ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Institute of Physics  (281,630)
  • Springer Nature  (248,871)
  • 2015-2019  (530,501)
Collection
Publisher
Years
Year
  • 11
    Publication Date: 2018-01-08
    Description: Antarctic krill (Euphausia superba) is a key species in Southern Ocean ecosystem where it plays a central role in the Antarctic food web. Available information supports the existence of an endogenous timing system in krill enabling it to synchronize metabolism and behavior with an environment characterized by extreme seasonal changes in terms of day length, food availability, and surface ice extent. A screening of our transcriptome database “KrillDB” allowed us to identify the putative orthologues of 20 circadian clock components. Mapping of conserved domains and phylogenetic analyses strongly supported annotations of the identi ed sequences. Luciferase assays and co-immunoprecipitation experiments allowed us to de ne the role of the main clock components. Our ndings provide an overall picture of the molecular mechanisms underlying the functioning of the endogenous circadian clock in the Antarctic krill and shed light on their evolution throughout crustaceans speciation. Interestingly, the core clock machinery shows both mammalian and insect features that presumably contribute to an evolutionary strategy to cope with polar environment’s challenges. Moreover, despite the extreme variability characterizing the Antarctic seasonal day length, the conserved light mediated degradation of the photoreceptor EsCRY1 suggests a persisting pivotal role of light as a Zeitgeber.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 8(1), pp. 2345, ISSN: 2045-2322
    Publication Date: 2018-04-15
    Description: Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-11-29
    Description: Antarctic krill (Euphausia superba)—one of the most abundant animal species on Earth—exhibits a five to six year population cycle, with oscillations in biomass exceeding one order of magnitude. Previous studies have postulated that the krill cycle is induced by periodic climatological factors, but these postulated drivers neither show consistent agreement, nor are they supported by quantitative models. Here, using data analysis complemented with modelling of krill ontogeny and population dynamics, we identify intraspecific competition for food as the main driver of the krill cycle, while external climatological factors possibly modulate its phase and synchronization over large scales. Our model indicates that the cycle amplitude increases with reduction of krill loss rates. Thus, a decline of apex predators is likely to increase the oscillation amplitude, potentially destabilizing the marine food web, with drastic consequences for the entire Antarctic ecosystem.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer Nature
    In:  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Publication Date: 2019-03-26
    Description: In the following we present a new non-invasive methodology aimed at the diagnosis of stone building materials used in historical buildings and architectural elements. This methodology consists of the integrated sequential application of in situ proximal sensing methodologies such as the 3D Terrestrial Laser Scanner for the 3D modelling of investigated objects together with laboratory and in situ non-invasive multi-techniques acoustic data, preceded by an accurate petrographical study of the investigated stone materials by optical and scanning electron microscopy. The increasing necessity to integrate different types of techniques in the safeguard of the Cultural Heritage is the result of the following two interdependent factors: 1) The diagnostic process on the building stone materials of monuments is increasingly focused on difficult targets in critical situations. In these cases, the diagnosis using only one type of non-invasive technique may not be sufficient to investigate the conservation status of the stone materials of the superficial and inner parts of the studied structures 2) Recent technological and scientific developments in the field of non-invasive diagnostic techniques for different types of materials favors and supports the acquisition, processing and interpretation of huge multidisciplinary datasets.
    Description: Regione Autonoma della Sardegna (RAS) (Sardinian Autonomous Region), Regional Law 7th August 2007, no. 7, Promotion of scientific research and technological innovation in Sardinia (Italy).
    Description: Published
    Description: 4334
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Non-invasive methodology ; Stone building materials ; Diagnosis ; 3D Terrestrial Laser Scanner ; Non-invasive multi-techniques acoustic data ; Microscopy ; Methodology for the non-destructive diagnosis of architectural elements ; Cultural Heritage
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-02-16
    Description: The deglacial history of CO2 release from the deep North Pacific remains unresolved. This is due to conflicting indications about subarctic Pacific ventilation changes based on various marine proxies, especially for Heinrich Stadial 1 (HS-1) when a rapid atmospheric CO2 rise occurs. Here, we use a complex Earth System Model to investigate the deglacial North Pacific overturning and its control on ocean stratification. Our results show an enhanced intermediate-to-deep ocean stratification coeval with intensified North Pacific Intermediate Water (NPIW) formation during HS-1, compared to the Last Glacial Maximum. The stronger NPIW formation causes lower salinities and higher temperatures at intermediate depths. By lowering NPIW densities, this enlarges vertical density gradient and thus enhances intermediate-to-deep ocean stratification during HS-1. Physically, this process prevents the North Pacific deep waters from a better communication with the upper oceans, thus prolongs the existing isolation of glacial Pacific abyssal carbons during HS-1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Magnetic Resonance Materials in Physics, Biology and Medicine, Springer Nature, ISSN: 1352-8661
    Publication Date: 2019-05-27
    Description: An approach is presented for high-field MRI studies of the cardiovascular system (CVS) of a marine crustacean, the edible crab Cancer pagurus, submerged in highly conductive seawater. Structure and function of the CVS were investigated at 9.4 T. Cardiac motion was studied using self-gated CINE MRI. Imaging protocols and radio-frequency coil arrangements were tested for anatomical imaging. Haemolymph flow was quantified using phase-contrast angiography. Signal-to-noise-ratios and flow velocities in afferent and efferent branchial veins were compared with Student’s t test (n = 5). Seawater induced signal losses were dependent on imaging protocols and RF coil setup. Internal cardiac structures could be visualized with high spatial resolution within 8 min using a gradient-echo technique. Variations in haemolymph flow in different vessels could be determined over time. Maximum flow was similar within individual vessels and corresponded to literature values from Doppler measurements. Heart contractions were more pronounced in lateral and dorso-ventral directions than in the anterior–posterior direction. Choosing adequate imaging protocols in combination with a specific RF coil arrangement allows to monitor various parts of the crustacean CVS with exceptionally high spatial resolution despite the adverse effects of seawater at 9.4 T.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 7(42949), pp. 1-9
    Publication Date: 2017-03-23
    Description: At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-08-10
    Description: Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-08-10
    Description: Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago—when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream—and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-10-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...