ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1,125)
  • General Chemistry  (1,124)
  • Aerodynamics
  • Limnology
  • 2010-2014  (145)
  • 1985-1989  (1,929)
  • 1955-1959
  • 1945-1949  (352)
  • 2010  (145)
  • 1986  (1,929)
  • 1949  (352)
Collection
Keywords
Publisher
Years
  • 2010-2014  (145)
  • 1985-1989  (1,929)
  • 1955-1959
  • 1945-1949  (352)
Year
  • 1
    Publication Date: 2018-06-06
    Description: Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 473-494; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: In assessing the results please recall that the Mach number regimes and model geometries differ considerably. Selection of the radius of curvature at the 10% chord location is consistent but arbitrary, although it does seem representative for most blades and gives a good fit for the results. Measured spanwise wavelengths of the periodic vortex arrays on blading are predicted well by the Kestin and Wood theory. If this behavior is at all common it could have implications for turbine aerodynamic and blade cooling design. The outcome is to establish that organized streamwise vorticity may occur more frequently on convex surfaces, such as turbine blade suction surfaces, than hitherto appreciated. Investigations and predictions of flow behavior should be extended to encompass that possibility.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 61-92; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -〉 higher pressure ratio. b) controls boundary layer separation -〉 increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 417-434; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Effects of roughness in boundary layers have to be addressed. Until adverse pressure gradient effects are understood, roughness will not significantly drive design. Mechanisms responsible for separation not understood. Effects on Zero Pressure Gradient boundary layers (shear stress). Effects on separation in pressure gradient (prediction of separation). Effect on scalar transport (heat transfer) not understood. Model for skin friction needed in simulations - first grid point likely to be in buffer layer. Definition of roughness important for useful experiments. A lot of validation experiments will be needed. How to get to ks for roughness of engineering interest? - depends on wavelength height, etc. for engineering interest? Re-discovering the wheel should be avoided: existing knowledge (theoretical and experimental) should find its way into the engineering models. It is a task of the industry to filter out the existing information in the literature for results relevant to its application, being external or internal.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 589-600; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-28
    Description: Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver--flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.
    Keywords: Aerodynamics
    Type: Aerothermodynamic Design, Review on Ground Testing and CFD; 11-1 - 11-44; RTO-EN-AVT-186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-28
    Description: The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.
    Keywords: Aerodynamics
    Type: Aerothermodynamic Design, Review on Ground Testing and CFD; 4-1 - 4-24; RTO-EN-AVT-186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Time varying control of CL is necessary for integrating AFC and Flight Control (Biasing allows for +/- changes in lift) Time delays associated with actuation are long (APPROX.5.8 c/U) and must be included in controllers. Convolution of input signal with single pulse kernel gives reasonable prediction of lift response.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 363-374; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 93-116; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: Exploiting instabilities rather than forcing the flow is advantageous. Simple 2D concepts may not always work. Nonlinear effects may result in first order effect. Interaction between spanwise and streamwise vortices may have a paramount effect on the mean flow, but this interaction may not always be beneficial.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 1-36; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity).
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 585-587; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 349-361; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Issues & Topics Discussed: a) Aviation Week reported shortfall In LPT efficiency due to the application of "high lift airfoils". b) Progress in the design technologies in LPTs during the last 20 years: 1) Application of RANS based CFD codes. 2) Integration of recent experimental data and modeling of LPT airfoil specific flows into design methods. c) Opportunities to further enhance LPT efficiency for commercial aviation and military transport application and to impact emissions, noise, weight & cost.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 601-604; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: The main objective is to develop effective control strategies for separation control of an airfoil with a single hinge flap. The specific objectives are: Develop an active control architecture for flow control around an airfoil with flap. Design, fabricate, a wind tunnel test of a high lift wing (with flap) with integrated actuators and sensors. Design, development and fabrication of synthetic jet actuators. Develop appropriate control strategy for application to the airfoil. Wind tunnel testing of the high lift wing at various angles of attack and flap positions with closed loop control.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 151-180; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: New ideas are forthcoming to break existing bottlenecks in using CFD during design. CAD-based automated grid generation. Multi-disciplinary use of embedded, overset grids to eliminate complex gridding problems. Use of time-averaged detached-eddy simulations as norm instead of "steady" RANS to include effects of self-excited unsteadiness. Combined GPU/Core parallel computing to provide over an order of magnitude increase in performance/price ratio. Gas-turbine applications are shown here but these ideas can be used for other Air Force, Navy, and NASA applications.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 43-60; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: We finally go back to the four swirl cases and see how the flow responds to either forcing m = -1 or m = -2. On the left we see the flow forced at m = -1 We see that the PVC locks onto the applied forcing also for lower swirl number causing this high TKE at the jet center. The amplification of this instability causes VB to occur at a lower swirl number. The opposite can be seen when forcing the flow at m=-2 which is basically growing in the outer shear layer causing VB to move downstream . There is no energy at the center of the vortex showing that the precessing has been damped. The mean flow is most altered at the swirl numbers were VB is unstable.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 557-583; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: Effects of variable-frequency forcing. Relation to linear theory. Effects of three-dimensional forcing. Relation between instability mechanisms. Future work includes open-loop control and feedback control.