ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Springer  (3)
  • American Association for the Advancement of Science (AAAS)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • Inter Research
  • 1990-1994
  • 1975-1979  (4)
  • 1960-1964
  • 1978  (4)
Collection
Years
  • 1990-1994
  • 1975-1979  (4)
  • 1960-1964
Year
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  Berlin, 254 pp., Springer, vol. 15, no. Publ. No. 12, pp. 585, (ISBN 1-85233-708-7)
    Publication Date: 1978
    Keywords: Laboratory measurements ; Rock mechanics ; Textbook of geophysics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-17
    Description: Laboratory data are presented on the distribution of cobalt between pyrite, chalcopyrite, and pyrrhotite. Pyrite-type deposits are used to show that the results enable one to estimate the temperatures of formation for copper mineralization. Recent years have seen extensive studies on element distributions between coexisting minerals in order to define mineralogical thermometers and barometers [1-3]. Detailed studies have been made of the thermodynamic basis of such distributions, as well as of the factors that influence component levels in coexisting minerals. Here we will not consider a theoretical analysis of the distribution, but we do note that trace elements appear in pyrite and chalcopyrite only below the 1 wt. % level, while the compositions of the minerals deviate only slightly from stoichiometric, with temperature the main parameter that controls the distribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Data presented and discussed here were collected continuously during April/May 1975 in the Bornholm Basin of the Baltic Sea. Sedimentation rates of particulate matter were recorded with 5 multisample sediment traps from different depths in the water column at 2 positions 170 km apart. Current meter data collected during the same period and depths indicated that the positions remained hydrographically distinct during the investigation. Particulate matter from the euphotic zone including diatom cells formed the bulk of the material collected by all traps. This flux of organic particles to the bottom was unimpeded by the strong density stratification present in the water column. The upper traps always collected less material than lower ones. This paradox has been ascribed to diminishing current speeds with depth, concomitant with an increase in sinking rates of phytoplankton and phytodetritus. Both factors influence the sampling efficiency of sediment traps, which are thought to have underestimated actual sedimentation rates here. A time lag of 2 to 3 weeks in bloom development seemed responsible for the characteristic differences between the two positions. The phase of major sedimentation at one position covered about 18 days, and a distinct sequence in the composition of the material collected by the 6 glasses of each trap indicated phases of a progressively deteriorating phytoplankton population in the water column contributing the particulate material. A total of 6.2 g C m-2 in 34 days was recorded at this station. Apart from a trap situated in an oxygen deficient layer which collected 0.44 g C m-2 of zooplankton corpses, zooplankton mortality was overestimated by the traps. Large-scale sedimencation of “fresh” organic matter produced by the spring bloom is probably a regular feature in areas with low over-wintering zooplankton populations and, as such, possibly has a direct stimulatory effect on growth and reproduction of the benthos.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 63 (2). pp. 366-377.
    Publication Date: 2020-07-16
    Description: In studies in underwater acoustics,geophysics, and geology, the relations between soundvelocity and density allow assignment of approximate values of density to sediment and rock layers of the earth’s crust and mantle, given a seismicmeasurement of velocity. In the past, single curves of velocity versus density represented all sediment and rock types. A large amount of recent data from the Deep Sea Drilling Project (DSDP), and reflection and refraction measurements of soundvelocity, allow construction of separate velocity–density curves for the principal marine sediment and rock types. The paper uses carefully selected data from laboratory and i n s i t umeasurements to present empirical sound velocity–density relations (in the form of regression curves and equations) in terrigenous silt clays, turbidites, and shale, in calcareous materials (sediments, chalk, and limestone), and in siliceous materials (sediments, porcelanite, and chert); a published curve for DSDP basalts is included. Speculative curves are presented for composite sections of basalt and sediments. These velocity–density relations, with seismicmeasurements of velocity, should be useful in assigning approximate densities to sea‐floor sediment and rock layers for studies in marine geophysics, and in forming geoacoustic models of the sea floor for underwater acoustic studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...