ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (223,062)
  • Frontiers Media  (32,007)
  • 2020-2024  (1,713)
  • 2020-2022  (253,356)
  • 1
    facet.materialart.
    Unknown
    Frontiers Media
    In:  EPIC3Frontiers in Climate, Frontiers Media, 3, pp. 58, ISSN: 2624-9553
    Publication Date: 2021-07-01
    Description: An important aspect of inevitable surprises, for the climate system, is the potential of occurrence of compound extreme events. These can be events that occur at the same time over the same geographic location or at multiple locations within a given country or around the world. In this study, we investigate the spatio-temporal variability of summer compound hot and dry (CHD) events at European level and we quantify the relationship between the occurrence of CHDs and the large-scale atmospheric circulation. Here we show that summer 1955 stands out as the year with the largest spatial extent characterized by hot and dry conditions (~21.2 at European level), followed by 2015 (~20.3), 1959 (~19.4), and 1950 (~16.9). By employing an Empirical Orthogonal Function (EOF) analysis we show that there are three preferred centers of action of CHDs over Europe: Fennoscandia, the central part of Europe, and the south-eastern part of Europe. Overall, hot and dry summers are, in general, associated with persistent high-pressure systems over the regions affected by CHDs, which in turn reduces the zonal flow and diverts the storm tracks southward. The high-pressure systems associated with each mode of variability largely suppresses ascending motions, reduces water vapor condensation and precipitation formation, leading to drought conditions below this atmospheric system. This study may help improve our understanding of the spatio-temporal variability of hot and dry summers, at European level, as well as their driving mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-23
    Description: The Arctic climate is changing rapidly. The warming and resultant longer open water periods suggest a potential for expansion of marine vegetation along the vast Arctic coastline. We compiled and reviewed the scattered time series on Arctic marine vegetation and explored trends for macroalgae and eelgrass (Zostera marina). We identified a total of 38 sites, distributed between Arctic coastal regions in Alaska, Canada, Greenland, Iceland, Norway/Svalbard, and Russia, having time series extending into the 21st Century. The majority of these exhibited increase in abundance, productivity or species richness, and/or expansion of geographical distribution limits, several time series showed no significant trend. Only four time series displayed a negative trend, largely due to urchin grazing or increased turbidity. Overall, the observations support with medium confidence (i.e., 5–8 in 10 chance of being correct, adopting the IPCC confidence scale) the prediction that macrophytes are expanding in the Arctic. Species distribution modeling was challenged by limited observations and lack of information on substrate, but suggested a current (2000– 2017) potential pan-Arctic macroalgal distribution area of 820.000 km2 (145.000 km2 intertidal, 675.000 km2 subtidal), representing an increase of about 30% for subtidaland 6% for intertidal macroalgae since 1940–1950, and associated polar migration rates averaging 18–23 km decade−1 . Adjusting the potential macroalgal distribution area by the fraction of shores represented by cliffs halves the estimate (412,634 km2 ). Warming and reduced sea ice cover along the Arctic coastlines are expected to stimulate further expansion of marine vegetation from boreal latitudes. The changes likely affect the functioning of coastal Arctic ecosystems because of the vegetation’s roles as habitat, and for carbon and nutrient cycling and storage. We encourage apan-Arctic science- and management agenda to incorporate marine vegetation into a coherent understanding of Arctic changes by quantifying distribution and status beyond the scattered studies now available to develop sustainable management strategies for these important ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-29
    Description: Monitoring volcanic eruptions provides key information for hazard assessment and its time evolution. Satellite remote sensing data are nowadays essential to perform such task, thanks to their capability to survey disastrous events also in remote and under-monitored regions, with frequent revisit time and accurate spatial resolution. Even though satellite imageries are presently used to analyze several phenomena related to eruptions, automatic methods and synergic exploitation of different sensors are rarely considered. In this work, we have analyzed satellite images coming from both synthetic apertureradar(SAR)andopticalsensors,tostudytheeffusiveeruptionofFogovolcano, CapeVerde,whichtookplacebetweenNovember2014andJanuary2015.Inparticular, we have exploited multi-sensor images from Sentinel-1, COSMO-SkyMed, Landsat8, and Earth-Observing-1 missions, to retrieve lava flow patterns and volcanic source parameters related to the eruption. The main outcome of our work is the application of a new automatic change detection technique for estimating the lava field and its temporalevolution,combiningtheSARintensityandtheinterferometricSARcoherence. The innovative algorithm is able to take full advantage of the Sentinel-1 mission’s 6day repeat cycle. Such data are here used for the first time for lava mapping, thereby providing an unprecedented example of using the multi-temporal interferometric SAR (InSAR) coherence to automatically monitor lava flow evolution in emergency phase. This new technique, jointly used with optical satellite images, is capable of resolving with spatial and temporal detail the evolution of lava flows. We have also performed differential SAR interferometry (DInSAR) to map the ground deformation and retrieve the feeding dyke by inverting syn-eruptive signals. Results from source modeling show a SW-NE oriented dyke, located inside Chã das Caldeiras, SW of the Pico do Fogo. Our work highlights how multidisciplinary and satellite open data, along with innovative and automatic processing techniques, may be adopted for real-time hazard estimates in an operational environment
    Description: Published
    Description: Article 22
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: lava, volcanic source modeling, synthetic aperture radar, optical images, change detection, hierarchical-split-based approach, DInSAR coherence, Fogo volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-30
    Description: Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55°C and pH 5.0. The highest growth rate is obtained using H2 as energy source (μmax 0.19 ± 0.02 h-1, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 ± 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions.