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 531-556; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 495-507; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Let s start with the report - as you know - when we are talking about flow control it is a multi-disciplinary type of work. So it involves many people and disciplines. This group first discussed the important issues associated with flow control. As you start doing flow control what are the issues to which you really have to start paying attention? That is the first part I am going to present. Then in the second part I will present some challenges - problems that we should really be looking at. So as far as the issues - if you want to control a flow, you really need to understand the flow physics, because anything that you do comes from the flow physics. The design of the controllers, your decisions on the actuators, sensors, reduced order modeling and all of that, would be helped if you understand flow physics. And you have to have a specific objective - what exactly are you controlling? Are you trying to reduce drag, eliminate separation, reduce noise, enhance mixing? So you have to have very specific control objectives. From all the talks we have seen here actuation is extremely important and it is very problem specific. It depends on what problem you are dealing with so you have to design and build actuators for that specific problem. Sensors obviously are very important, especially when you are dealing with feedback control. Consensus was that when you dealing with flow control, you must take an integrated approach; from the beginning you have to take into account every aspect of it and even maybe to modify your experiment, your geometry, to go along with the actuation, sensors and control models. Development of tools is very important in this multi-disciplinary problem. The tools include CFD, reduced order modeling, controller design, understanding and utilizing the instabilities of the flow, etc. So, in order to have success in flow control, we really need to develop these tools.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 623-638; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: HPT blade unsteadiness in the presence of a downstream vane consistent with contra-rotation is characterized by strong interaction at the first harmonic of downstream vane passing. E An existing stage-and-one-half transonic turbine rig design was used as a baseline to investigate means of reducing such a blade-vane interaction. E Methods assessed included: Aerodynamic shaping of HPT blades 3D stacking of the downstream vane Steady pressure-side blowing E Of the methods assessed, a combination of vane bowing and steady pressure-side blowing produced the most favorable result. E Transonic turbine experiments are planned to assess predictive accuracy for the baseline turbine and any design improvements.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 399-416; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: Objectives: Measure the flow structure and turbulence within a Naval, axial waterjet pump. Create a database for benchmarking and validation of parallel computational efforts. Address flow and turbulence modeling issues that are unique to this complex environment. Measure and model flow phenomena affecting cavitation within the pump and its effect on pump performance. This presentation focuses on cavitation phenomena and associated flow structure in the tip region of a rotor blade.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 117-133; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: Structural skeleton of high Reynolds number flow gives insight into smooth and rough walls. (modeling implications not yet clear) Dynamic roughness as a model of "designer" roughness: a) Impose length scale(s) and dominant frequency. b) Irregular roughness well-represented by first "few" POD modes (Christensen, 2009). Experiments and simple model demonstrate: a) Harmonics associated with forcing (and w) important. b) Change to the mean profile (skin friction).
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 259-271; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Methodology similar to that used for our closed-loop control of Separation over NACA 0012 Airfoil (Pinier et al, AIAA Journal 2007) Synthetic Jet Actuators, Miniature Pressure Transducers Split POD with and without Actuations Flow state estimation from Pressure signature
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 509-529; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 181-204; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Open loop edge blowing was demonstrated as an effective method for reducing the broad band and tonal components of the fluctuating surface pressure in open cavities. Closed loop has been successfully applied to low Mach number open cavities. Need to push actuators that are viable for closed loop control in bandwidth and output. Need a better understanding of the effects of control on the flow through detailed measurements so better actuation strategies can be developed.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 289-303; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 135-150; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 435-472; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 375-398; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Environmental issues are a key driver. The need for better mechanisms to enable discipline hopping/crossover (materials (MEMS), control, fluids). Better sensors and actuators and better communication for these to be developed. Better understanding of the needs of the turbomachinery industry, especially in identifying where flow control can be beneficial (e.g., variable intake geometry). Challenge for flow control to be fail-safe, or to be developed for non-critical control gains (e.g., noise). more detailed information on stage through-flow behaviour (with/without control) increased use of laser interrogation (PIV, PTV, MTV).
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 605-621; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ 〉 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 305-347; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-27
    Description: In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-4219 , NF1676L-10897 , 28th AIAA Applied Aerodynamics Conference; 28 Jun. 1 Jul. 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.
    Keywords: Aerodynamics
    Type: E-17991 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
    Keywords: Aerodynamics
    Type: E-17976 , 40th AIAA Fluid Dynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: We consider a periodic array of relatively small roughness elements whose spanwise separation is of the order of the local boundary-layer thickness and construct a local asymptotic high-Reynolds-number solution that is valid in the vicinity of the roughness. The resulting flow decays on the very short streamwise length scale of the roughness, but the solution eventually becomes invalid at large downstream distances and a new solution has to be constructed in the downstream region. This latter result shows that the roughness-generated wakes can persist over very long streamwise distances, which are much longer than the distance between the roughness elements and the leading edge. Detailed numerical results are given for the far wake structure.
