ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Etna  (24)
  • Stromboli  (21)
  • American Geophysical Union  (43)
  • Blackwell Publishing Ltd  (2)
  • American Association for the Advancement of Science
Collection
Years
  • 1
    Publication Date: 2021-06-09
    Description: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Description: Published
    Description: B11207
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-09
    Description: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Description: We are grateful to EUMETSAT for SEVIRI data.
    Description: Published
    Description: L06305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-13
    Description: Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activitymay occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplaymay exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements andmay hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing.
    Description: Published
    Description: 5356-5368
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: analogue models ; strain ; stress ; eruption ; flank dynamics ; GPS ; faults ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In this paper we integrate stratigraphic and sedimentological analyses of the volcaniclastic deposits, emplaced during initial opening and later widening of the Valle del Bove depression, with the available stratigraphy of the inner walls, and marine offshore data, structural data, and magnetic surveys to develop a comprehensive model for the opening of the Valle del Bove depression. The resulting model adds new insight into the triggering mechanisms of the flank collapse. Additionally, it suggests a three-stage evolution of the eastern flank of Etna. (1) About 10 Kyr ago, the extinct Ellittico volcano (60 80 (per uniformità anche con Acireale) to 15 Kyr) collapsed, forming the early Valle del Bove. The collapse produced an avalanche deposit that spread ESE and formed the base of the Milo Lahar and the Chiancone deposits. (2) The second stage involved instability-related minor collapses within the valley, causing southward and westward enlargement of the depression and the emplacement of the debris flow sequence that comprises the upper part of the Milo Lahar deposit. (3) Available debris that accumulated within the Valle del Bove from smaller subsequent collapses was deposited at the mouth of the Valle del Bove in the fluvial sequence that forms most of the exposed part of the Chiancone deposit. The emplacement of the whole volcaniclastic sequence occurred between 10 and 2 Kyr ago. Since then, the Valle del Bove has acted as a basin protecting the lower eastern flank of Etna from lava flows or inundations of volcaniclastic debris.
    Description: Published
    Description: 65-75
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: open
    Keywords: Etna ; flank collapse ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Morphostructural data derived from Lidar (Light detection and ranging) surveys carried out on Mount Etna in 2005 and 2007 are compared with earlier aerophotogrammetric surveys in 1986 and 1998. These data render an unprecedentedly clear and quantitative image of morphostructural and volumetric changes that have affected the summit area of the volcano in the past two decades and permit the production of a new topographic map. The computed volume gain during the 1986–2007 period amounts to 112 ± 12 106 m3, at a mean annual rate of 5.3 106 m3. The comparison of the various surveys furthermore emphasizes the levels of accuracy and resolution of the different techniques applied. The Lidar technology used in 2007 allows production of high-precision maps in near-real-time, facilitating work concerning environmental hazards such as numerical simulations of, e.g., lava flows.
    Description: Published
    Description: L09305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: Lidar ; Etna ; morphostructural changes ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000-m-high, conical island-arc volcano rising to 900 m above sea level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). In the last 13 Kr four large-volume (1 km3) flank collapses have played an important role in shaping the northwestern flank (Sciara del Fuoco- SdF) of the volcano. These flank collapses have the potential to cause hazardous tsunamis in the Aeolian islands and farther afield along the Italian coast. In addition, smaller volume, much more frequent partial collapses of the SdF have been shown to be tsunami generating, potentially hazardous events One such partial collapse occurred on 30/12/2002, on the north-western flank of the island. The resulting landslide generated a 10-m-high tsunami that impacted the island. Multibeam bathymetry, side-scan sonar and seabed visual observations reveal that 25-30 x 106 m3 of sediments were deposited on the offshore from the Sciara del Fuoco landslide. Sediment samples have led to the recognition of a proximal coarse-grained landslide deposit on the volcano slope and a distal, cogenetic, sandy turbidite 24 km from the Stromboli shoreline. The proximal landslide deposit consists of two contiguous facies: (1) a chaotic, coarse grained (meter- to centimetre-sized clasts) deposit and (2) a sand deposit containing a lower, cross bedded sand layer and an upper structureless, pebbly sand bed, capped by seafloor ripple bedforms. The ubiquitous sand facies develops laterally with and over the coarse-grained deposits. Distally, a capping 2-3 cm-thick sand layer, not present in a pre-landslide September 2002 core, is interpreted as the finer grained turbidite equivalent of the proximal deposits. Characteristics of the SdF landslide deposits suggest that they derive from cohesionless, sandy-matrix, density flows. Flow rheology resulted in segregation of the density flow into sand-rich and clast-rich regions. Our results show that a range of density flow transitions, based principally on particle concentration and grain-size partitioning of cohesionless parent flows, can be identified in the proximal and distaldeposits of this relatively small-scale landslide event on Stromboli.
    Description: Unpublished
    Description: 23
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: Stromboli ; flank collapse ; tsunami ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: Explosion-quake seismograms recorded at Stromboli show that seismic phases with a high-amplitude and high-frequency content propagate with a velocity of approximately 330 m/s - the sound speed. The analysis of seismograms, recorded at a distance of 500 m from one of the three active vents, shows for the first onset a low frequency and particle motion characteristics of a p-wave, which loses its longitudinal polarization with the onset of the air-wave. Recording the explosion-quake simultaneously with a microphonewe would ascertain that the high frequency onset coincides with the air-wave's. In order to better understand the seismic wavefield generated by the atmospheric pressure, we performed a controlled source experiment at Stromboli using a seismic gun. Seismograms with the same two phases and particle motions comparable with the volcanic seismic data were obtained. A second experiment demonstrated, that the air-wave propagates at least in the uppermost 1m of the gound. We suggest that the seismic source of the corresponding seismograms is an explosion at the top of the magma column and conclude that the p- and air-waves are both generated in the same point and at the same time.
    Description: Published
    Description: 65-68
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; Stromboli ; air wave ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...