ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
  • 04.06. Seismology
  • Springer  (27)
  • Wiley-Blackwell  (8)
  • Wiley  (5)
  • 1
    Publication Date: 2020-11-12
    Description: Public concern about anthropogenic seismic- ity in Italy first arose in the aftermath of the deadly M ≈ 6 earthquakes that hit the Emilia-Romagna region (northern Italy) in May 2012. As these events occurred in a (tectonically active) region of oil and gas production and storage, the question was raised, whether stress perturbations due to underground industrial activities could have induced or triggered the shocks. Following expert recommendations, in 2014, the Italian Oil & Gas Safety Authority (DGS-UNMIG, Ministry of Economic Development) published guidelines (ILG - Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell’ambito delle attività antropiche), describing regula- tions regarding hydrocarbon extraction, waste-water in- jection and gas storage that could also be adapted to other technologies, such as dams, geothermal systems, CO2 storage, and mining. The ILG describe the frame- work for the different actors involved in monitoring activities, their relationship and responsibilities, the procedure to be followed in case of variations of mon- itored parameters, the need for in-depth scientific anal- yses, the definition of different alert levels, their mean- ing and the parameters to be used to activate such alerts. Four alert levels are defined, the transition among which follows a decision to be taken jointly by relevant au- thorities and industrial operator on the basis of evalua- tion of several monitored parameters (micro-seismicity, ground deformation, pore pressure) carried on by a scientific-technical agency. Only in the case of liquid reinjection, the alert levels are automatically activated on the basis of exceedance of thresholds for earthquake magnitude and ground shaking – in what is generally known as a Traffic Light System (TLS). Istituto Nazionale di Geofisica e Vulcanologia has been charged by the Italian oil and gas safety authority (DGS- UNMIG) to apply the ILG in three test cases (two oil extraction and one gas storage plants). The ILG indeed represent a very important and positive innovation, as they constitute official guidelines to coherently regulate monitoring activity on a national scale. While pilot studies are still mostly under way, we may point out merits of the whole framework, and a few possible critical issues, requiring special care in the implementa- tion. Attention areas of adjacent reservoirs, possibly licenced to different operators, may overlap, hence mak- ing the point for joint monitoring, also in view of the possible interaction between stress changes related to the different reservoirs. The prescribed initial blank- level monitoring stage, aimed at assessing background seismicity, may lose significance in case of nearby ac- tive production. Magnitude – a critical parameter used to define a possible step-up in activation levels – has inherent uncertainty and can be evaluated using differ- ent scales. A final comment considers the fact that relevance of TLS, most frequently used in hydraulic fracturing operations, may not be high in case of trig- gered tectonic events.
    Description: Published
    Description: 1015–1028
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Anthropogenic seismicity ; Alert system ; Monitoring guidelines ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-01
    Description: Several months of ambient seismic noise recordings are used for investigating the distribution of elastic properties in the Fucino Plain, one of the largest intermontane tectonic depressions of the Italian Apennine chain (Central Italy). The Plain is characterized by a low level of seismicity but the presence of several active faults makes it an Italian area of high seismic hazard. The most recent and strongest seismic event in Fucino Plain occurred in the 1915 (Avezzano earthquake) and it represents one of the most energetic events (Ms = 7.0) happened in central Apennines. Inter-stations Green’s functions are reconstructed by the cross-correlation of continuous ambient noise data recorded from twelve seismic velocimeters deployed around the Avezzano city, and organized in two different temporally sub-networks. The aim of cross-correlation analysis is to extract surface waves from Green’s functions for investigating the dispersive response of the structure. We analyzed the temporal stability of the cross-correlated signals that is used as an indicator of reliability of measurements and as criteria to select the Green’s functions to analyze
    Description: Published
    Description: 1173-1176
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Cross correlation ; Noise ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-30
    Description: Buildings close to each other can perform different behaviour despite its similar seismic vulnerability. This effect is mainly due to the local seismic response connected to the characteristics of the shallow soil layers, especially when we move away from the epicentral area and the near field motion reduces its importance among the total amount of shaking. In this paper we show some results of the microzonation project of the Avezzano municipality, a town located in the southwestern portion of the Abruzzi region, which experienced the severe effects of the January 13th, 1915 M 7.0 earthquake. Starting from a particularly detailed knowledge of the geological characteristics of outcropping lithologies and inferring the trend of subsoil geometries, we explored the role played by the near-surface geology in causing variability of the ground motion by analysing a large database of earthquakes and microtremor recordings acquired by temporary seismological networks using classical site-reference and non-reference spectral techniques. Based on the obtained results we can seismically characterize all the municipal territory not only in terms of fundamental resonance frequency, useful in drawing maps of seismic microzonation and design geological sections, but also of amplification factors helpful in verifying numerical modelling of seismic response as required by national microzonation guidelines. We have also found many criticisms that need a more detailed analysis in order to establish the cause of these anomalies.