    Description: Published
    Description: Article 951
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: CO ; H2 ; Kyrpidia spormannii ; [NiFe]-hydrogenases ; phylogeny ; thermoacidophilic ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fairall, C. W. W., Yang, M., Brumer, S. E. E., Blomquist, B. W. W., Edson, J. B. B., Zappa, C. J. J., Bariteau, L., Pezoa, S., Bell, T. G. G., & Saltzman, E. S. S. Air-Sea trace gas fluxes: direct and indirect measurements. Frontiers in Marine Science, 9, (2022): 826606, https://doi.org/10.3389/fmars.2022.826606.
    Description: The past decade has seen significant technological advance in the observation of trace gas fluxes over the open ocean, most notably CO2, but also an impressive list of other gases. Here we will emphasize flux observations from the air-side of the interface including both turbulent covariance (direct) and surface-layer similarity-based (indirect) bulk transfer velocity methods. Most applications of direct covariance observations have been from ships but recently work has intensified on buoy-based implementation. The principal use of direct methods is to quantify empirical coefficients in bulk estimates of the gas transfer velocity. Advances in direct measurements and some recent field programs that capture a considerable range of conditions with wind speeds exceeding 20 ms-1 are discussed. We use coincident direct flux measurements of CO2 and dimethylsulfide (DMS) to infer the scaling of interfacial viscous and bubble-mediated (whitecap driven) gas transfer mechanisms. This analysis suggests modest chemical enhancement of CO2 flux at low wind speed. We include some updates to the theoretical structure of bulk parameterizations (including chemical enhancement) as framed in the COAREG gas transfer algorithm.
    Description: This work, and the contributions of MY and TB, is supported by the UK Natural Environment Research Council’s ORCHESTRA (Grant No. NE/N018095/1) and PICCOLO (Grant No. NE/P021409/1) projects, and by the European Space Agency’s AMT4OceanSatFlux project (Grant No. 4000125730/18/NL/FF/gp). CF and BB are funded by the National Oceanic and Atmospheric Administration’s Global Ocean Monitoring and Observing program (http://data.crossref.org/fundingdata/funder/10.13039/100018302). CZ was funded by the National Science Foundation (CJZ: OCE-2049579, Grants OCE-1537890 and OCE-1923935). Funding for HiWinGS was provided by the US National Science Foundation grant AGS-1036062. The Knorr-11 and SOAP campaigns were supported by the NSF Atmospheric Chemistry Program (Grant No. ATM-0426314, AGS-08568, -0851472, -0851407 and -1143709).
    Keywords: Gas transfer velocity ; Chemical enhancement ; Bubble mediated transfer ; COARE gas flux parameterization ; Dimethylsufide (DMS) ; Cardon dioxide (CO2) ; Bulk algorithm ; Direct observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sayigh, L., Janik, V., Jensen, F., Scott, M., Tyack, P., & Wells, R. The Sarasota Dolphin whistle database: a unique long-term resource for understanding dolphin communication. Frontiers in Marine Science, 9, (2022): 923046, https://doi.org/10.3389/fmars.2022.923046.
