ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis  (23)
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
  • Seismological Society of America  (21)
  • Wiley  (6)
Collection
Years
  • 1
    Publication Date: 2020-12-22
    Description: The determination of regional attenuation Q^-1 can depend upon the analysis method employed. The discrepancies between methods are due to differing parameterizations (e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), and the methodologies themselves (e.g., measurement in the frequency or time domain). Here we apply five different attenuation methodologies to a Northern California dataset. The methods are: (1) coda normalization (CN), (2) two-station (TS), (3) reverse two-station (RTS), (4) source-pair/receiver-pair (SPRP), and (5) coda-source normalization (CS). The methods are used to measure Q of the regional phase, Lg (QLg), and its power-law dependence on frequency of the form Q0fη with controlled parameterization in the well-studied region of Northern California using a high-quality dataset from the Berkeley Digital Seismic Network. We investigate the difference in power-law Q calculated among the methods by focusing on the San Francisco Bay Area, where knowledge of attenuation is an important part of seismic hazard mitigation. This approximately homogeneous subset of our data lies in a small region along the Franciscan block. All methods return similar power-law parameters, though the range of the joint 95% confidence regions is large (Q0 = 85 ± 40; η = 0.65 ± 0.35). The RTS and TS methods differ the most from the other methods and from each other. This may be due to the removal of the site term in the RTS method, which is shown to be significant in the San Francisco Bay Area. In order to completely understand the range of power-law Q in a region, it is advisable to use several methods to calculate the model. We also test the sensitivity of each method to changes in geometrical spreading, Lg frequency bandwidth, the distance range of data, and the Lg measurement window. For a given method, there are significant differences in the power-law parameters, Q0 and η, due to perturbations in the parameterization when evaluated using a conservative pairwise comparison. The CN method is affected most by changes in the distance range, which is most probably due to its fixed coda measurement window. Since, the CS method is best used to calculate the total path attenuation, it is very sensitive to the geometrical spreading assumption. The TS method is most sensitive to the frequency bandwidth, which may be due to its incomplete extraction of the site term. The RTS method is insensitive to parameterization choice, whereas the SPRP method as implemented here in the time-domain for a single path has great error in the power-law model parameters and η is strongly affected by changes in the method parameterization. When presenting results for a given method it is best to calculate Q0f^η for multiple parameterizations using some a priori distribution.
    Description: Published
    Description: 2033–2046
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Q attenuation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: We analyze the dispersion characteristics of ambient noise vibrations. For this purpose, two-dimensional (2D) seismic array data were acquired in four different sites in the Colfiorito plain, an alluvial intramountain basin that exhibits strong site effects. Assuming seismic noise being mainly composed of surface waves, we derive one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by frequency–wavenumber (f-k) methods. The inverted shear-wave velocity profiles are consistent with a priori information for those sites that can be approximated by 1D simple models. In these cases, the use of passive records of seismic vibrations can be a valuable tool for determining the shallow velocity profile if a detailed depiction of velocity structure is not required. The theoretical dispersion curves for Rayleigh and Love waves were compared with the measured dispersion curves for vertical and horizontal components, respectively. This allows us to discuss qualitatively the composition of ambient vibrations (outlining a large proportion of Love waves in the noise wave field) and the effects of higher modes. We also use the single-station method for investigating the origin of the horizontal-to-vertical (H/V) peak in the plain of Colfiorito in terms of ellipticity of the fundamental Rayleigh mode.
