ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean circulation  (8)
  • Baroclinic flows  (5)
  • Topographic effects
  • American Meteorological Society  (13)
  • MDPI Publishing
  • 2015-2019  (13)
  • 2010-2014
  • 2018  (13)
Collection
Publisher
Years
  • 2015-2019  (13)
  • 2010-2014
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Description: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Description: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Description: 2019-03-11
    Keywords: Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 573-590, doi:10.1175/JPO-D-17-0206.1.
    Description: Motivated by the proximity of the Northern Recirculation Gyre and the deep western boundary current in the North Atlantic, an idealized model is used to investigate how recirculation gyres and a deep flow along a topographic slope interact. In this two-layer quasigeostrophic model, an unstable jet imposed in the upper layer generates barotropic recirculation gyres. These are maintained by an eddy-mean balance of potential vorticity (PV) in steady state. The authors show that the topographic slope can constrain the northern recirculation gyre meridionally and that the gyre’s adjustment to the slope leads to increased eddy PV fluxes at the base of the slope. When a deep current is present along the topographic slope in the lower layer, these eddy PV fluxes stir the deep current and recirculation gyre waters. Increased proximity to the slope dampens the eddy growth rate within the unstable jet, altering the geometry of recirculation gyre forcing and leading to a decrease in overall eddy PV fluxes. These mechanisms may shape the circulation in the western North Atlantic, with potential feedbacks on the climate system.
    Description: We gratefully acknowledge an AMS graduate fellowship (IALB) and U.S. National Science Foundation Grants OCE-1332667 and 1332834 (IALB and JMT).
    Description: 2018-09-06
    Keywords: Boundary currents ; Meridional overturning circulation ; Mesoscale processes ; Ocean circulation ; Potential vorticity ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 739-748, doi:10.1175/JPO-D-17-0089.1.
    Description: McDougall and Ferrari have estimated the global deep upward diapycnal flow in the boundary layer overlying continental slopes that must balance both downward diapycnal flow in the deep interior and the formation of bottom water around Antarctica. The decrease of perimeter of isopycnal surfaces with depth and the observed decay with height above bottom of turbulent dissipation in the deep ocean play a key role in their estimate. They argue that because the perimeter of seamounts increases with depth, the net effect of mixing around seamounts is to produce net downward diapycnal flow. While this is true along much of a seamount, it is shown here that diapycnal flow of the densest water around the seamount is upward, with buoyancy being transferred from water just above. The same is true for midocean ridges, whose perimeter is constant with depth. It is argued that mixing around seamounts and especially midocean ridges contributes positively to the global deep overturning circulation, reducing the amount of turbulence demanded over the continental slopes to balance the buoyancy budget for the bottom and deep water.
    Description: This work was supported by National Science Foundation Grant OCE- 1232962.
    Description: 2018-09-29
    Keywords: Abyssal circulation ; Boundary currents ; Buoyancy ; Diapycnal mixing ; Mass fluxes/transport ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Description: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Description: 2018-09-12
    Keywords: Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.
    Description: Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
    Description: S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.
    Description: 2018-08-26
    Keywords: Indian Ocean ; Baroclinic flows ; Potential vorticity ; Fronts ; Monsoons ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1831-1848, doi:10.1175/JPO-D-18-0068.1.
    Description: We present a simplified theory using reduced-gravity equations for North Atlantic Deep Water (NADW) and its variation driven by high-latitude deep-water formation. The theory approximates layer thickness on the eastern boundary with domain-averaged layer thickness and, in tandem with a mass conservation argument, retains fundamental physics for cross-equatorial flows on interannual and longer forcing time scales. Layer thickness anomalies are driven by a time-dependent northern boundary condition that imposes a southward volume flux representative of a variable source of NADW and damped by diapycnal mixing throughout the basin. Moreover, an outflowing southern boundary condition imposes a southward volume flux that generally differs from the volume flux at the northern boundary, giving rise to temporal storage of NADW within the Atlantic basin. Closed form analytic solutions for the amplitude and phase are provided when the variable source of NADW is sinusoidal. We provide a nondimensional analysis that demonstrates that solution behavior is primarily controlled by two parameters that characterize the meridional extent of the southern basin and the width of the basin relative to the equatorial deformation radius. Similar scaling applied to the time-lagged equations of Johnson and Marshall provides a clear connection to their results. Numerical simulations of reduced-gravity equations agree with analytic predictions in linear, turbulent, and diabatic regimes. The theory introduces a simple analytic framework for studying idealized buoyancy- and wind-driven cross-equatorial flows on interannual and longer time scales.
