ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media  (145)
  • UNESCO-IOC  (90)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (60)
  • 2020-2023  (295)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Contemporary scientific exploration most often takes place in highly remote and dangerous environments, such as in the deep sea and on other planets. These environments are very hostile to humans, which makes robotic exploration the first and often the only option. However, they also impose restrictive limits on how much communication is possible, creating challenges in implementing remote command and control. We propose an approach to enable more efficient autonomous robot-based scientific exploration of remote environments despite these limits on human-robot communication. We find this requires the robot to have a spatial observation model that can predict where to find various phenomena, a reward model which can measure how relevant these phenomena are to the scientific mission objectives, and an adaptive path planner which can use this information to plan high scientific value paths. We identified and addressed two main gaps: the lack of a general-purpose means for spatial observation modelling, and the challenge in learning a reward model based on images online given the limited bandwidth constraints. Our first key contribution is enabling general-purpose spatial observation modelling through spatio-temporal topic models, which are well suited for unsupervised scientific exploration of novel environments. Our next key contribution is an active learning criterion which enables learning an image-based reward model during an exploration mission by communicating with the science team efficiently. We show that using these together can result in a robotic explorer collecting up to 230% more scientifically relevant observations in a single mission than when using lawnmower trajectories.
    Description: This work was partially supported by the National Science Foundation (NSF) Award #1734400, as well as by the Woods Hole Oceanographic Institution (WHOI). The author would like to thank both organizations for their support.
    Keywords: Robotics ; Autonomous ; Exploration
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: A detailed understanding of the intensity and three-dimensional spatial distribution of diabatic abyssal turbulence is germane to understanding the abyssal branch of the global overturning circulation. This thesis addresses the issue through 1) an investigation of the dynamics of an abyssal boundary layer and through 2) the construction of a probabilistic finescale parameterization using mixture density networks (MDNs). A boundary layer, formed by the interaction of heaving isopycnals by the tide and viscous/adiabatic boundary conditions, is investigated through direct numerical simulations (DNS) and Floquet analysis. Turbulence is sustained throughout the tidal period in the DNS on extra-critical slopes characterized by small slope Burger numbers, leading to the formation of turbulent stratified Stokes-Ekman layers. Floquet analysis suggests that the boundary layers are unstable to disturbances to the vorticity component aligned with the across-isobath tidal velocity on extra-critical slopes. MDNs, trained on microstructure observations, are used to construct probabilistic finescale parameterization dependent on the finescale vertical kinetic energy (VKE), N2f2, , and both variables. The MDN model predictions are as accurate as conventional parameterizations, but also predict the underlying probability density function of the dissipation rate as a function of the dependent parameters.
    Description: My doctoral studies in the WHOI/MIT Joint Program were funded by the National Science Foundation (OCE-1657870) and the National Science Foundation Graduate Research Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Developing accurate and computationally efficient models for ocean acoustics is inherently challenging due to several factors including the complex physical processes and the need to provide results on a large range of scales. Furthermore, the ocean itself is an inherently dynamic environment within the multiple scales. Even if we could measure the exact properties at a specific instant, the ocean will continue to change in the smallest temporal scales, ever increasing the uncertainty in the ocean prediction. In this work, we explore ocean acoustic prediction from the basics of the wave equation and its derivation. We then explain the deterministic implementations of the Parabolic Equation, Ray Theory, and Level Sets methods for ocean acoustic computation. We investigate methods for evolving stochastic fields using direct Monte Carlo, Empirical Orthogonal Functions, and adaptive Dynamically Orthogonal (DO) differential equations. As we evaluate the potential of Reduced-Order Models for stochastic ocean acoustics prediction, for the first time, we derive and implement the stochastic DO differential equations for Ray Tracing (DO-Ray), starting from the differential equations of Ray theory. With a stochastic DO-Ray implementation, we can start from non-Gaussian environmental uncertainties and compute the stochastic acoustic ray fields in a reduced order fashion, all while preserving the complex statistics of the ocean environment and the nonlinear relations with stochastic ray tracing. We outline a deterministic Ray-Tracing model, validate our implementation, and perform Monte Carlo stochastic computation as a basis for comparison. We then present the stochastic DO-Ray methodology with detailed derivations. We develop varied algorithms and discuss implementation challenges and solutions, using again direct Monte Carlo for comparison. We apply the stochastic DO-Ray methodology to three idealized cases of stochastic sound-speed profiles (SSPs): constant-gradients, uncertain deep-sound channel, and a varied sonic layer depth. Through this implementation with non-Gaussian examples, we observe the ability to represent the stochastic ray trace field in a reduced order fashion.
