ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
  • 04.06. Seismology
  • Wiley-Blackwell  (8)
  • Wiley  (5)
  • 11
    Publication Date: 2017-04-04
    Description: The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography.We present new information derived from intrinsic quality factor inverse maps (Qi −1), scattering quality factor inverse maps (Qs −1) and total quality factor inverse maps (Qt −1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi −1 and to Qs −1, are estimated from the inversion of the energy envelopes for any source–receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create ‘2-D probabilistic maps’ representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6–12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study areas. This also implies deeper sampling of the crust, which is evidenced by a change in the values of seismic attenuation. One important observation is that scattering attenuation dominates over the intrinsic effects, Qi being at least twice the value of Qs.
    Description: This work has been partially supported by the Spanish project Ephestos, CGL2011-29499-C02-01, by the EU project EC-FP7 MEDiterranean SUpersite Volcanoes (MED-SUV), by the Basque Government researcher training program BFI09.277 and by the Regional project ‘Grupo de Investigaci´on en Geof´ısica y Sismolog´ıa de la Junta de Andaluc´ıa, RNM104’. EdP has been partly supported by DPC-INGV projects UNREST SPEED and V2 (Precursori).
    Description: Published
    Description: 1942-1956
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation ; ; Seismic tomography; ; Volcano seismology ; Wave propagation. ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-07
    Description: A catalogue of precisely located micro-seismicity is fundamental for investigating seismicity and rock physical properties in active tectonic and volcanic regions and for the definition of a ‘baseline’ seismicity, required for a safe future exploitation of georesource areas. In this study, we produce the first manually revised catalogue of micro-seismicity for Co. Donegal region (Ireland), an area of about 50K M2 of on-going deformation, aimed at localizing natural micro-seismic events occurred between 2012 and 2015. We develop a stochastic method based on a Markov chain Monte Carlo (McMC) sampling approach to compute earthquake hypocentral location parameters. Our results indicates that micro-seismicity is present with magnitudes lower than 2 (the highest magnitude is 2.8).The recorded seismicity is almost clustered along previously mapped NE-SW trending, steeply dipping faults and confined within the upper crust (focal depth less than 10 km). We also recorded anthropogenic seismicity mostly related to quarries' activity in the study area.
    Description: Published
    Description: 62-76
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...