atlantic ; Climatic Optimum ; Coral
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(9), (2019):4790-4798, doi:10.1029/2019GL081939.
    Description: The East Asian Monsoon (EAM) impacts storms, freshwater availability, wind energy production, coal consumption, and subsequent air quality for billions of people across Asia. Despite its importance, the EAM's long‐term behavior is poorly understood. Here we present an annually resolved record of EAM variance from 1584 to 1950 based on radiocarbon content in a coral from the coast of Vietnam. The coral record reveals previously undocumented centennial scale changes in EAM variance during both the summer and winter seasons, with an overall decline from 1600 to the present. Such long‐term variations in monsoon variance appear to reflect independent seasonal mechanisms that are a combination of changes in continental temperature, the strength of the Siberian High, and El Niño–Southern Oscillation behavior. We conclude that the EAM is an important conduit for propagating climate signals from the tropics to higher latitudes.
    Description: Thanks go to G. Williams, W. Tak‐Cheung, and J. Ossolinski. Thanks also go to V. Lee, S. H. Ng for coral sampling, and B. Buckley for conversations. This research was supported by the National Research Foundation Singapore NRF Fellowship scheme awarded to N. Goodkin (National Research Fellowship award NRFF‐2012‐03) and administered by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative. The research was also supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (award MOE2016‐T2‐1‐016). Data are available in Table S1 and the NOAA paleoclimate database.
    Keywords: East Asian Monsoon ; Coral ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...