    Keywords: Aerodynamics
    Type: E-17987 , Journal of Fluid Mechanics; 644; 123-163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.
    Keywords: Aerodynamics
    Type: AIAA-Paper-2010-856 , E-17951 , 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.
    Keywords: Aerodynamics
    Type: E-17941 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.
    Keywords: Aerodynamics
    Type: AIAA Paper-2010-88 , E-17968 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216196 , LF99-8297 , L-19569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms. Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes. Major achievements: World-largest numerical solutions of global eigenvalue problems are routinely performed. Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results. Theoretical foundation for control of LSB flows has been laid. Global mode of LSB at the origin of observable phenomena. U-separation on semi-infinite plate. Stall cells on (stalled) airfoil. Receptivity/Sensitivity/AFC feasible (practical?) via: Adjoint EVP solution. Direct/adjoint coupling (the Crete connection). Minor effect of compressibility on global instability in the subsonic compressible regime. Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon.
    Keywords: Aerodynamics
    Type: Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; 205-257; NASA/CP-2010-216112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216195 , L-19821 , LF99-10120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-13
    Description: The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN2440 , Heli Japan 2010, AHS International Meeting on Advanced Rotorcraft Technology and Safety Operations; Nov 01, 2010 - Nov 03, 2010; Ohmiya; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-28
    Description: A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-28
    Description: The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific community, Leonardo da Vinci, George Cayley, and the Wright brothers are examples of early aviation pioneers who frequently used models during their scientific efforts to understand and develop flying machines. Progress in the technology associated with model testing in worldwide applications has firmly established model aircraft as a key element in new aerospace research and development programs. Models are now routinely used in many applications and roles, including aerodynamic data gathering in wind tunnel investigations for the analysis of full-scale aircraft designs, proof-of-concept demonstrators for radical aeronautical concepts, and problem-solving exercises for vehicles already in production. The most critical contributions of aerospace models are to provide confidence and risk reduction for new designs and to enhance the safety and efficiency of existing configurations.
    Keywords: Aerodynamics
    Type: NASA/SP-2009-575 , HQ-STI-09-157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN1565 , International Symposium on Strain-Gauge Balances; May 10, 2010; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.
    Keywords: Aerodynamics
    Type: NF1676L-9284 , 27th International Congress of the Aeronautical Sciences (ICAS); Sep 19, 2010 - Sep 24, 2010; Nice; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN1502 , American Control Conference; Jun 30, 2010 - Jul 02, 2010; Baltimore, MD
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The interest in supersonic retro-propulsion (SRP) as a means of deceleration during planetary entry increases with the desire to land high mass vehicles on Mars. Since it is difficult to obtain flight data or properly simulate this type of flow field in a wind tunnel, the use of computational fluid dynamics (CFD) becomes increasingly important, as does the need to verify the current CFD methods. This presentation will show results from structured overset grids and OVERFLOW, a Reynolds Averaged Navier-Stokes solver, obtained during the continuing CFD verification process. Flow structure, surface pressure, forces, and moments are compared to historic and modern wind tunnel data as well as to other Navier-Stokes solvers, DPLR and FUN3D. Cases include single and multiple nozzle cases from the Jarvinen and Adams experiment,i the Daso et al experiment, and a recent test in the NASA Langley Unitary Wind Tunnel (scheduled for June 2010).
