ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
  • Springer  (3)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • International Union of Crystallography
  • 2005-2009  (3)
  • 1950-1954
  • 2009  (3)
Collection
Years
  • 2005-2009  (3)
  • 1950-1954
Year
  • 1
    Publication Date: 2017-04-04
    Description: New Sr and Nd isotope data for whole rocks, glasses and minerals are combined to reconstruct the nature and origin of mixing end-members of the 200 km3 trachytic to phonolitic Campanian Ignimbrite (Campi Flegrei, Italy) magmatic system. The least-evolved magmatic end-member shows equilibrium between host glass and the majority of the phenocrysts and is less radiogenic in Sr and Nd than the most-evolved magma. On the contrary, only the Fe-rich pyroxene from the most-evolved erupted magma is in equilibrium with the matrix glass, while all other minerals are in isotopic disequilibrium. These magmas mixed prior to and during the Campanian Ignimbrite eruption and minerals were freely exchanged between the magma batches. Combining the results of the geochemical investigations on magma end-members with geophysical and geological data, we develop the following scenario. In stage 1, a parental, less differentiated magma rose into the middle crust, and evolved through combined crustal assimilation and crystal fractionation. In stage 2, the differentiated magma rose to shallower depth, fed the pre-Campanian Ignimbrite activity and evolved by further open-system processes into the most-evolved and most-radiogenic Campanian Ignimbrite end-member magma. In stage 3, new trachytic magma, isotopically distinct from the pre-Campanian Ignimbrite magmas, rose from ca. 6 km to shallower depth, recharged the most-evolved pre-Campanian Ignimbrite magma chamber, and formed the large and stratified Campanian Ignimbrite magmatic system. During the course of the Campanian Ignimbrite eruption, the two layers were tapped separately and/or simultaneously, and gave rise to the range of chemical and isotopic values displayed by the Campanian Ignimbrite pumices, glasses and minerals.
    Description: Published
    Description: 285-300
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campanian Ignimbrite ; Radiogenic isotopes ; Mixing process ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: National seismic risk maps are an important risk mitigation tool as they can be used for the prioritization of regions within a country where retrofitting of the building stock or other risk mitigation measures should take place. The production of a seismic risk map involves the convolution of seismic hazard data, vulnerability predictions for the building stock and exposure data. The seismic risk maps produced in Italy over the past 10 years are compared in this paper with recent proposals for seismic risk maps based on state-of-the-art seismic hazard data and mechanics-based vulnerability assessment procedures. The aim of the paper is to open the discussion for the way in which future seismic risk maps could be produced, making use of the most up-to-date information in the fields of seismic hazard evaluation and vulnerability assessment.
    Description: Italian Ministry of Research and Higher Education (MIUR—Ministero dell’Università e della Ricerca) through the financing of the project AIRPLANE (Advancing Interdisciplinary Research PLAtform on volcanoes aNd Earthquakes)
    Description: In press
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic risk ; Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.
    Description: Published
    Description: 781–793
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry ; Isotopic compositions ; Magma feeding system ; Magma mixing ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...