ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • AGU
  • American Meteorological Society
  • Institut für Meereskunde
  • MDPI Publishing
  • Univ. Köln
  • 2010-2014  (7)
  • 2012  (7)
Collection
Years
  • 2010-2014  (7)
Year
  • 1
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 91 (B12). pp. 12711-12721.
    Publication Date: 2020-07-23
    Description: Four major NE trending postglacial volcanic and tectonic fissure swarms (volcanic systems) occur on the Reykjanes Peninsula, and the westernmost three are the main subject of this paper. Two main types of basaltic volcanoes are associated with these systems: shields of picrite and olivine tholeiite and tholeiite fissures. The average volume of 26 shields is 1.11 km3, and the total production is 29 km3, whereas the corresponding figures for lavas from 101 volcanic fissures are 0.11 km3 and 11 km3. The tectonic fractures are either tension fractures or normal faults of widths up to 20 m, throws up to 10 m, and lengths up to several kilometers. The volcanism and tectonics can be explained by magmatic pressure changes in ellipsoidal magma reservoirs located beneath the fissure swarms. A magmatic pressure increase of the order of 10 MPa is found to be sufficient for an excess uplift of the order of several meters, which is all that is needed to account for the fractures and measured dilation in the fissure swarms. It is concluded that most shield volcanoes, in particular the picrite shields and the large olivine tholeiite shields, formed during the early postglacial period and that their formation was facilitated by the stress field generated as a result of rapid uplift and bending of the crust above the reservoirs. Since that time the reservoirs have become independent systems, the volcanism has been confined to fissures, and the production rate has decreased significantly. During typical fissure eruptions (0.015 km3), only the uppermost several hundred meters of the source reservoir, depending on its magma content, supply magma to the eruption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-23
    Description: The Denmark Strait overflow provides about half of the total dense water overflow from the Nordic Seas into the North Atlantic Ocean. The velocity of the overflow has been monitored in the Strait with two moored Acoustic Doppler Current Profilers since 1996 with several interruptions due to mooring losses or instrument failure. So far, overflow transports were only calculated when data from both moorings were available. In this work, we introduce a linear model to fill gaps in the time series when data from only one instrument is available. The mean overflow transport is 3.4 Sv and exhibits a variance of 2.0 Sv2. No significant trend was detected in the time series. The highest variability in the transport is associated with the passage of mesoscale eddies with time scales of 2–10 days (associated with a variance of 1.5 Sv2). Seasonal variability is weak and explains less than 5% of the variance in all time series, which is in contrast to the strong seasonal cycle found in high resolution model simulations. Interannual variability is on the order of 10% of the mean. A relation to atmospheric forcing such as the local wind stress curl, as well as to larger scale phenomena, e.g. the North Atlantic Oscillation, is not detected. Since 2005 data from moored temperature, conductivity and pressure recorders have been available as well, monitoring the hydrographic variability at the bottom of Denmark Strait. In recent years the temperature time series of the Denmark Strait overflow revealed a cooling, while the salinity stayed nearly constant.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Oceans, 117 (C8).
    Publication Date: 2020-07-23
    Description: Large-scale budget calculations and numerical model process studies suggest that lateral eddy heat fluxes have an important cooling effect on the Norwegian Atlantic Current (NwAC) as it flows through the Nordic Seas. But observational estimates of such fluxes have been lacking. Here, wintertime surface eddy heat fluxes in the eastern Nordic Seas are estimated from surface drifter data, satellite data and an eddy-permitting numerical model. Maps of the eddy heat flux divergence suggest advective cooling along the path of the NwAC. Integrating the flux divergence over temperature classes yields consistent estimates for the three data sets; the waters warmer than about 6°C are cooled while the cooler waters are warmed. Similar integrations over bottom depth classes show that regions shallower than about 2000 m are cooled while deeper regions are warmed. Finally, integrating the flux divergence along the core of the NwAC suggests that the highest eddy-induced heat loss at the surface is along the steepest part of the continental slope, east of the Lofoten Basin. The model fields indicate that cooling of the current by lateral eddy fluxes is comparable to or larger than the local heat loss to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-23
    Description: On 12 September 2007, an Mw8.4 earthquake occurred within the southern section of the Mentawai segment of the Sumatra subduction zone, where the subduction thrust had previously ruptured in 1833 and 1797. Traveltime data obtained from a temporary local seismic network, deployed between December 2007 and October 2008 to record the aftershocks of the 2007 event, was used to determine two-dimensional (2-D) and three-dimensional (3-D) velocity models of the Mentawai segment. The seismicity distribution reveals significant activity along the subduction interface and within two clusters in the overriding plate either side of the forearc basin. The downgoing slab is clearly distinguished by a dipping region of highVp (8.0 km/s), which can be a traced to ∼50 km depth, with an increased Vp/Vs ratio (1.75 to 1.90) beneath the islands and the western side of the forearc basin, suggesting hydrated oceanic crust. Above the slab, a shallow continental Moho of less than 30 km depth can be inferred, suggesting that the intersection of the continental mantle with the subducting slab is much shallower than the downdip limit of the seismogenic zone despite localized serpentinization being present at the toe of the mantle wedge. The outer arc islands are characterized by low Vp (4.5–5.8 km/s) and high Vp/Vs (greater than 2.0), suggesting that they consist of fluid saturated sediments. The very low rigidity of the outer forearc contributed to the slow rupture of the Mw 7.7 Mentawai tsunami earthquake on 25 October 2010.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-23
