ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Air-sea interaction  (2)
  • American Meteorological Society  (2)
  • BioMed Central
  • Copernicus
  • Elsevier
  • MDPI Publishing
  • 2010-2014  (2)
  • 1995-1999
  • 1925-1929
  • 2013  (2)
Collection
Publisher
  • American Meteorological Society  (2)
  • BioMed Central
  • Copernicus
  • Elsevier
  • MDPI Publishing
Years
  • 2010-2014  (2)
  • 1995-1999
  • 1925-1929
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2546–2556, doi:10.1175/JCLI-D-12-00062.1.
    Description: Diurnal sea surface warming affects the fluxes of latent heat, sensible heat, and upwelling longwave radiation. Diurnal warming most typically reaches maximum values of 3°C, although very localized events may reach 7°–8°C. An analysis of multiple years of diurnal warming over the global ice-free oceans indicates that heat fluxes determined by using the predawn sea surface temperature can differ by more than 100% in localized regions over those in which the sea surface temperature is allowed to fluctuate on a diurnal basis. A comparison of flux climatologies produced by these two analyses demonstrates that significant portions of the tropical oceans experience differences on a yearly average of up to 10 W m−2. Regions with the highest climatological differences include the Arabian Sea and the Bay of Bengal, as well as the equatorial western and eastern Pacific Ocean, the Gulf of Mexico, and the western coasts of Central America and North Africa. Globally the difference is on average 4.45 W m−2. The difference in the evaporation rate globally is on the order of 4% of the total ocean–atmosphere evaporation. Although the instantaneous, year-to-year, and seasonal fluctuations in various locations can be substantial, the global average differs by less than 0.1 W m−2 throughout the entire 10-yr time period. A global heat budget that uses atmospheric datasets containing diurnal variability but a sea surface temperature that has removed this signal may be underestimating the flux to the atmosphere by a fairly constant value.
    Description: We acknowledge, with pleasure, NASA Physical Oceanography program support and the support of the NOAA Climate Data Records program. A. Bogdanoff was also supported by the NASA Graduate Student Researchers Program and the Department of Defense through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program.
    Description: 2013-10-15
    Keywords: Air-sea interaction ; Heat budgets/fluxes ; Moisture/moisture budget ; Surface fluxes ; Surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 1685–1701, doi:10.1175/JCLI-D-12-00267.1.
    Description: The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.
    Description: The authors acknowledge the Red Sea Research Center (RSRC) at King Abdullah University for Science and Technology (KAUST) for kindly sponsoring this study. Amy Bower was supported by Awards USA 00002, KSA 00011, and KSA 00011/02 made by KAUST to the Woods Hole Oceanographic Institution.
    Description: 2013-09-01
    Keywords: Extreme events ; Air-sea interaction ; Forcing ; Surface fluxes ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...