    Description: Published
    Description: 1153-1157
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Microzonation ; Site response ; Spectral techniques ; Seismic amplification ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-25
    Description: Unstructured hexahedral mesh generation is a critical part of the model- ing process in the Spectral-Element Method (SEM). We present some ex- amples of seismic wave propagation in complex geological models, automati- cally meshed on a parallel machine based upon CUBIT (Sandia Laboratory, cubit.sandia.gov), an advanced 3D unstructured hexahedral mesh genera- tor that offers new opportunities for seismologist to design, assess, and improve the quality of a mesh in terms of both geometrical and numerical accuracy. The main goal is to provide useful tools for understanding seismic phenomena due to surface topography and subsurface structures such as low wave-speed sedimentary basins. Our examples cover several typical geophysical problems: 1) “layer-cake” volumes with high-resolution topography and complex solid- solid interfaces (such as the Campi Flegrei Caldera Area in Italy), and 2) models with an embedded sedimentary basin (such as the Taipei basin in Taiwan or the Grenoble Valley in France).
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: meshing ; seismic wave propagation ; spectral element methond ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-15
    Description: Seismogram envelopes recorded at Campi Flegrei caldera show diffusive characteristics as well as steep amplitude increases in the intermediate and late coda, which can be related to the presence of a non-uniformly scattering medium. In this paper, we first show the results of a simulation with a statistical model considering anisotropic scattering interactions, in order to match coda-envelope duration and shape.We consider as realistic parameters for a volcanic caldera the presence of large square root velocity fluctuations (10 per cent) and two typical correlation lengths for such an heterogeneous crust, a = 0.1 and 1 km. Then, we propose the inclusion of a diffusive boundary condition in the stochastic description of multiple scattering, in order to model intermediate and late coda intensities, and particularly the sharp intensity peaks at some stations in the caldera. Finally, we show that a reliable 2-D synthetic model of the envelopes produced by earthquakes vertically sampling a small region can be obtained including a single drastic change of the scattering properties of the volcano, that is, a caldera rim of radius 3 km, and sections varying between 2 and 3 km. These boundary conditions are diffusive, which signifies that the rim must have more scattering potential than the rest of the medium, with its diffusivity 2–3 orders of magnitude lower than the one of the background medium, so that the secondary sources on its interface(s) could enhance coda intensities. We achieve a good first-order model of high-frequency (18 Hz) envelope broadening adding to the Monte Carlo solution for the incident flux the secondary source effects produced by a closed annular boundary, designed on the caldera rim signature at 1.5 km depth. At lower frequencies (3 Hz) the annular boundary controls the intermediate and late coda envelope behaviour, in a way similar to an extended diffusive source. In our interpretation, the anomalous intensities observed at several stations and predicted by the final Monte Carlo solutions are mainly due to the diffusive transmission reflection from a scattering object of increased scattering power, and are controlled by its varying thickness.
    Description: This work was carried out under the HPC-Europa2 project (project number: 228398) with the support of the European Commission Capacities Area-Research Infrastructures Initiative. We thank the whole staff at EPCC (Edinburgh Parallel Computing Centre) in Edinburgh and particularly Dr. Adam Carter for their help in both developing and parallelizing the code. The challenging comments and suggestions of the editor and two anonymous reviewers helped both in focusing the aim and in overcoming the strong limits of a previous version of the paper.
    Description: Published
    Description: 1102–1119
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical solutions; ; Seismic anisotropy; ; Seismic attenuation ; Seismic tomography ; Wave scattering and diffraction ; Calderas ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-29
    Description: eriods of accelerated seismicity have been observed during the preparation process of many large earthquakes. This accelerating seismicity can be detected by the Accelerated Moment Release (AMR) method and its recent Revised version (RAMR) when the two techniques are applied to earthquake catalogues. The main aim of this study is to investigate the seismicity preceding large mainshocks and possibly increase our comprehension of the underlying physics. In particular, we applied both the AMR and R-AMR to the seismicity preceding 14 large worldwide shallow earthquakes, i.e. with focal depth less than 40 km, with magnitude M[6 for Mediterranean area, and M C 6.4 in the rest of the world, occurred from 2014 to 2018. Twelve case studies were analysed in the framework of SwArm For Earthquake study project funded by ESA, comprising the period 2014–2016; two additional cases were also considered to confirm the goodness of the methodology outside the period of the project catalogues. In total, R-AMR shows better performances than AMR, in 11 cases out of 14. In particular, in four out of 14 cases (i.e. 28.6%), the R-AMR method shows that acceleration exists due to an evident clustering in time–space on the faults, thus guiding the convergence of the fit; in seven cases (i.e. 50%) the R-AMR discloses acceleration, although no clustering around the fault is present; the remaining three cases (i.e. 21.4%) show no emerging acceleration from background. Finally, when R-AMR is compared with simulations, we verify that in most of the cases the acceleration is real and not casual.