    Keywords: Aerodynamics
    Type: JSC-CN-21687 , 10th Symposium on Overset Composite Grids and Solution Technology; Sep 20, 2010 - Sep 23, 2010; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Refinements have been made to a method for estimating the modal sound power levels of a ducted fan ingesting distorted inflow. By assuming that each propagating circumferential mode consists only of a single radial mode (the one with the highest cut-off ratio), circumferential mode sound power levels can be computed for a variety of inflow distortion patterns and operating speeds. Predictions from the refined theory have been compared to data from an experiment conducted in the Advanced Noise Control Fan at NASA Glenn Research Center. The inflow to the fan was distorted by inserting cylindrical rods radially into the inlet duct. The rods were placed at an axial location one rotor chord length upstream of the fan and arranged in both regular and irregular circumferential patterns. The fan was operated at 2000, 1800, and 1400 rpm. Acoustic pressure levels were measured in the fan inlet and exhaust ducts using the Rotating Rake fan mode measurement system. Far field sound pressure levels were also measured. It is shown that predicted trends in circumferential mode sound power levels closely match the experimental data for all operating speeds and distortion configurations tested. Insight gained through this work is being used to develop more advanced tools for predicting fan inflow distortion tone noise levels.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216782 , AIAA Paper 2010-223128 , E-17409 , 16th Aeroacoustics Conference; Jun 07, 2010 - Jun 09, 2010; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: A combined computational and experimental effort has been undertaken to study fuselage drag reduction on a generic, non-proprietary rotorcraft fuselage by the application of active ow control. Fuselage drag reduction is an area of research interest to both the United States and France and this area is being worked collaboratively as a task under the United States/France Memorandum of Agreement on Helicopter Aeromechanics. In the first half of this task, emphasis is placed on the US generic fuselage, the ROBIN-mod7, with the experimental work being conducted on the US side and complementary US and French CFD analysis of the baseline and controlled cases. Fuselage simulations were made using Reynolds-averaged Navier-Stokes ow solvers and with multiple turbulence models. Comparisons were made to experimental data for numerical simulations of the isolated fuselage and for the fuselage as installed in the tunnel, which includes modeling of the tunnel contraction, walls, and support fairing. The numerical simulations show that comparisons to the experimental data are in good agreement when the tunnel and model support are included. The isolated fuselage simulations compare well to each other, however, there is a positive shift in the centerline pressure when compared to the experiment. The computed flow separation locations on the rear ramp region had only slight differences with and without the tunnel walls and model support. For the simulations, the flow control slots were placed at several locations around the flow separation lines as a series of eight slots that formed a nearly continuous U-shape. Results from the numerical simulations resulted in an estimated 35% fuselage drag reduction from a steady blowing flow control configuration and a 26% drag reduction for unsteady zero-net-mass flow control configuration. Simulations with steady blowing show a delayed flow separation at the rear ramp of the fuselage that increases the surface pressure acting on the ramp, thus decreasing the overall fuselage pressure drag.
    Keywords: Aerodynamics
    Type: NF1676L-10245 , 36th European Rotorcraft Forum; Sep 07, 2010 - Sep 09, 2010; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN1071 , 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Following the successful Mach 7 flight test of the X-43A, unexpectedly low pressures were measured by the aft set of the onboard Flush Air Data Sensing System s pressure ports. These in-flight aft port readings were significantly lower below Mach 3.5 than was predicted by theory. The same lower readings were also seen in the Mach 10 flight of the X-43A and in wind-tunnel data. The pre-flight predictions were developed based on 2-dimensional wedge flow, which fails to predict some of the significant 3-dimensional flow features in this geometry at lower Mach numbers. Using Volterra s solution to the wave equation as a starting point, a three-dimensional finite wedge approximation to flow over the X-43A forebody is presented. The surface pressures from this approximation compare favorably with the measured wind tunnel and flight data at speeds of Mach 2.5 and 3.
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN1615 , DFRC-E-DAA-TN1737 , 28th AIAA Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The Orion capsule has many performance requirements for its atmospheric entry trajectory. Requirements on landing accuracy, maximum heating rate, total heat load, propellant usage, and sensed acceleration must all be satised. It is desired to define a methodology to translate the many performance requirements for an atmospheric entry trajectory into language easily understood by vehicle designers in terms of an allowable center-of-gravity box. This is possible by noting that most entry performance parameters for a capsule vehicle are mainly determined by the lift-to-drag ratio of the vehicle. However, the lift-to- drag ratio should be considered a probabilistic quantity rather than deterministic, where variations in the lift-to-drag are caused by both aerodynamic and center-of-gravity un- certainties. This paper discusses the technique used by the Orion program to define the allowable dispersions in center-of-gravity to achieve the desired entry performance while accounting for aerodynamic uncertainty.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-8061 , JSC-CN-20875 , AIAA Guidance, Navigation and Control Conference; Aug 02, 2010 - Aug 05, 2010; Toronto, ON; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: HyBoLT was a Hypersonic Boundary Layer Transition flight experiment funded by the Hypersonics Project of the Fundamental Aeronautics Program in NASA's Aeronautics Research Mission Directorate. The HyBoLT test article mounted on the top of the ALV X-1 rocket was launched from Virginia's Wallops Island on August 22, 2008. Unfortunately a problem in the rocket's flight control system caused the vehicle to veer off the designed flight course. Launch officials activated a self-destruct mechanism in the rocket's nose cone after 20 seconds into flight. This report is a closeout document about the HyBoLT flight experiment. Details are provided of the objectives and approach associated with this experimental program as well as the 20 seconds flight data acquired before the vehicle was destroyed.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216725 , L-19902 , NF1676L-11067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-12
    Description: Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216197 , L-19571 , LF99-8302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: This DVD contains 13 channels of microphone and up to 22 channels of pressure transducer data collected in September, 2009 around several buildings located at Edwards Air Force Base. These data were recorded by NASA Dryden. Not included are data taken by NASA Langley and Gulfstream. Each day's data is in a separate folder and each pass is in a file beginning with "SonicBOBS_" (for microphone data) or "SonicBOBSBB_" (for BADS and BASS data) followed by the month, day, year as two digits each, followed by the hour, minute, sec after midnight GMT. The filename time given is for the END time of the raw recording file. In the case of the microphone data, this time may be several minutes after the sonic boom, and is according to the PC's uncalibrated clock. The Matlab data files have the actual time as provided by a GPS-based IRIG-B signal recorded concurrently with the data. Microphone data is given for 5 seconds prior to 20 seconds after the sonic boom. BADS and BASS data is given for the full recording, 6 seconds for the BADS and 10 seconds for the BASS. As an example of the naming convention, file "SonicBOBS_091209154618.mat" is from September 12, 2009 at 15:46:18 GMT. Note that data taken on September 12, 2009 prior to 01:00:00 GMT was of the Space Shuttle Discovery (a sonic boom of opportunity), which was on September 11, 2009 in local Pacific Daylight Time.