    Description: Common bottlenose dolphins (Tursiops truncatus) produce individually distinctive signature whistles that are learned early in life and that help animals recognize and maintain contact with conspecifics. Signature whistles are the predominant whistle type produced when animals are isolated from conspecifics. Health assessments of dolphins in Sarasota, Florida (USA) provide a unique opportunity to record signature whistles, as dolphins are briefly separated from conspecifics. Recordings were first made in the mid 1970’s, and then nearly annually since 1984. The Sarasota Dolphin Whistle Database (SDWD) now contains 926 recording sessions of 293 individual dolphins, most of known age, sex, and matrilineal relatedness. The longest time span over which an individual has been recorded is 43 years, and 85 individuals have been recorded over a decade or more. Here we describe insights about signature whistle structure revealed by this unique and expansive dataset. Signature whistles of different dolphins show great variety in their fundamental frequency contours. Signature whistle types (with ‘whistle type’ defined as all whistles visually categorized as sharing a particular frequency modulation pattern) can consist of a single stereotyped element, or loop (single-loop whistles), or of multiple stereotyped loops with or without gaps (multi-loop whistles). Multi-loop signature whistle types can also show extensive variation in both number and contour of loops. In addition, fundamental frequency contours of all signature whistle types can be truncated (deletions) or embellished (additions), and other features are also occasionally incorporated. However, even with these variable features, signature whistle types tend to be highly stereotyped and easily distinguishable due to the extensive variability in contours among individuals. In an effort to quantify this individual distinctiveness, and to compare it to other species, we calculated Beecher’s Information Statistic and found it to be higher than for any other animal signal studied so far. Thus, signature whistles have an unusually high capacity to convey information on individual identity. We briefly review the large range of research projects that the SDWD has enabled thus far, and look ahead to its potential to answer a broad suite of questions about dolphin communication.
    Description: Funding for data collection and analysis over the years has been provided by the National Science Foundation, The Royal Society of London, Dolphin Quest, Adelaide M. and Charles B. Link Foundation, Marine Mammal Commission, National Oceanic and Atmospheric Administration, Earthwatch Institute, Protect Wild Dolphins Fund of the Harbor Branch Oceanographic Institute, Grossman Family Foundation, WHOI Ocean Life Institute, Vulcan Machine Learning Center for Impact, and the Allen Institute for Artificial Intelligence. Current support for PT’s involvement is provided by the Office of Naval Research Grants N00014-18-1-2062 and N00014-20-1-2709 through a subaward from Carnegie Mellon University. Current support for LS’s involvement is provided by the Adelaide M. & Charles B. Link Foundation and Dolphin Quest.
    Keywords: Signature whistle ; Communication ; Cognition ; Database ; Individual identity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lillis, A., & Mooney, T. Sounds of a changing sea: temperature drives acoustic output by dominant biological sound-producers in shallow water habitats. Frontiers in Marine Science, 9, (2022): 960881, https://doi.org/10.3389/fmars.2022.960881.
    Description: The ocean’s soundscape is fundamental to marine ecosystems, not only as a source of sensory information critical to many ecological processes but also as an indicator of biodiversity and habitat health. Yet, little is known about how ecoacoustic activity in marine habitats is altered by environmental changes such as temperature. The sounds produced by dense colonies of snapping shrimp dominate temperate and tropical coastal soundscapes worldwide and are a major driver broadband sound pressure level (SPL) patterns. Field recordings of soundscape patterns from the range limit of a snapping shrimp distribution showed that rates of snap production and associated SPL were closely positively correlated to water temperature. Snap rates changed by 15-60% per °C change in regional temperature, accompanied by fluctuations in SPL between 1-2 dB per °C. To test if this relationship was due to a direct effect of temperature, we measured snap rates in controlled experiments using two snapping shrimp species dominant in the Western Atlantic Ocean and Gulf of Mexico (Alpheus heterochaelis and A. angulosus). Snap rates were measured for shrimp held at different temperatures (across 10-30 °C range, with upper limit 2°C above current summer mean temperatures) and under different social groupings. Temperature had a significant effect on shrimp snap rates for all social contexts tested (individuals, pairs, and groups). For individuals and shrimp groups, snap production more than doubled between mid-range (20°C) and high (30°C) temperature treatments. Given that snapping shrimp sounds dominate the soundscapes of diverse habitats, including coral reefs, rocky bottoms, seagrass, and oyster beds, the strong influence of temperature on their activity will potentially alter soundscape patterns broadly. Increases in ambient sound levels driven by elevated water temperatures has ecological implications for signal detection, communication, and navigation in key coastal ecosystems for a wide range of organisms, including humans.
    Description: Financial support was provided by NSF Biological Oceanography Grant #1536782, Woods Hole Oceanographic Institution’s Interdisciplinary Award and Postdoctoral Scholar Programs.