    Description: Published
    Description: 1915-1933
    Description: reserved
    Keywords: surface waves, microtremor, f-k 2D analysis ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1456132 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: The aim of this work is to infer the slip distribution and rupture velocity along the rupture zone of the 26 December 2004 Sumatra–Andaman earthquake from available tide gage records of the tsunami. We selected waveforms from 14 stations, distributed along the coast of the Indian Ocean. Then we subdivided the fault plane into 16 subfaults (both along strike and downdip) following the geometry and mechanism proposed by Banerjee et al. (2005) and computed the corresponding Green’s functions by numerical solution of the shallow-water equations through a finitedifference method. The slip distribution and rupture velocity were determined simultaneously by means of a simulated annealing technique. We compared the recorded and synthetic waveforms in the time domain, using a cost function that is a trade-off between the L1 and L2 norms. Preliminary tests on a synthetic dataset, together with a posteriori statistical analysis of the model ensemble enabled us to assess the effectiveness of the method and to quantify the model uncertainty. The main finding is that the best source model features a nonuniform distribution of coseismic slip, with high slip values concentrated into three main patches: the first is located in the southern part of the fault, off the coast of the Aceh Province; the second between 6.5 N and 11 N; and the third at depth, between 11 N and 14 N. Furthermore, we estimated that the rupture propagated at an average speed of 2.0 km/sec.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Sumatra–Andaman Earthquake ; Tsunami ; Waveform Inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We have analyzed the aftershocks (ML 4.5) following the 1999 Izmit earthquake (Mw 7.4) to infer the frequency-dependent attenuation characteristics of both P and S waves, in the frequency range from 1 to 10 Hz and in the distance range from 10 to 140 km. A linear-predictive model is assumed to describe the spectral amplitudes in terms of attenuation and source contributions. The results show that both P and S waves undergo a strong attenuation along ray paths shorter than 40 km, while the secondary arrivals significantly contribute to the spectral amplitudes over the distance range from 40 to 60 km, as also confirmed by the computation of synthetic seismograms. For longer ray paths, the decrease in attenuation suggests an increase in the propagation efficiency with depth. Finally, the spectral attenuation curves are flattened, or sloped upward at low frequencies in the range from 100 to 140 km, due to the contemporary arrivals of direct waves and postcritical reflections from the Moho. In terms of geometrical spreading and anelastic attenuation, the attenuation in the range from 10 to 40 km is well described by a spreading coefficient n 1 for both P and S waves, and the quality factors can be approximated by QS( f ) 17f 0.80 for 1 f 10 Hz and QP( f ) 56f 0.25 for 2.5 f 10 Hz. For ray paths in the range from 60 to 80 km, the attenuation weakens but the interaction between seismic waves and propagation medium is more complex. The multilapse time window analysis (MLTWA) is applied to quantify the amount of scattering loss and intrinsic absorption for S waves. The seismic albedo B0 decreases from 0.5 at 1 Hz to 0.3 at 10 Hz, while the total quality factor QT increases from about 56 to 408. The multiple lapse time-window analysis (MLTWA) results provide only an average estimate of the attenuation properties in the range from 10 to 80 km. In fact, by neglecting the variation of attenuation with depth, the MLTWA results underestimate attenuation for distances less than 40 km, and do not capture the significant features caused by the integrated energy of the secondary arrivals observed in the range from 40 to 60 km.
    Description: Published
    Description: 200-214
    Description: JCR Journal
    Description: reserved
    Keywords: aftershocks ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Abstract We present an update of the local magnitude scale previously calibrated for northwestern Turkey by Baumbach et al. (2003). The path coverage in the westernmost part of the analyzed area has been increased, as well as the number of amplitudes for distance greater than 110 km. Furthermore, a set of recordings from accelerometric stations operated by the Kandilli Observatory and Earthquake Research Institute (KOERI) has been merged with the recordings by the Sapanca-Bolu and German Task Force seismological networks. In all, 4047 recordings from 528 earthquakes recorded by 31 seismometers and 23 accelerometers are considered to calibrate the local magnitude scale over a hypocentral distance range from 10 to 190 km. By analyzing the unit covariance matrix and the resolution matrix, we show how the source-to-station geometries of the seismic and strong-motion networks affect the uncertainties of the computed station corrections, attenuation coefficients, and magnitudes. The assumptions made concerning the reference station correction, and the change in the amplification for the Wood–Anderson torsion seismograph from 2800 to 2080 (Uhrhammer and Collins, 1990) introduced an offset of about 0.34 in the magnitudes with respect to Baumbach et al. (2003), with the updated local magnitude scale ranges from 0.50 to 5.91. The distribution of the residuals with distance confirms that the extension of both the magnitude and distance ranges and the improved path coverage have preserved the high quality that characterized the data set analyzed by Baumbach et al. (2003).
    Description: Published
    Description: 331-338
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: local magnitude ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: Abstract Rapid estimates of source parameters are needed for reasons of civil protection in regions where destructive events often occur. This information can prevent further damage and casualties. A relation between the first seconds of a P- wave onset and the local magnitude ML of the earthquake has been developed for the Italy region following results obtained in Japan and Southern California. The proposed dominant period estimate has been used in the present work and it gives reliable results from which to evaluate the size of the earthquake. The data set we evaluated consists of about 20,000 earthquakes that occurred in Italy and were well recorded by the stations of the MedNet Network. The proposed relationship will be one basis for developing and implementing an earthquake early warning system in Italy capable of delivering a rapid alert only a few seconds after the occurrence of a potentially destructive earthquake in the area. Recent extensive improvements of the Italian National Seismic Network, together with this new technique, will make pos- sible the release of a robust magnitude estimate no later than 10 sec after the occur- rence of the earthquake. However, no data are available for earthquakes with mag- nitudes ML
    Description: Published
    Description: 1750-1755
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Magnitude ; early warning ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: A 1D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and S-to-coda transfer function effects. Recently, this methodology was applied to microearthquake data sets from three subregions of northern Italy (i.e., western Alps, northern Apennines, and eastern Alps). Because the study regions were small, ranging between local-to-near-regional distances, the simple 1D path assump- tions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2D path correction might provide even better results if the data sets were combined, especially when paths traverse larger distances and com- plicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions, such as isotropic source radiation, which is generally true for coda waves. Our results are compared against direct S-wave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) that tested the same tomo- graphic methodology applied in this study to invert for 1/Q. We find that 2D coda path corrections for this region significantly improve upon the 1D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral variations in Q for northern Italy relative to California.