    Keywords: Aerodynamics
    Type: DFRC-2020
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216344 , E-17281 , AIAA Journal of Aircraft; 47; 1; 240-254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-4373 , NF1676L-10916 , 28th AIAA Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: This document presents the development and application of unsteady aerodynamic, structural dynamic, and aeroelastic reduced-order models (ROMs) for the ascent aeroelastic analysis of the Ares I-X flight test and Ares I crew launch vehicles using the unstructured-grid, aeroelastic FUN3D computational fluid dynamics (CFD) code. The purpose of this work is to perform computationally-efficient aeroelastic response calculations that would be prohibitively expensive via computation of multiple full-order aeroelastic FUN3D solutions. These efficient aeroelastic ROM solutions provide valuable insight regarding the aeroelastic sensitivity of the vehicles to various parameters over a range of dynamic pressures.
    Keywords: Aerodynamics
    Type: NF1676L-9781 , 28th AIAA Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Recent, current, and planned NASA missions that employ blunt-body entry vehicles pose aerothermodynamic problems that challenge the state-of-the art of experimental and computational methods. The issues of boundary-layer transition and turbulent heating on the heat shield have become important in the designs of both the Mars Science Laboratory and Crew Exploration Vehicle. While considerable experience in these general areas exists, that experience is mainly derived from simple geometries; e.g. sharp-cones and flat-plates, or from lifting bodies such as the Space Shuttle Orbiter. For blunt-body vehicles, application of existing data, correlations, and comparisons is questionable because an all, or mostly, subsonic flow field is produced behind the bow shock, as compared to the supersonic (or even hypersonic) flow of other configurations. Because of the need for design and validation data for projects such as MSL and CEV, many new experimental studies have been conducted in the last decade to obtain detailed boundary-layer transition and turbulent heating data on this class of vehicle. In this paper, details of several of the test programs are reviewed. The laminar and turbulent data from these various test are shown to correlate in terms of edge-based Stanton and Reynolds number functions. Correlations are developed from the data for transition onset and turbulent heating augmentation as functions of momentum thickness Reynolds number. These correlation can be employed as engineering-level design and analysis tools.
    Keywords: Aerodynamics
    Type: NF1676L-9838 , 40th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer. Their downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using Direct Numerical Simulations (DNS) and Parabolized Stability Equations (PSE). This abstract is the last part of an extensive study of the complete transition process initiated by oblique breakdown at Mach 3. In contrast to the previous simulations, the symmetry condition in the spanwise direction is removed for the simulation presented in this abstract. By removing the symmetry condition, we are able to confirm that the flow is indeed symmetric over the entire computational domain. Asymmetric modes grow in the streamwise direction but reach only small amplitude values at the outflow. Furthermore, this abstract discusses new time-averaged data from our previous simulation CASE 3 and compares PSE data obtained from NASA's LASTRAC code to DNS results.
    Keywords: Aerodynamics
    Type: NF1676L-9738 , 40th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.
    Keywords: Aerodynamics
    Type: DFRC-1062 , DFRC-E-DAA-TN1838 , 2010 American ControI Conference - ACC2010; Jun 30, 2010 - Jul 02, 2010; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Hypersonic flows over circular cones constitute one of the most important generic configurations for fundamental aerodynamic and aerothermodynamic studies. In this paper, numerical computations are carried out for Mach 6 flows over a 7-degree half-angle cone with two different flow incidence angles and a compression cone with a large concave curvature. Instability wave and transition-related flow physics are investigated using a series of advanced stability methods ranging from conventional linear stability theory (LST) and a higher-fidelity linear and nonlinear parabolized stability equations (PSE), to the 2D eigenvalue analysis based on partial differential equations. Computed N factor distribution pertinent to various instability mechanisms over the cone surface provides initial assessments of possible transition fronts and a guide to corresponding disturbance characteristics such as frequency and azimuthal wave numbers. It is also shown that strong secondary instability that eventually leads to transition to turbulence can be simulated very efficiently using a combination of advanced stability methods described above.
    Keywords: Aerodynamics
    Type: NF1676L-9733 , 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.
