ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (10)
  • 04. Solid Earth  (3)
  • 04.07. Tectonophysics
  • Wiley  (7)
  • Springer Science  (4)
  • Springer Science+Business Media B.V.  (4)
Collection
  • 1
    Publication Date: 2020-12-07
    Description: We present a methodology for determining the elastic properties of the shallow crust from inversion of surface wave dispersion characteristics through a fully nonlinear procedure. Using volcanic tremor data recorded by a small-aperture seismic array on Mount Etna, we measured the surface waves dispersion curves with the multiple signal classification technique. The large number of measurements allows the determination of an a priori probability density function without the need of making any assumption about the uncertainties on the observations. Using this information, we successively conducted the inversion of phase velocities using a probabilistic approach. Using a wave-number integration method, we calculated the predicted dispersion function for thousands of 1-D models through a systematic grid search investigation of shear-wave velocities in individual layers. We joined this set of theoretical dispersion curves to the experimental probability density function (PDF), thus obtaining the desired structural model in terms of an a posteriori PDF of model parameters. This process allowed the representation of the objective function, showing the non-uniqueness of the solutions and providing a quantitative view of the uncertainties associated with the estimation of each parameter. We then compared the solution with the surface wave group velocities derived from diffuse noise Green’s functions calculated at pairs of widely spaced (~5–10 km) stations. In their gross features, results from the two different approaches are comparable, and are in turn consistent with the models presented in several earlier studies.
    Description: Published
    Description: 335-346
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Surface waves ; Volcanic tremor ; Dispersion curves ; Nonlinear inversion ; Etna volcano ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-03
    Description: Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applying this science in numerous fields. Noble gases, hydrocarbons, CO2, N2, H2, CO, and Hg vapor are measured by advanced methods in various environments and matrices including fluid inclusions. Following the “Geochemical Applications of Noble Gases”(2009), “Frontiers in Gas Geochemistry” (2013), and “Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies” (2017) published as special issues of Chemical Geology and “Gas geochemistry: From conventional to unconventional domains” (2018) published as a special issue of Marine and Petroleum Geology, this volume continues the tradition of publishing papers reflecting the diversity in scope and application of gas geochemistry.
    Description: Published
    Description: 976190
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: geochemistry ; Atmosphere ; 03. Hydrosphere ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-17
    Description: Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.
    Description: Published
    Description: 4742–4766
    Description: 1T. Deformazione crostale attiva
    Description: 2T. Sorgente Sismica
    Description: 3T. Storia Sismica
    Description: JCR Journal
    Keywords: continental tectonics ; source geometry ; geodetic modeling ; coulomb stress ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The necessity of a dense network in Northern Italy started from the lack of available data after the occurrence of the 24th November 2004, Ml 5.2, Salò earthquake. Since 2006, many efforts have been made by the INGV (Italian National Institute for Geophysic and Vulcanology), Department of Milano-Pavia (hereinafter INGV MI-PV), to improve the strong-motion monitoring of the Northern Italy regions. This activity led to the installation of a strong-motion network composed by 20 accelerometers, 4 coupled with 20-bits Lennartz Mars88 recorders, 12 coupled with 24-bits Reftek 130 recorders and 4 coupled with 24-bits Gaia2 recorders. The network allow us to reduce, in the area under study, the average inter-distances between strong-motion stations from about 40 km (at November 2004) to 15 km. At present the network includes nine 6-channels stations where velocity sensors work together the strong-motion ones. The data transmission is assured by modem-gsm, with the exception of four stations that send data in real time through a TCP/IP protocol. In order to evaluate different site responses, the stations have been installed both in free field and near (or inside) public buildings, located in the center of small villages. From June 2006 to December 2008 a dataset of 94 events with local magnitude range from 0.7 to 5.1 has been collected. An ad hoc data-processing system have been created in order to provide, after each recorded event, engineering parameters such as peak ground acceleration (PGA) and velocity (PGV), response spectra (SA and PSV), Arias and Housner intensities. Data dissemination is achieved through the web site http://rais. mi.ingv.it, while the waveforms are distributed through the Italian strong motion database (http://itaca.mi.ingv.it).