    Description: This research was supported by the National Science Foundation under Grant OCE- 1634468.
    Description: 2019-02-15
    Keywords: North Atlantic Ocean ; Tropics ; Meridional overturning circulation ; Ocean circulation ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2457-2475, doi:10.1175/JPO-D-17-0186.1.
    Description: A subpolar marginal sea, like the Nordic seas, is a transition zone between the temperature-stratified subtropics (the alpha ocean) and the salinity-stratified polar regions (the beta ocean). An inflow of Atlantic Water circulates these seas as a boundary current that is cooled and freshened downstream, eventually to outflow as Deep and Polar Water. Stratification in the boundary region is dominated by a thermocline over the continental slope and a halocline over the continental shelves, separating Atlantic Water from Deep and Polar Water, respectively. A conceptual model is introduced for the circulation and water mass transformation in a subpolar marginal sea to explore the potential interaction between the alpha and beta oceans. Freshwater input into the shelf regions has a slight strengthening effect on the Atlantic inflow, but more prominently impacts the water mass composition of the outflow. This impact of freshwater, characterized by enhancing Polar Water outflow and suppressing Deep Water outflow, is strongly determined by the source location of freshwater. Concretely, perturbations in upstream freshwater sources, like the Baltic freshwater outflow into the Nordic seas, have an order of magnitude larger potential to impact water mass transports than perturbations in downstream sources like the Arctic freshwater outflow. These boundary current dynamics are directly related to the qualitative stratification in transition zones and illustrate the interaction between the alpha and beta oceans.
    Description: This research was supported by the Research Council of Norway project NORTH. Support for the publication was provided by the University of Bergen. Ocean Outlook has supported a research visit for EL to Woods Hole Oceanographic Institute where much of the current work has been carried out. Support forMAS was provided by the National Science Foundation Grant OCE-1558742.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Boundary currents ; Buoyancy ; Freshwater ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2799-2827, doi:10.1175/JPO-D-18-0057.1.
    Description: The fjords that connect Greenland’s glaciers to the ocean are gateways for importing heat to melt ice and for exporting meltwater into the ocean. The transport of heat and meltwater can be modulated by various drivers of fjord circulation, including freshwater, local winds, and shelf variability. Shelf-forced flows (also known as the intermediary circulation) are the dominant mode of variability in two major fjords of east Greenland, but we lack a dynamical understanding of the fjord’s response to shelf forcing. Building on observations from east Greenland, we use numerical simulations and analytical models to explore the dynamics of shelf-driven flows. For the parameter space of Greenlandic fjords, we find that the fjord’s response is primarily a function of three nondimensional parameters: the fjord width over the deformation radius (W/Rd), the forcing time scale over the fjord adjustment time scale, and the forcing amplitude (shelf pycnocline displacements) over the upper-layer thickness. The shelf-forced flows in both the numerical simulations and the observations can largely be explained by a simple analytical model for Kelvin waves propagating around the fjord. For fjords with W/Rd 〉 0.5 (most Greenlandic fjords), 3D dynamics are integral to understanding shelf forcing—the fjord dynamics cannot be approximated with 2D models that neglect cross-fjord structure. The volume flux exchanged between the fjord and shelf increases for narrow fjords and peaks around the resonant forcing frequency, dropping off significantly at higher- and lower-frequency forcing.
    Description: This work was funded by NSF Grant OCE-1536856 and by the NOAA Climate and Global Change Postdoctoral Fellowship.