    Description: Office of Naval Research Grants N00014-19-1-2664 (Task Force Ocean: DEEP-AI) and N00014-19-1-2693 (INBDA)
    Keywords: Stochastic Processes ; Acoustic Wave Propagation ; Acoustic Rays
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yoshii, A., & Green, W. N. Editorial: role of protein palmitoylation in synaptic plasticity and neuronal differentiation. Frontiers in Synaptic Neuroscience, 12(27), (2020), doi:10.3389/fnsyn.2020.00027.
    Description: Protein palmitoylation, the reversible addition of palmitate to proteins, is a dynamic post-translational modification. Both membrane (e.g., channels, transporters, and receptors) and cytoplasmic proteins (e.g., cell adhesion, scaffolding, cytoskeletal, and signaling molecules) are substrates. In mammals, palmitoylation is mediated by 23-24 palmitoyl acyltransferases (PATs), also called ZDHHCs for their catalytic aspartate-histidine-histidine-cysteine (DHCC) domain. PATs are integral membrane proteins found in cellular membranes. In the palmitoylation cycle, palmitate is removed by the depalmitoylation enzymes, acyl palmitoyl transferases (APT1 and 2), and α/β Hydrolase domain-containing protein 17 (ABHD17A-C). These are cytoplasmic proteins that are targeted to membranes where they are substrates for PATs. The second class of depalmitoylating enzymes are palmitoyl thioesterases, PPT1 and 2, discovered through their association with infantile neuronal ceroid lipofuscinosis. These are secreted proteins found in the lumen of intracellular organelles, primarily lysosomes, where their function as depalmitoylating enzymes is unclear.
    Description: This work was supported by University of Illinois start-up fund (to AY) and NIH/NIDA (grant DA044760 to WG).
    Keywords: palmitoylation and depalmitoylation ; synaptic plasticity ; axonal growth ; lysosome ; neurodegenerative disease ; neuronal ceroid lipofuscinoses (NCL) ; Huntington disease
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
    Description: Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
    Description: This work was funded by the USA National Science Foundation grants 1441717, 1826734, and 1335810 (to RS); and 1460861 (REU site at Bigelow Laboratory for Ocean Sciences). RS was also supported by the Simons Foundation grant 510023. TW, FS, and JJ were funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. NR group was funded by the Russian Science Foundation (grant 19-14-00245). SS was funded by USA National Science Foundation grants OCE-0452333 and OCE-1136727. BH was funded by NASA Exobiology grant 80NSSC17K0548.
    Keywords: Bacteria ; Archaea ; evolution ; genomics fermentation ; respiration ; oxidoreductases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coenen, A. R., Hu, S. K., Luo, E., Muratore, D., & Weitz, J. S. A primer for microbiome time-series analysis. Frontiers in Genetics, 11, (2020): 310, doi:10.3389/fgene.2020.00310.
    Description: Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.
    Description: This work was supported by the Simons Foundation (SCOPE award ID 329108) and the National Science Foundation (NSF Bio Oc 1829636).
    Keywords: Microbial ecology ; Time-series analysis ; Marine microbiology ; Inference ; Clustering ; Periodicity ; Code:R ; Code:matlab
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ciarletta, D. J., Lorenzo-Trueba, J., & Ashton, A. D. Interaction of sea-level pulses with periodically retreating barrier islands. Frontiers in Earth Science, 7, (2019): 279, doi: 10.3389/feart.2019.00279.