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion stations ; Seismic networks ; North Italy ; Data acquisition system ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Fucino basin (Central Italy) is one of the largest intermountain alluvial plain in the Appennines range. It has a tectonic origin related to the presence of important systems of faults located in its northern and eastern edges. Some of these faults are still active and capable of generating strong seismic events. Site effects related to the soft soils filling the basin can be very important and efforts to model the local seismic response of the basin have been performed in the past. In this paper we show the preliminary results of a seismic network installed in the Fucino area in order to collect information about site amplification effects and geometry of the basin. We analyze ambient seismic vibrations and recordings of about 150 local earthquakes mainly related to the seismic sequence of the April 6th 2009 Mw 6.3 L’Aquila event. Moreover the strongest events of L’Aquila sequence were analyzed at the three strong-motion permanent stations operating in the area. Using standard spectral techniques we investigate the variation of resonance frequencies within the basin. The ground motion recorded in the Fucino plain is mainly characterized by strong energy at low-frequencies (f 〈 1 Hz) affecting both horizontal and vertical components. This is particularly evident for stations deployed in correspondence of very thick deposits of sedimentary filling, where a significant increase of ground-motion amplitude and duration is caused by locally generated surface waves. The amplification at low-frequencies (〈 1 Hz) on the horizontal components can reach up a factor of 10 in comparison to nearby stiff sites. However, we found evidences of seismic amplification phenomena also for stiff sites surrounding the basin, including stations of the Italian strong motion network. The independent geological information, the shallow shear-velocity profiles available for the basin can be combined with resonance frequencies of the sites for deriving representative geological sections to be used as base for future numerical 2D-3D modeling of the basin.
    Description: Published
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Fucino Basin ; Resonance frequency ; Site amplification ; Seismic monitoring ; Strong motion stations ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: The idea of this Special Issue comes from a “joint venture” of research groups from several Italian and European Institutions (Istituto Nazionale di Geofisica e Vulcanolo- gia and University of Basilicata, Italy; GeoForschungsZentrum-GFZ, Germany; CETE Méditerranée—LRPC Nice and OCA-UMR Géoazur, France) which carried out a large seismic survey for site effect estimation in the wide area hit by the 2009 L’Aquila, Italy, earthquake (Fig. 1). The Mw 6.3 mainshock of April 6th, 2009, represented the most damaging event in Italy since the 1980 Irpinia earthquake (Mw 6.9). Several large aftershocks (Mw 〉 5) and thousands of smaller events occurred in the following months and the deployment of differ- ent rapid response seismic networks from Italy, France and Germany allowed the scientific community to collect a very large and high quality data set, probably the largest ever acquired during a normal fault seismic sequence (Marzorati et al. 2011).
    Description: Published
    Description: 691-695
    Description: JCR Journal
    Description: restricted
    Keywords: Aquila Earthquakes of April 2009 ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer Science+Business Media B.V.
    Publication Date: 2017-04-04
    Description: Rapid magnitude estimate procedures represent a crucial part of proposed Earthquake Early Warning Systems. Most of these estimates are fo- cused on the first part of the P-wave train, the earlier and less destructive part of the ground motion that follows an earthquake. Allen and Kanamori [2003] proposed to use the predominant period of the P-wave to determine the magnitude of a large earthquake at local distance and Olivieri et al. [2008] calibrated a specific relation for the Italian region. The Mw 6.3 earthquake that hit Central Italy on April 6, 2009 and the largest aftershocks provide a useful dataset to validate the proposed relation and discuss the risks con- nected to the extrapolation of magnitude relations with a poor dataset of large earthquake waveforms. A large discrepancy between ML estimated by means of τ max evaluation and standard ML (6.8 ± 1.5 vs. 5.9 ± 0.4) suggests using p caution when ML vs. τmax calibrations do not include a relevant dataset of p large earthquakes. Effects from large residuals could be mitigated or removed introducing selection rules on τ function, by regionalizing the ML vs. τmax pp function in the presence of significant tectonic or geological heterogeneity, and using probabilistic and evolutionary methods.
    Description: Published
    Description: 607-614
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake ; Magnitude ; Earthquake Early Warning Systems ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The May 20, 2012, Emilia Ml 5.9 earthquake was followed by some major aftershocks, well recorded by a large number of temporary stations that were installed to monitor the sequence. These additional recordings allowed us a thorough testing of the performance of the ShakeMap—a procedure designed to provide rapid information on the experienced ground motion. We found that the shakemaps for the May 29, 2012, Ml 5.8 earthquake, obtained using the permanent stations only, underestimate significantly the ground motion computed with the highest station density, especially for PSA at long periods (T=3.0 s). This low-frequency motion is controlled primarily by the surface waves recorded in the Po plain: the observed site effects are likely not accounted properly by the site correction coefficient based on Vs30 as implemented in the ShakeMap procedure. The shakemaps determined during the seismic sequence have been included in an Italian national law that was passed after the 2012 earthquake. According to this law, the factories safety verifications were bound to the comparison between the shakemaps and the design acceleration required by the current national seismic code.We then decide to appraise the impact of the shakemap accuracy on the law provisions. Following the law ecommendations, we have estimated the possible errors resulting from the incomplete evaluation of the ground shaking: our results show that, if the complete dataset were available at the time of the law approval, the number of buildings for which the safety check was required would have been significantly smaller.
    Description: Published
    Description: 2147-2164
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: JCR Journal
    Description: restricted
    Keywords: Emilia earthquake ; Shakemap ; Strong ground motion ; Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...