    Keywords: Soundscape ; Underwater noise ; Acoustic ecology ; Acoustic monitoring ; Crustacean ; Ecoacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-02
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Koguchi, Y., Tokuhiro, K., Ashjian, C., Campbell, R., & Yamaguchi, A. Inter-species comparison of the copepodite stage morphology, vertical distribution, and seasonal population structure of five sympatric mesopelagic aetideid copepods in the western Arctic Ocean. Frontiers in Marine Science, 9, (2022): 943100, https://doi.org/10.3389/fmars.2022.943100.
    Description: Aetideidae is a calanoid copepod family dominant in the mesopelagic layer of the Arctic Ocean for which little ecological information is available because species identification, especially of early copepodite stages, is difficult. In this study, we developed a species identification flow for the whole copepodite stages of five sympatric aetideid copepods (Chiridius obtusifrons, Gaetanus tenuispinus, G. brevispinus, Aetideopsis multiserrata, and A. rostrata). Vertical distributions and seasonal population structures of these species were evaluated using a year-round sample time-series collected at the drifting ice station (SHEBA) in the western Arctic Ocean. Combinations of morphological characteristics (prosome length, cephalosome, and prosome widths) were used to identify the early copepodite stages to species. Aetideopsis rostrata was distributed in deep waters (1,032–1,065 m) throughout the year. The other species all were found at 600–700 m during the midnight sun. However, during the polar night, the vertical distributions of each species were distinct, resulting from ascent, descent, or depth maintenance, indicating seasonal vertical migration which may function to reduce inter-specific competition during the polar night when food resources are scarce. Reproduction timing varied among four aetideid copepods: C.obtusifrons and G. tenuispinus showed polar night ascent and reproduction at the end of the polar night, whereas G. brevispinus and A. multiserrata showed descent or depth maintenance during the polar night and reproduction at the beginning of the polar night. There was not sufficient data to examine reproduction timing of A. rostrata. Common for all aetideid species, δ15N values of the adult females indicate more carnivorous feeding modes during the polar night than those in the midnight sun. Such vertical distribution and timing of reproduction variation among these five aetideid copepods may function to reduce species competition in the mesopelagic layer of the Arctic Ocean.
    Description: Collection of the samples was supported in part by grants #OCE9707184 to CA and #OCE9707182 to RC from the US National Science Foundation. This work was partially supported by the Arctic Challenge for Sustainability II (ArCS II), Program Grant Number JPMXD1420318865. This research was also supported by the Environment Research and Technology Development Fund (JPMEERF20214002) of the Environmental Restoration and Conservation Agency of Japan. In addition, this work was partly supported by a Grant-in-Aid for Challenging Research (Pioneering) JP20K20573, and Scientific Research JP20H03054 (B), JP19H03037 (B), JP21H02263 (B), and JP17H01483 (A) from the Japanese Society for the Promotion of Science (JSPS).
    Keywords: Aetideidae ; Sympatric mesopelagic copepods ; Vertical distribution ; Population structure ; Reproduction ; The Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Visser, A.-N., Wankel, S., Frey, C., Kappler, A., & Lehmann, M. Unchanged nitrate and nitrite isotope fractionation during heterotrophic and Fe(II)-mixotrophic denitrification suggest a non-enzymatic link between denitrification and Fe(II) oxidation. Frontiers in Microbiology, 13, (2022): 927475, https://doi.org/10.3389/fmicb.2022.927475.