    Description: Submerged barrier deposits preserved on continental shelf seabeds provide a record of paleocoastal environmental change from the last glacial maximum through the Holocene. The formation of these offshore deposits is often attributed to intermittent periods of rapidly rising sea levels, especially glacial meltwater pulses, which are expected to lead to partial or complete drowning – overstepping – of migrating barrier islands. However, recent cross-shore modeling and field evidence suggests that even for constant sea-level rise and shelf slope, the internal dynamics of migrating barriers could plausibly drive periodic retreat accompanied by autogenic partial overstepping and deposition of barrier sediment. We hypothesize that the interaction of periodic retreat with changes in external (allogenic) forcing from sea-level rise may create novel retreat responses and corresponding relict barrier deposits. Specifically, we posit that autogenic deposits can be amplified by an increased rate of relative sea-level rise, while in other cases internal dynamics can disrupt or mask the production of allogenic deposits. Here, we model barriers through a range of autogenic–allogenic interactions, exploring how barriers with different inherent autogenic periods respond to discrete, centennial-scale sea-level-rise pulses of variable magnitude and timing within the autogenic transgressive barrier cycle. Our results demonstrate a diversity of depositional signals, where production of relict sands is amplified or suppressed depending on both the barrier’s internal dynamic state and the pulse magnitude. We also show that millennial-scale autogenic periodicity renders barriers vulnerable to complete drowning for relatively low pulse rates of rise (〈15 mm/year).
    Description: This material is based upon work supported by the National Science Foundation under Grant No. 1518503, and the American Chemical Society Petroleum Research Fund under Grant No. 58817-DNI8 awarded to JL-T; the views presented herein are solely those of the authors and not of the NSF or the ACS PRF.
    Keywords: Barrier island ; Autogenic ; Modeling ; Sea level ; Holocene ; Meltwater pulse ; Overstepping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg, R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Boettcher, B., Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., & Mohr, W. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Frontiers in Marine Science, 7, (2020): 518, doi:10.3389/fmars.2020.00518.
    Description: The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the marine carbon cycle. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO2 concentration. Therefore, a central focus of marine organic geochemistry studies is to improve our understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what we can measure, both in terms of organic compound structural diversity and isotopic composition, and complementary molecular omics studies. Here we provide a brief overview of the autochthonous, allochthonous, and anthropogenic components comprising POC in the ocean. In addition, we highlight key needs for future research that will enable us to more effectively connect diverse data sources and link the identity and structural diversity of POC to its sources and transformation processes.
    Description: We thank the Hanse Institute for Advanced Studies (HWK) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 422798570, as well as the Geochemical Society, for funding which made the workshop possible. CA was additionally supported by OCE-1736772. BV was additionally supported by NSF OCE-1756254.
    Keywords: Marine particles ; Water column ; Phytoplankton ; Marine microbes ; Structural analysis ; Organic matter characterization ; Biomarkers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schlegel, R. W., Oliver, E. C. J., & Chen, K. Drivers of marine heatwaves in the Northwest Atlantic: the role of air-sea interaction during onset and decline. Frontiers in Marine Science, 8, (2021): 627970, https://doi.org/10.3389/fmars.2021.627970
    Description: Marine heatwaves (MHWs) are increasing in duration and intensity at a global scale and are projected to continue to increase due to the anthropogenic warming of the climate. Because MHWs may have drastic impacts on fisheries and other marine goods and services, there is a growing interest in understanding the predictability and developing practical predictions of these events. A necessary step toward prediction is to develop a better understanding of the drivers and processes responsible for the development of MHWs. Prior research has shown that air–sea heat flux and ocean advection across sharp thermal gradients are common physical processes governing these anomalous events. In this study we apply various statistical analyses and employ the self-organizing map (SOM) technique to determine specifically which of the many candidate physical processes, informed by a theoretical mixed-layer heat budget, have the most pronounced effect on the onset and/or decline of MHWs on the Northwest Atlantic continental shelf. It was found that latent heat flux is the most common driver of the onset of MHWs. Mixed layer depth (MLD) also strongly modulates the onset of MHWs. During the decay of MHWs, atmospheric forcing does not explain the evolution of the MHWs well, suggesting that oceanic processes are important in the decay of MHWs. The SOM analysis revealed three primary synoptic scale patterns during MHWs: low-pressure cyclonic Autumn-Winter systems, high-pressure anti-cyclonic Spring-Summer blocking, and mild but long-lasting Summer blocking. Our results show that nearly half of past MHWs on the Northwest Atlantic shelf are initiated by positive heat flux anomaly into the ocean, but less than one fifth of MHWs decay due to this process, suggesting that oceanic processes, e.g., advection and mixing are the primary driver for the decay of most MHWs.