    Keywords: Aerodynamics
    Type: NF1676L-10983 , 1st AIAA CFD High-Lift Prediction Workshop (HiLIFTPW-1); Jun 26, 2010 - Jun 27, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The stability and receptivity of a three-dimensional hypersonic boundary layer over a 7deg half-angle straight cone at an angle of attack of 6deg is numerically investigated at a freestream Mach number of 6.0 and a Reynolds number of 10.4x10(exp 6)/m. The generation and evolution of stationary crossflow vortices are also investigated by performing simulations with three-dimensional roughness elements located on the surface of the cone. The flow fields with and without the roughness elements are obtained by solving the full Navier- Stokes equations in cylindrical coordinates using a fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for spatial discretization and a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for temporal integration. Stability computations produced azimuthal wavenumbers in the range of m approx. 20-50 for the most amplified traveling disturbances and in the range of m approx.30-70 for the stationary disturbances. The frequency of the unstable second-mode ranges from 400 kHz to 900 kHz along the windward ray. The N-Factor computations predicted transition would occur more forward on the sides of the cone as compared to the transition fronts near the windward and the leeward rays. The simulations also show the crossflow vortices originating from the nose region propagate towards the leeward ray. No perturbations were observed toward the windward half of the cone.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-4718 , NF1676L-10919 , 40th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-4820 , NF1676L-9793 , 28th AIAA Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: The Wind-US computational fluid dynamics (CFD) flow solver was used to simulate dual-mode direct-connect ramjet/scramjet engine flowpath tests conducted in the University of Virginia (UVa) Supersonic Combustion Facility (SCF). The objective was to develop a computational capability within Wind-US to aid current hypersonic research and provide insight to flow as well as chemistry details that are not resolved by instruments available. Computational results are compared with experimental data to validate the accuracy of the numerical modeling. These results include two fuel-off non-reacting and eight fuel-on reacting cases with different equivalence ratios, split between one set with a clean (non-vitiated) air supply and the other set with a vitiated air supply (12 percent H2O vapor). The Peters and Rogg hydrogen-air chemical kinetics model was selected for the scramjet simulations. A limited sensitivity study was done to investigate the choice of turbulence model and inviscid flux scheme and led to the selection of the k-epsilon model and Harten, Lax and van Leer (for contact waves) (HLLC) scheme for general use. Simulation results show reasonably good agreement with experimental data and the overall vitiation effects were captured.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216756 , AIAA Paper 2010-1127 , E-17332 , 48th Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-4889 , NF1676L-9766 , 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.
    Keywords: Aerodynamics
    Type: NF1676L ID 10282 , RTO-EN-AVT-186 , Aerothermodynamic Design, Review on Ground Testing and CFD; Mar 29, 2010 - Apr 01, 2010; Brussels; Belgium
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-0246 , LF99-9093 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.
    Keywords: Aerodynamics
    Type: GT2010-22851 , E-17250 , ASME TurboExpo Conference 2010: Power for Land, Sea and Air; Jun 14, 2010 - Jun 18, 2010; Glasgow; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: A fast but accurate approach is described for the determination of the aero-acoustic properties of a large cavity at subsonic flight speeds. This approach employs a detachededdy simulation model in the free-shear layer at the cavity opening and the surrounding boundary layer, but assumes inviscid flow in the cavity and in the far field. The reduced gridding requirements in the cavity, in particular, lead to dramatic improvements in the time required for the computation. Results of these computations are validated against wind-tunnel data. This approach will permit significantly more flight test points to be evaluated computationally in support of the Stratospheric Observatory For Infrared Astronomy flight-test program being carried out at NASA s Dryden Flight Research Center.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-1202 , LF99-9946 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-454 , LF99-9994 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The problem of crossflow receptivity is considered in the context of a canonical 3D boundary layer (viz., the swept Hiemenz boundary layer) and a swept airfoil used recently in the SWIFT flight experiment performed at Texas A&M University. First, Hiemenz flow is used to analyze localized receptivity due to a spanwise periodic array of small amplitude roughness elements, with the goal of quantifying the effects of array size and location. Excitation of crossflow modes via nonlocalized but deterministic distribution of surface nonuniformity is also considered and contrasted with roughness induced acoustic excitation of Tollmien-Schlichting waves. Finally, roughness measurements on the SWIFT model are used to model the effects of random, spatially distributed roughness of sufficiently small amplitude with the eventual goal of enabling predictions of initial crossflow disturbance amplitudes as functions of surface roughness parameters.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-378 , LF99-8951 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-1506 , LF99-8940 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-1065 , LF99-8928 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on the NASA F-15B airplane, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. The first experiment that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new approach to variable geometry for high-speed inlets, and 2) flight validation of channeled inlet performance prediction by complex computational fluid dynamics codes. The inlet itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in- let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range of flight conditions. This study is particularly concerned with the starting characteristics of the inlet. Computational fluid dynamics studies were shown to align well with analytical predictions, showing the inlet to remain unstarted as designed at the primary test point of Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure loss, are assessed using the flight test geometry.