    Description: Natural-abundance measurements of nitrate and nitrite (NOx) isotope ratios (δ15N and δ18O) can be a valuable tool to study the biogeochemical fate of NOx species in the environment. A prerequisite for using NOx isotopes in this regard is an understanding of the mechanistic details of isotope fractionation (15ε, 18ε) associated with the biotic and abiotic NOx transformation processes involved (e.g., denitrification). However, possible impacts on isotope fractionation resulting from changing growth conditions during denitrification, different carbon substrates, or simply the presence of compounds that may be involved in NOx reduction as co-substrates [e.g., Fe(II)] remain uncertain. Here we investigated whether the type of organic substrate, i.e., short-chained organic acids, and the presence/absence of Fe(II) (mixotrophic vs. heterotrophic growth conditions) affect N and O isotope fractionation dynamics during nitrate (NO3–) and nitrite (NO2–) reduction in laboratory experiments with three strains of putative nitrate-dependent Fe(II)-oxidizing bacteria and one canonical denitrifier. Our results revealed that 15ε and 18ε values obtained for heterotrophic (15ε-NO3–: 17.6 ± 2.8‰, 18ε-NO3–:18.1 ± 2.5‰; 15ε-NO2–: 14.4 ± 3.2‰) vs. mixotrophic (15ε-NO3–: 20.2 ± 1.4‰, 18ε-NO3–: 19.5 ± 1.5‰; 15ε-NO2–: 16.1 ± 1.4‰) growth conditions are very similar and fall within the range previously reported for classical heterotrophic denitrification. Moreover, availability of different short-chain organic acids (succinate vs. acetate), while slightly affecting the NOx reduction dynamics, did not produce distinct differences in N and O isotope effects. N isotope fractionation in abiotic controls, although exhibiting fluctuating results, even expressed transient inverse isotope dynamics (15ε-NO2–: –12.4 ± 1.3 ‰). These findings imply that neither the mechanisms ordaining cellular uptake of short-chain organic acids nor the presence of Fe(II) seem to systematically impact the overall N and O isotope effect during NOx reduction. The similar isotope effects detected during mixotrophic and heterotrophic NOx reduction, as well as the results obtained from the abiotic controls, may not only imply that the enzymatic control of NOx reduction in putative NDFeOx bacteria is decoupled from Fe(II) oxidation, but also that Fe(II) oxidation is indirectly driven by biologically (i.e., via organic compounds) or abiotically (catalysis via reactive surfaces) mediated processes co-occurring during heterotrophic denitrification.
    Description: This study was supported by the German Research Foundation (DFG)-funded RTG 1708 “Molecular Principles of Bacterial Survival Strategies.” Work performed under the supervision of ML was supported by the University of Basel funds.
    Keywords: Denitrification ; Nitrate/nitrite isotopes ; Iron oxidation ; Isotope fractionation ; Carbon substrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-08
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Franks, B. R., Tyminski, J. P., Hussey, N. E., Braun, C. D., Newton, A. L., Thorrold, S. R., Fischer, G. C., McBride, B., & Hueter, R. E. Spatio-temporal variability in white shark (Carcharodon carcharias) movement ecology during residency and migration phases in the western North Atlantic. Frontiers in Marine Science, 8, (2021): 744202, https://doi.org/10.3389/fmars.2021.744202.
    Description: Understanding how mobile, marine predators use three-dimensional space over time is central to inform management and conservation actions. Combining tracking technologies can yield powerful datasets over multiple spatio-temporal scales to provide critical information for these purposes. For the white shark (Carcharodon carcharias), detailed movement and migration information over ontogeny, including inter- and intra-annual variation in timing of movement phases, is largely unknown in the western North Atlantic (WNA), a relatively understudied area for this species. To address this need, we tracked 48 large juvenile to adult white sharks between 2012 and 2020, using a combination of satellite-linked and acoustic telemetry. Overall, WNA white sharks showed repeatable and predictable patterns in horizontal movements, although there was variation in these movements related to sex and size. While most sharks undertook an annual migratory cycle with the majority of time spent over the continental shelf, some individuals, particularly adult females, made extensive forays into the open ocean as far east as beyond the Mid-Atlantic Ridge. Moreover, increased off-shelf use occurred with body size even though migration and residency phases were conserved. Summer residency areas included coastal Massachusetts and portions of Atlantic Canada, with individuals showing fidelity to specific regions over multiple years. An autumn/winter migration occurred with sharks moving rapidly south to overwintering residency areas in the southeastern United States Atlantic and Gulf of Mexico, where they remained until the following spring/summer. While broad residency and migration periods were consistent, migratory timing varied among years and among individuals within years. White sharks monitored with pop-up satellite-linked archival tags made extensive use of the water column (0–872 m) and experienced a broad range of temperatures (−0.9 – 30.5°C), with evidence for differential vertical use based on migration and residency phases. Overall, results show dynamic inter- and intra-annual three-dimensional patterns of movements conserved within discrete phases. These results demonstrate the value of using multiple tag types to track long-term movements of large mobile species. Our findings expand knowledge of the movements and migration of the WNA white shark population and comprise critically important information to inform sound management strategies for the species.
    Description: Primary funding for this work, including research shiptime, fishing operations, and acoustic and SPOT tags, was provided by OCEARCH and its sponsors. Funding for PSATs was provided by the Shark Foundation (Hai Siftung) and the Disney Conservation Fund. PSAT data analysis was supported by a grant from NOAA/National Sea Grant to RH. Support for RH’s contributions was provided by the Perry W. Gilbert Chair in Shark Research at Mote Marine Laboratory, NOAA, and OCEARCH.
    Keywords: White shark ; Western North Atlantic ; Telemetry ; Migration ; Fidelity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...