    Keywords: Estuaries ; Glaciers ; Baroclinic flows ; Coastal flows ; Kelvin waves ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 9881-9901, doi:10.1175/JCLI-D-17-0889.1.
    Description: The Atlantic meridional overturning circulation and associated poleward heat transport are balanced by northern heat loss to the atmosphere and corresponding water-mass transformation. The circulation of northward-flowing Atlantic Water at the surface and returning overflow water at depth is particularly manifested—and observed—at the Greenland–Scotland Ridge where the water masses are guided through narrow straits. There is, however, a rich variability in the exchange of water masses across the ridge on all time scales. Focusing on seasonal and interannual time scales, and particularly the gateways of the Denmark Strait and between the Faroe Islands and Shetland, we specifically assess to what extent the exchanges of water masses across the Greenland–Scotland Ridge relate to wind forcing. On seasonal time scales, the variance explained of the observed exchanges can largely be related to large-scale wind patterns, and a conceptual model shows how this wind forcing can manifest via a barotropic, cyclonic circulation. On interannual time scales, the wind stress impact is less direct as baroclinic mechanisms gain importance and observations indicate a shift in the overflows from being more barotropically to more baroclinically forced during the observation period. Overall, the observed Greenland–Scotland Ridge exchanges reflect a horizontal (cyclonic) circulation on seasonal time scales, while the interannual variability more represents an overturning circulation.
    Description: This research was supported by the Research Council of Norway project NORTH (Grant 229763). Additional support for M. A. Spall was provided by National Science Foundation Grant OCE- 1558742, for T. Eldevik and S. Østerhus by the European Union’s Horizon 2020 research and innovation program project Blue-Action (Grant 727852), and for S. Østerhus by the European Framework Programs under Grant Agreement 308299 (NACLIM).
    Keywords: Ocean circulation ; Thermocline circulation ; Atmosphere-ocean interaction ; North Atlantic Oscillation ; Statistical techniques ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 879-894, doi:10.1175/JPO-D-16-0196.1.
    Description: Models show that surface cooling over a sloping continental shelf should give rise to baroclinic instability and thus tend toward gravitationally stable density stratification. Less is known about how alongshore winds affect this process, so the role of surface momentum input is treated here by means of a sequence of idealized, primitive equation numerical model calculations. The effects of cooling rate, wind amplitude and direction, bottom slope, bottom friction, and rotation rate are all considered. All model runs lead to instability and an eddy field. While instability is not strongly affected by upwelling-favorable alongshore winds, wind-driven downwelling substantially reduces eddy kinetic energy, largely because the downwelling circulation plays a similar role to baroclinic instability by flattening isotherms and so reducing available potential energy. Not surprisingly, cross-shelf winds appear to have little effect. Analysis of the model runs leads to quantitative relations for the wind effect on eddy kinetic energy for the equilibrium density stratification (which increases as the cooling rate increases) and for eddy length scale.
    Description: This research was supported by the National Science Foundation Physical Oceanography Program through Grant OCE-1433953.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Eddies ; Instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2209-2219, doi:10.1175/JPO-D-18-0070.1.
    Description: Published observations of subinertial ocean current variability show that the vertical structure is often well described by a vertical mode that has a node of horizontal velocity at the bottom rather than the traditional node of vertical velocity. The theory of forced and free linear Rossby waves in a continuously stratified ocean with a sloping bottom and bottom friction is treated here to see if frictional effects can plausibly contribute to this phenomenon. For parameter values representative of the mesoscale, bottom dissipation by itself appears to be too weak to be an explanation, although caution is required because the present approach uses a linear model to address a nonlinear phenomenon. One novel outcome is the emergence of a short-wave, bottom-trapped, strongly damped mode that is present even with a flat bottom.
    Description: Partial funding for this article is provided by the National Science Foundation Physical Oceanography section through Award OCE-1433953.
    Description: 2019-03-17
    Keywords: Baroclinic flows ; Ekman pumping/transport ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.
    Description: Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.
    Description: WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-06-08
    Keywords: Ocean circulation ; Topographic effects ; Transport ; Vertical motion ; Waves, oceanic ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...