    Keywords: Aerodynamics
    Type: DFRC-1016 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States|New Horizons Forum and Aerospace Exhibition; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: A modified Doppler Global Velocimeter (DGV) was developed to measure the velocity within the boundary layer above a flat plate in a supersonic flow. Classic laser velocimetry (LV) approaches could not be used since the model surface was composed of a glass-ceramic insulator in support of heat-transfer measurements. Since surface flare limited the use of external LV techniques and windows placed in the model would change the heat transfer characteristics of the flat plate, a novel approach was developed. The input laser beam was divided into nine equal power beams and each transmitted through optical fibers to a small cavity within the model. The beams were then directed through 1.6-mm diameter orifices to form a series of orthogonal beams emitted from the model and aligned with the tunnel centerline to approximate a laser light sheet. Scattered light from 0.1-micron diameter water condensation ice crystals was collected by four 5-mm diameter lenses and transmitted by their respective optical fiber bundles to terminate at the image plane of a standard two-camera DGV receiver. Flow measurements were made over a range from 0.5-mm above the surface to the freestream at Mach 3.51 in steady state and heat pulse injected flows. This technique provides a unique option for measuring boundary layers in supersonic flows where seeding the flow is problematic or where the experimental apparatus does not provide the optical access required by other techniques.
    Keywords: Aerodynamics
    Type: NF1676L-10718 , 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics; Jul 05, 2010 - Jul 08, 2010; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: This paper introduces an uncertainty model being developed for the National Transonic Facility (NTF). The model uses a Monte Carlo technique to propagate standard uncertainties of measured values through the NTF data reduction equations to calculate the combined uncertainties of the key aerodynamic force and moment coefficients and freestream properties. The uncertainty propagation approach to assessing data variability is compared with ongoing data quality assessment activities at the NTF, notably check standard testing using statistical process control (SPC) techniques. It is shown that the two approaches are complementary and both are necessary tools for data quality assessment and improvement activities. The SPC approach is the final arbiter of variability in a facility. Its result encompasses variation due to people, processes, test equipment, and test article. The uncertainty propagation approach is limited mainly to the data reduction process. However, it is useful because it helps to assess the causes of variability seen in the data and consequently provides a basis for improvement. For example, it is shown that Mach number random uncertainty is dominated by static pressure variation over most of the dynamic pressure range tested. However, the random uncertainty in the drag coefficient is generally dominated by axial and normal force uncertainty with much less contribution from freestream conditions.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-4925 , NF1676L-11000 , 27th AIAA Aerodynamic Measurement and Ground Testing Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.
    Keywords: Aerodynamics
    Type: NF1676L-10244 , AIAA Atmospheric Flight Mechanics Conference; Aug 02, 2010 - Aug 05, 2010; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.
    Keywords: Aerodynamics
    Type: NF1676L-10242 , AIAA Atmospheric Flight Mechanics Conference; Aug 02, 2010 - Aug 05, 2010; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: A high fidelity transition prediction methodology has been applied to a swept airfoil design at a Mach number of 0.75 and chord Reynolds number of approximately 17 million, with the dual goal of an assessment of the design for the implementation and testing of roughness based crossflow transition control and continued maturation of such methodology in the context of realistic aerodynamic configurations. Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes in order to weaken the growth of naturally occurring, linearly more unstable instability modes via a nonlinear modification of the mean boundary layer profiles. Therefore, a synthesis of receptivity, linear and nonlinear growth of crossflow disturbances, and high-frequency secondary instabilities becomes desirable to model this form of control. Because experimental data is currently unavailable for passive crossflow transition control for such high Reynolds number configurations, a holistic computational approach is used to assess the feasibility of roughness based control methodology. Potential challenges inherent to this control application as well as associated difficulties in modeling this form of control in a computational setting are highlighted. At high Reynolds numbers, a broad spectrum of stationary crossflow disturbances amplify and, while it may be possible to control a specific target mode using Discrete Roughness Elements (DREs), nonlinear interaction between the control and target modes may yield strong amplification of the difference mode that could have an adverse impact on the transition delay using spanwise periodic roughness elements.
    Keywords: Aerodynamics
    Type: NF1676L-9736 , 28th AIAA Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from the Ares I-X GWL model test was used in the determination of worst-case loads for the analysis of Ares I-X FTV design wind conditions. Finally, this paper includes a brief discussion of the limited full-scale GWL data acquired during the rollout and on-pad stay of the Ares I-X FTV that was launched from KSC on October 28, 2009.
    Keywords: Aerodynamics
    Type: NF1676L-9780 , 28th Applied Aerodynamics Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nosecone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1 1 SWT for Schlieren photography and comparison to CFD analysis.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216259 , AIAA Paper 2009-5369 , E-17047-1 , 45th Joint Propulsion Conference and Exhibit; Aug 02, 2009 - Aug 05, 2009; Denver, CO`; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.
    Keywords: Aerodynamics
    Type: NASA/CP-2010-216112 , E-17196 , Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics; Aug 23, 2009 - Aug 26, 2009; Blue Mountain Lake, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216258 , AIAA Paper 2010-1386 , E-17164 , 48th Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.
    Keywords: Aerodynamics
    Type: DFRC-1042 , DFRC-E-DAA-TN1483 , 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Apr 12, 2010 - Apr 15, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.
