ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology
  • Springer  (2)
  • American Chemical Society (ACS)
  • American Institute of Physics (AIP)
  • Institute of Physics (IOP)
  • 2020-2024  (1)
  • 2015-2019  (1)
  • 1950-1954
  • 2022  (1)
  • 2017  (1)
Collection
Keywords
Publisher
  • Springer  (2)
  • American Chemical Society (ACS)
  • American Institute of Physics (AIP)
  • Institute of Physics (IOP)
  • IEEE  (1)
  • +
Years
  • 2020-2024  (1)
  • 2015-2019  (1)
  • 1950-1954
  • 2020-2023  (1)
Year
  • 1
    Publication Date: 2023-05-25
    Description: N.N. Ambraseys left us a wealth of papers and volumes on a number of topics; many of them concern the historical earth- quake investigation. One of the last works is the 2009 volume (Ambraseys in Earthquakes in the Eastern Mediterranean and the Middle East: a multidisciplinary study of 2000 years of seismicity, Cambridge, Cambridge, UK, 2009), where he summarizes the results of more than thirty years of investigation through archives and libraries, covering earthquakes of a large area, from Albania to Caucasus. For each earthquake, a short summary of the main effects is supplied, together with the list of the sources used. Such information is intended as material for assessing location and size of the earthquakes, task that the author accomplished only in a very preliminary way for a few earthquakes, only. In addition to exhaustive descriptions of the most known earthquakes and the relevant historical sources, the volume contains information on a large number of earthquakes, so far unknown to the current earthquake catalogues. This paper intends to represent a homage to his immense work, partially showing the potential of his volume. We briefly present here some case histories, including the preliminary location and size of the earthquakes – known and unknown—around Anatolia. We add some examples of how he was able to prove that some alleged earthquakes are actually to be considered as fake or very doubtful. We also present the damage information supplied for some known and unknown earthquakes, and how they can be used for assessing location and size of them.
    Description: Published
    Description: 555–568
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: N/A or not JCR
    Keywords: earthquakes ; Anatolia ; Historical seismology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-24
    Description: In this study, we attempt to improve the standards in Probabilistic Seismic Hazard Assessment (PSHA) towards a time-dependent hazard assessment by using the most advanced methods and new databases for the Calabria region, Italy. In this perspective we improve the knowledge of the seismotectonic framework of the Calabrian region using geologic, tectonic, paleoseismological, and macroseismic information available in the literature. We built up a PSHA model based on the long-term recurrence behavior of seismogenic faults, together with the spatial distribution of historical earthquakes. We derive the characteristic earthquake model for those sources capable of rupturing the entire fault segment (full-rupture) independently with a single event of maximum magnitude. We apply the floating rupture model to those earthquakes whose location is not known sufficiently constrained. We thus associate these events with longer fault systems, assuming that any such earthquake can rupture anywhere within the particular fault system (floating partial-rupture) with uniform probability. We use a Brownian Passage Time (BPT) model characterized by mean recurrence, aperiodicity, or uncertainty in the recurrence distribution and elapsed time since the last characteristic earthquake. The purpose of this BPT model is to express the time-dependence of the seismic processes to predict the future ground motions in the region. Besides, we consider the influence on the probability of earthquake occurrence controlled by the change in static Coulomb stress (ΔCFF) due to fault interaction; to pursue this, we adopt a model built on the fusion of BPT model (BPT + ΔCFF). We present our results for both time-dependent (renewal) and time-independent (Poisson) models in terms of Peak Ground Acceleration (PGA) maps for 10% probability of exceedance in 50 years. The hazard may increase by more than 20% or decrease by as much as 50% depending on the different occurrence model. Seismic hazard in terms of PGA decreases about 20% in the Messina Strait, where a recent major earthquake took place, with respect to traditional time-independent estimates. PGA near the city of Cosenza reaches ~ 0.36 g for the time-independent model and 0.40 g for the case of the time-dependent one (i.e. a 15% increase). Both the time-dependent and time-independent models for the period of 2015–2065 demonstrate that the city of Cosenza and surrounding areas bear the highest seismic hazard in Calabria.
    Description: Published
    Description: 2497–2524
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Probabilistic seismic hazard maps ; Time-dependent hazard ; Fault-based model ; Fault interaction ; Seismogenic sources ; Calabria-Italy ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...