    Description: RS was supported by the Ocean Frontier Institute International Postdoctoral Fellowship hosted jointly by Dalhousie University and Woods Hole Oceanographic Institution, through an award from the Canada First Research Excellence Fund. EO was funded through the National Sciences and Engineering Research Council of Canada Discovery Grant RGPIN-2018-05255 and Marine Environmental Observation, Prediction, and Response Network Early Career Faculty Grant 1-02-02-059.1. KC was supported by National Oceanic and Atmospheric Administration Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program under grant NA19OAR4320074 and Climate Variability and Predictability (CVP) program under grant NA20OAR4310398.
    Keywords: Marine heatwaves ; Air-sea heat flux ; Drivers ; Northwest Atlantic ; SST ; Physical oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mara, P., Edgcomb, V. P., Sehein, T. R., Beaudoin, D., Martinsen, C., Lovely, C., Belcher, B., Cox, R., Curran, M., Farnan, C., Giannini, P., Lott, S., Paquette, K., Pinckney, A., Schafer, N., Surgeon-Rogers, T., & Rogers, D. R. Comparison of oyster aquaculture methods and their potential to from coastal ecosystems. Frontiers in Marine Science, 8,(2021): 633314, https://doi.org/10.3389/fmars.2021.633314.
    Description: Coastal ecosystems are impacted by excessive nutrient inputs that cause degradation of water quality and impairments of ecosystem functioning. Regulatory and management efforts to enhance nutrient export from coastal ecosystems include sustainable oyster aquaculture that removes nitrogen in the form of oyster biomass and increases particulate export to underlying sediments where increased organic material may enhance microbial denitrification. To better understand the impacts of oyster aquaculture on nitrogen removal, we examined bacterial processes in sediments underlying three of the most common aquaculture methods that vary in the proximity of oysters to the sediments. Sediment samples underlying sites managed with these different aquaculture methods were examined using the 16S rRNA gene to assess microbial community structure, gene expression analyses to examine nitrogen and sulfur cycling genes, and nitrogen gas flux measurements. All sites were located in the same hydrodynamic setting within Waquoit Bay, MA during 2018 and 2019. Although sediments under the different oyster farming practices showed similar communities, ordination analysis revealed discrete community groups formed along the sampling season. Measured N2 fluxes and expression of key genes involved in denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) increased during mid-summer and into fall in both years primarily under bottom cages. While all three oyster growing methods enhanced nitrogen removal relative to the control site, gene expression data indicate that the nitrogen retaining process of DNRA is particularly enhanced after end of July under bottom cages, and to a lesser extent, under suspended and floating bags. The choice of gear can also potentially increase processes that induce nitrogen retention in the form of ammonia in the underlying sediments over time, thus causing deviations from predicted nitrogen removal. If nitrogen removal is a primary objective, monitoring for these shifts is essential for making decisions about siting and size of aquaculture sites from year to year.
    Description: This work was supported by the National Oceanic and Atmospheric Administration and National Estuarine Research Reserve System Science Collaborative, award NAI4NOS4190145 (subaward 3004686666) to DR and VE.
    Keywords: Nitrogen removal ; Oyster cultures ; Denitrification ; Anammox ; DNRA
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...