    Keywords: Aerodynamics
    Type: NF1676L-10532 , AVT 25th PBM Meeting; Apr 12, 2010 - Apr 16, 2010; Antalya; Turkey
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Verification analyses were conducted on membrane structures pertaining to a tension cone inflatable aerodynamic decelerator using the analysis code LS-DYNA. The responses of three structures - a cylinder, torus, and tension shell - were compared against linear theory for various loading cases. Stress distribution, buckling behavior, and wrinkling behavior were investigated. In general, agreement between theory and LS-DYNA was very good for all cases investigated. These verification cases exposed the important effects of using a linear elastic liner in membrane structures under compression. Finally, a tension cone wind tunnel test article is modeled in LS-DYNA for which preliminary results are presented. Unlike data from supersonic wind tunnel testing, the segmented tension shell and torus experienced oscillatory behavior when subjected to a steady aerodynamic pressure distribution. This work is presented as a work in progress towards development of a fluid-structures interaction mechanism to investigate aeroelastic behavior of inflatable aerodynamic decelerators.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-2830 , NF1676L-10384 , 11th AIAA Gossamer Systems Forum; Apr 12, 2010 - Apr 15, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: This paper reports result of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the current recommended scaling methods developed for fixed-wing unprotected surface icing applications might apply to representative rotor blades at finite angle of attack. Unlike the fixed-wing case, there is no single scaling method that has been systematically developed and evaluated for rotorcraft icing applications. In the present study, scaling was based on the modified Ruff method with scale velocity determined by maintaining constant Weber number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocities of 76 and 100 kt (39 and 52 m/s), droplet MVDs of 150 and 195 fun, and with stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 0deg and 5deg. It was shown that good ice shape scaling was achieved for NACA 0012 airfoils with angle of attack lip to 5deg.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-215801 , E-17062 , 65th Annual Forum and Technology Display (AHS Forum 65); May 27, 2009 - May 29, 2009; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-658 , LF99-9983 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-1572 , Lf99-8948 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: The receptivity, stability, and transition of three-dimensional supersonic boundary layers over (1) a swept cylinder, (2) a swept wing with a sharp leading edge, and (3) a swept wing with a blunt leading edge are numerically investigated for a free-stream Mach number of 3. These computations are compared to an earlier experimental and computational study performed by Archambaud et al.1 The steady flow fields with and without roughness elements are obtained by solving the full Navier-Stokes equations. The N-factors computed in this study at the transition onset locations reported in Ref. 1 for flow over the swept cylinder are approximately 16.5 for traveling crossflow disturbances and 9 for stationary disturbances. The N-factors for the traveling crossflow are high based on our past experiences. However, they are comparatively smaller than those reported by Archambaud et al., who found N-factor values in the range of 20 to 25 for traveling disturbances and 13 to 20 for stationary disturbances. Similarly, the N-factors computed in this study for the traveling and stationary disturbances for the flow over the sharp wing are approximately 7 and 2.5, respectively, and for the flow over the blunt wing are 6.5 and 4.8, respectively. Using the envelope method, Archambaud et al. obtained values of approximately 8.0 and 4.0 for the sharp wing case and 16.0 and 12.0 for the blunt wing case.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-1454 , LF99-8934 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.
    Keywords: Aerodynamics
    Type: E-17164 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-1304 , LF99-9918 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
    Keywords: Aerodynamics
    Type: AIAA Paper 2010-168 , LF99-8920 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.
    Keywords: Aerodynamics
    Type: JSC-CN-19521 , 48th AIAA Aerosciences Meeting; Jan 04, 2010 - Jan 08, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
    Keywords: Aerodynamics
    Type: NASA/TM-2010-216064 , GT2009-60322 , E-17109 , Turbo Expo 2009; Jun 08, 2009 - Jun 12, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN2041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.
    Keywords: Aerodynamics
    Type: NASA/CR-2010-216330 , E-17264
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: This report documents the improvements and enhancements made by Pratt & Whitney to two NASA programs which together will calculate noise from a rotor wake/stator interaction. The code is a combination of subroutines from two NASA programs with many new features added by Pratt & Whitney. To do a calculation V072 first uses a semi-empirical wake prediction to calculate the rotor wake characteristics at the stator leading edge. Results from the wake model are then automatically input into a rotor wake/stator interaction analytical noise prediction routine which calculates inlet aft sound power levels for the blade-passage-frequency tones and their harmonics, along with the complex radial mode amplitudes. The code allows for a noise calculation to be performed for a compressor rotor wake/stator interaction, a fan wake/FEGV interaction, or a fan wake/core stator interaction. This report is split into two parts, the first part discusses the technical documentation of the program as improved by Pratt & Whitney. The second part is a user's manual which describes how input files are created and how the code is run.
    Keywords: Aerodynamics
    Type: NASA/CR-2010-216818 , E-17449
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.
    Keywords: Aerodynamics
    Type: NF1676L-9982
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...