    Description: Published
    Description: 1936-1946
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Attenuation tomography ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: On 12 August 2007, a magnitude Mw 4.7 intraplate earthquake occurred near the center of the Iberian Peninsula, an area characterized by comparably simple crustal structure within the complex Iberia-Maghreb plate boundary zone, and characterized by complete azimuthal coverage with seismic broadband stations. We analyze regional intermediate-period (20s to 50s) coda waveforms for this earthquake. They contain energy representing late-arriving surface waves that have been reflected laterally at lithospheric heterogeneities in or around Iberia, but complexity of the coda waveforms hampers a direct interpretation. We use coda recordings as source for a back-propagating adjoint wave field and compute 3D Born sensitivity kernels for the dependence of least squares waveform misfits of coda waves on wave speed variations. We hereby image the origin of single scattering recorded in the coda. Misfit kernels for P- and S-wave velocity show azimuth-dependent intensity variation as a result of source radiation, and an appropriate compensation significantly improves imaging quality, thereby revealing several clear lineaments. These are interpreted as surface-wave reflectors due to deep-rooted heterogeneity such as terrain boundaries or Moho topography, demonstrating the ability of the approach to unravel complex waveforms, and providing a new point of view on regional lithospheric structure.
    Description: TRANSFER (STREP-037058), CGL2008-01830, Consolider TopoIberia CSD2006-00041.
    Description: In press
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Adjoint method ; Coda waves ; Surface-wave reflections ; Radiation pattern ; Lateral heterogeneity ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The attenuation of shear waves propagating in the crust of northwestern Turkey has been investigated in the frequency range 1–10 Hz. A standard spectral inversion scheme is applied to a data set of 245 aftershocks (ML 4.5) of the 1999 Izmit earthquake. The obtained attenuation-with-distance curves have been described in terms of the t* cumulative attenuation parameter and its dependence on frequency and distance investigated. At 1 Hz, Q 1, evaluated by normalizing t* to the travel time, is generally larger than 0.025 for source-to-station distances smaller than 40 km, indicating the presence of a highly attenuating upper crust in the area. Over longer distances, Q 1 decreases, suggesting a decrease in the attenuation with depth. By contrast, the normalized t* computed for earthquakes recorded at stations having almost the same distance from the sources do not show a strong dependence on the backazimuth. These results suggest that the decrease of Q 1 with depth is more significant than its lateral variations. Regarding its frequency dependence, Q 1 almost linearly decreases with frequency. Finally, the near-surface-attenuation parameter k is evaluated at 12 stations and the results discussed in terms of site, event, and propagation contributions. The event contribution is not negligible and shows a significant positive correlation with magnitude. The site term is smaller than 0.020 sec for rock or topographic sites, while it assumes values of 0.036 sec and 0.042 sec for two stations installed over thick soft sedimentary layers.
    Description: Published
    Description: 188-199
    Description: JCR Journal
    Description: reserved
    Keywords: waves propagating ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this paper, we use regional seismic waveforms recorded by the recently-installed Istituto Nazionale di Geofisica e Vulcanologia (INGV) national network and the Mediterranean Very Broadband Seismographic Network (MedNet) stations to develop one-dimensional (1-D) crustal velocity models for the Italian peninsula. About 55,000 P -wave and 35,000 S -wave arrival times from 4,727 events are used to derive average seismic parameters in the crust and uppermost mantle. We define four regions, according to geological constraints and recent travel-time tomography results. Based on the average seismic parameters, we combine broadband seismic waveforms and travel-times of regional phases to model crustal structures for the four regions by applying the genetic algorithm. Our results indicate smooth velocity gradients with depth beneath the Apennines, and a deep Moho beneath the central Alps. Green’s functions from the regionalized 1-D velocity models are used to determine source depths and focal mechanisms for 37 events with magnitude larger than 3.5 by a grid search technique. Our results show that normal and strike-slip faulting source mechanisms dominate the Apenninic belt and most thrust faulting events occur in the Adriatic sea and the outer margin of the northern Apennines.
    Description: Published
    Description: 2024–2039
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: velocity structure ; Green's functions ; focal mechanism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...