    Description: Published
    Description: 4057–4087
    Description: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Description: JCR Journal
    Keywords: earthquake ; precursory acceleration ; accelerated moment release ; time to failure ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-12
    Description: This report summarizes the seismicity in Switzerland and surrounding regions in the years 2017 and 2018. In 2017 and 2018, the Swiss Seismological Service detected and located 1227 and 955 earthquakes in the region under considera- tion, respectively. The strongest event in the analysed period was the ML 4.6 Urnerboden earthquake, which occurred in the border region of cantons Uri, Glarus and Schwyz on March 6, 2017. The event was the strongest earthquake within Switzerland since the ML 5.0 Vaz earthquake of 1991. Associated ground motions indicating intensity IV were reported in a radius up to about 50 km and locally approached intensity VI in the region close to the epicentre. Derived focal mechanisms and relative hypocentre relocations of the immediate aftershocks image a NNW–SSE striking sinistral strike-slip fault. Together with other past events in this region, the Urnerboden earthquake suggests the existence of a system of sub-parallel strike-slip faults, likely within in the uppermost crystalline basement of the eastern Aar Massif. A vigorous earthquake sequence occurred close to Château-d’Oex in the Préalpes-Romandes region in western Switzer- land. With a magnitude of ML 4.3, the strongest earthquake of the sequence occurred on July 1, 2017. Focal mechanism and relative relocations of fore- and aftershocks image a NNE dipping normal fault in about 4 km depth. Two similarly oriented shallow normal-fault events occurred between subalpine Molasse and Préalpes units close to Châtel-St-Denis and St. Silvester in 2017/18. Together, these events indicate a domain of NE–SW oriented extensional to transtensional deformation along the Alpine Front between Lake Geneva in the west and the Fribourg Fault in the east. The structural complexity of the Fribourg Fault is revealed by an ML 2.9 earthquake near Tafers in 2018. The event images a NW–SE striking fault segment within the crystalline basement, which might be related to the Fribourg Fault Zone. Finally, the ML 2.8 Grenchen earthquake of 2017 provides a rare example of shallow thrust faulting along the Jura fold-and-thrust belt, indicating contraction in the northwestern Alpine foreland of Switzerland.
    Description: Published
    Description: id 4
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Seismicity ; Focal mechanisms ; Seismotectonics ; Urnerboden ; Aar Massif ; Château-d’oex ; Préalpes ; Fribourg ; Jura fold-and-thrust belt ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In August 2000 and July 2001 two seismic sequences, characterized by mainshocks with Ml (local magnitude) respectively 5.1 and 4.8, occurred in the Monferrato region (Italy). The regional seismic network of North-western Italy (RSNI) recorded more than 250 foreshocks and aftershocks. The routine locations, obtained from the Hypoellipse code, show a seismic activity concentrated in a circular area, of a radius of about 15 km, located near Acqui Terme, and randomly distributed in depth. Location errors, due to an uneven azimuthal station distribution of the regional seismic network, prevent recognition of the geometry of the active zone. Waveform analysis revealed the presence of several multiplets. In order to discriminate and successively relocate them, an automatic cross-correlation procedure was applied. Normalized cross-correlation matrixes, for the RSNI stations which recorded almost 90% of considered events, on the basis of a signal to noise ratio analysis, were computed using only S wave time windows. The use of a relocation procedure, based on the double-difference method which incorporates ordinary absolute travel-time measurements and/or cross-correlation differential travel-times, allowed us to overcome the constraints of the uneven distribution of stations giving a quite different frame of seismicity. The improved locations showed that the seismic activity is mainly arranged along a NE-SW oriented volume, at a depth range of 8–20 km, involving the basement crystalline units. This orientation is confirmed by the analysis of the focal mechanisms: most focal solutions show a strike slip component with one of the nodal planes consistent with the main orientation of the seismic events.
    Description: Published
    Description: 1-22
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake clusters ; waveform ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The Pernicana Fault (PF) is the main structural element of Mt Etna and the northern boundary of a section sliding to the southeast. Observed ground motion records in the damage zone of the PF show strong variations of directional resonance in the horizontal plane. The observed resonance directions exhibit an abrupt rotation of azimuth by about 30◦ across the fault, varying from N166◦ on the north side to N139◦ on the south. We interpret the directional resonance observations in terms of changes in the kinematics and deformation fields on the opposite sides of the fault. The northern side is affected primarily by the left-lateral strike-slip movement, whereas the southern side, that is subjected also to sliding, is under a dominant extensional stress regime. Brittle deformation models based on the observed kinematic field predict different sets of fractures on the opposite sides of the fault: synthetic cleavages and extensional fractures are expected to dominate in the northern and southern sides, respectively. These two fracture fields have different orientations (N74◦ and N42◦, respectively) and both show a near-orthogonal relation (∼88◦ in the northern sector and ∼83◦ to the south) with the azimuth of the observed directional resonance. We conclude that the direction of the largest resonance motions is sensitive to and has transversal relationship with the dominant fracture orientation. The directional amplification is inferred to be produced by stiffness anisotropy of the fault damage zone, with larger seismic motions normal to the fractures.
    Description: Published
    Description: 986–996
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions; Site effects; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...