ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electric eel  (1)
  • Geminigera cryophila  (1)
  • Gene ontology  (1)
  • Health index  (1)
  • BioMed Central  (3)
  • 2015-2019  (3)
  • 1985-1989
  • 2015  (3)
  • 1989
Collection
Keywords
Publisher
  • BioMed Central  (3)
Years
  • 2015-2019  (3)
  • 1985-1989
Year
  • 2015  (3)
  • 1989
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 16 (2015): 805, doi:10.1186/s12864-015-2052-9.
    Description: Organelle retention is a form of mixotrophy that allows organisms to reap metabolic benefits similar to those of photoautotrophs through capture of algal prey and sequestration of their plastids. Mesodinium rubrum is an abundant and broadly distributed photosynthetic marine ciliate that steals organelles from cryptophyte algae, such as Geminigera cryophila. M. rubrum is unique from most other acquired phototrophs because it also steals a functional nucleus that facilitates genetic control of sequestered plastids and other organelles. We analyzed changes in G. cryophila nuclear gene expression and transcript abundance after its incorporation into the cellular architecture of M. rubrum as an initial step towards understanding this complex system. We compared Illumina-generated transcriptomes of the cryptophyte Geminigera cryophila as a free-living cell and as a sequestered nucleus in M. rubrum to identify changes in protein abundance and gene expression. After KEGG annotation, proteins were clustered by functional categories, which were evaluated for over- or under-representation in the sequestered nucleus. Similarly, coding sequences were grouped by KEGG categories/pathways, which were then evaluated for over- or under-expression via read count strategies. At the time of sampling, the global transcriptome of M. rubrum was dominated (~58–62 %) by transcription from its stolen nucleus. A comparison of transcriptomes from free-living G. cryophila cells to those of the sequestered nucleus revealed a decrease in gene expression and transcript abundance for most functional protein categories within the ciliate. However, genes coding for proteins involved in photosynthesis, oxidative stress reduction, and several other metabolic pathways revealed striking exceptions to this general decline. Major changes in G. cryophila transcript expression after sequestration by M. rubrum and the ciliate’s success as a photoautotroph imply some level of control or gene regulation by the ciliate and at the very least reflect a degree of coordination between host and foreign organelles. Intriguingly, cryptophyte genes involved in protein transport are significantly under-expressed in M. rubrum, implicating a role for the ciliate’s endomembrane system in targeting cryptophyte proteins to plastid complexes. Collectively, this initial portrait of an acquired transcriptome within a dynamic and ecologically successful ciliate highlights the remarkable cellular and metabolic chimerism of this system.
    Description: The authors wish to acknowledge the support of NSF award 1354773.
    Keywords: Mesodinium rubrum ; Geminigera cryophila ; Karyoklepty ; Acquired phototrophy ; Transcriptome ; Differential gene expression ; Chimeric metabolism ; Organelle retention ; Mixotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-18
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in GigaScience 4 (2015): 27, doi:10.1186/s13742-015-0066-5.
    Description: Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
    Description: This work was supported by the Micro B3 project, which is funded from the European Union’s Seventh Framework Programme (FP7; Joint Call OCEAN.2011‐2: Marine microbial diversity – new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no 287589.
    Keywords: Ocean sampling day ; OSD ; Biodiversity ; Genomics ; Health index ; Bacteria ; Microorganism ; Metagenomics ; Marine ; Micro B3 ; Standards
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 16 (2015): 243, doi:10.1186/s12864-015-1288-8.
    Description: With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs’ electric organ, main electric organ, and Hunter’s electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here.
    Description: This project has been funded in part by NSF Grant MCB No. 1144012 (MRS), NSF Grant DEB No. 0741450 (JSA), NSF Grant CNS No. 1248109 (GAU), W.M. Keck Foundation Distinguished Young Scholars in Medical Research (CDN), NIH R01 GM084879 (HZ), NIH grant R01 GM088670 (RA), NIH grant 1SC1GM092297-01A1 (GAU), the Morgridge Graduate Fellowship (JDV and LLT), University of Wisconsin Genetics NIH Graduate Training Grant (LLT); and the Cornell University Center for Vertebrate Genomics (JRG).
    Keywords: Electric eel ; Genome ; Transcriptome ; miRNA ; Gene ontology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...