    Description: The spatial distribution of some major and trace element and isotopic characteristics of backarc Plio-Quaternary basaltic to high-Mg andesitic (51% to 58% SiO2) lavas in the southern Puna (24°S to 27°S) of the Central Andean Volcanic Zone (CVZ) reflect varying continental lithospheric thickness and the thermal state of the underlying mantle wedge and subducting plate. These lavas erupted from small cones and fissures associated with faults related to a change in the regional stress system in the southern Puna at ≈ 2 to 3 Ma. Three geochemical groups are recognized: (1) a relatively high volume intraplate group (high K; La/Ta ratio 〈25) that occurs over a thin continental lithosphere above a gap in the modern seismic zone and represents the highest percentage of mantle partial melt, (2) an intermediate volume, high-K calc-alkaline group ( La/Ta ratio 〉25) that occurs over intermediate thickness lithosphere on the margins of the seismic gap and behind the main CVZ and represents an intermediate percentage of mantle partial melt, and (3) a small-volume shoshonitic group (very high K) that occurs over relatively thick continental lithosphere in the northeast Puna and Altiplano and represents a very small percentage of mantle partial melt. Mantle-generated characteristics of these lavas are partially overprinted by mixing with melts of the overlying thickened crust as shown by the presence of quartz and feldspar xenocrysts, negative Eu anomalies (Eu/Eu 〈 0.90; most 〈 0.80), and radiogenic Sr (〉 0.7055) and Pb and nonradiogenic Nd ( εNd 〈 −0.4) isotopic ratios. Mixing calculations show that the lavas generally contain more than 20% to 25% crustal melt. The eruption of the intraplate group mafic lavas, the change in regional stress orientation, and the high elevation of the southern Puna are suggested to be the result of the late Pliocene mechanical delamination of a block (or blocks) of continental lithosphere (mantle and possibly lowermost crust). The loss of this lithosphere resulted in an influx of asthenosphere that caused heating of the subducting slab and yielded intraplate basic magmas that produced extensive melting at the base of the thickened crust. Heating of the subducting slab led to formation of the seismic gap and trenchward depletion of the slab component. Backarc calc-alkaline group lavas erupted on the margins of this delaminated block, whereas shoshonitic group lavas erupted over a zone of relatively thick nondelaminated lithosphere to the north.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 86 (B11). pp. 10734-10752.
    Publication Date: 2020-07-23
    Description: New charts of bathymetry, acoustic character, and sediment distribution describe the Hess Rise, a large oceanic plateau in the central north Pacific. Discrete physiographic provinces on the Hess Rise are the High Plateau, shallower than 3900 m, trending N30°W; the Northeastern Flank, a smooth, gentle slope gradually increasing in depth to the northeast; the Woollard Abyssal Plain, extending farther to the northeast; the Volcanic Province with its high peaks and ridges along the southern margin of the Hess Rise; the Mendocino Fracture Zone to the south, expressed by broad, planar seafloor regions bordered by ridges and scarps; the Western Steps, formed by structural benches on the western side of the Rise; and the Emperor Deep, between the rise and the Emperor Seamounts. Five types of acoustic units have been mapped and interpreted: a transparent layer, predominantly of biosiliceous pelagic clay; a stratified layer, predominantly of nannofossil ooze; a diffuse layer of debris flows that seem to have originated mostly in the Volcanic Province; an opaque horizon commonly formed of volcaniclastic sediments that are usually found on the seafloor of the Mendocino Fracture Zone; and a hyperbolic horizon, indicating outcrops of igneous rock. The pronounced effect of bottom currents on the present-day environment of deposition in the Hess Rise is evidenced by the presence of the opaque horizon, which is interpreted as an erosion surface, and by current moating, abrupt thinning of surface layers and truncation of subbottom reflectors. The widespread erosion on the seafloor of the Mendocino Fracture Zone is attributed to the flow of Antarctic bottom water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU
    In:  Journal of Geophysical Research: Solid Earth, 100 (B5). pp. 8115-8131.
    Publication Date: 2020-07-23
    Description: We present a conceptual model of fluid circulation in a ridge flank hydrothermal system, the Mariana Mounds. The model is based on chemical data from pore waters extracted from piston cores and from push cores collected by deep‐sea research vessel Alvin in small, meter‐sized mounds situated on a local topographic high. These mounds are located within a region of heat flow exceeding that calculated from a conductive model and are zones of strong pore water upflow. We have interpreted the chemical data with time‐dependent transport‐reaction models to estimate pore water velocities. In the mounds themselves pore water velocities reach several meters per year to kilometers per year. Within about 100 m from these zones of focused upflow velocities decrease to several centimeters per year up to tens of centimeters per year. A larger area of low heat flow surrounds these heat flow and topographic highs, with upwelling pore water velocities less than 2 cm/yr. In some nearby cores, downwelling of bottom seawater is evident but at speeds less than 2 cm/yr. Downwelling through the sediments appears to be a minor source of seawater recharge to the basaltic basement. We conclude that the principal source of seawater recharge to basement is where basement outcrops exist, most likely a scarp about 2–4 km to the east and southeast of the study area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...