ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media  (43)
  • Wiley  (37)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (23)
  • UNESCO-IOC
  • 2020-2023  (103)
  • 2020  (103)
  • 1
    Publication Date: 2022-03-11
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modelling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the centre of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice‐bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon was ice‐grounded in spring. In bedfast ice areas, the electrical resistivity profiles suggest that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modelling suggests thermokarst lake taliks refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 °C. This occurs, because the top‐down chemical degradation of newly formed ice‐bearing permafrost is slower than the cooling of the talik. Hence, lagoons may pre‐condition taliks with a layer of ice‐bearing permafrost before encroachment by the sea and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Contemporary scientific exploration most often takes place in highly remote and dangerous environments, such as in the deep sea and on other planets. These environments are very hostile to humans, which makes robotic exploration the first and often the only option. However, they also impose restrictive limits on how much communication is possible, creating challenges in implementing remote command and control. We propose an approach to enable more efficient autonomous robot-based scientific exploration of remote environments despite these limits on human-robot communication. We find this requires the robot to have a spatial observation model that can predict where to find various phenomena, a reward model which can measure how relevant these phenomena are to the scientific mission objectives, and an adaptive path planner which can use this information to plan high scientific value paths. We identified and addressed two main gaps: the lack of a general-purpose means for spatial observation modelling, and the challenge in learning a reward model based on images online given the limited bandwidth constraints. Our first key contribution is enabling general-purpose spatial observation modelling through spatio-temporal topic models, which are well suited for unsupervised scientific exploration of novel environments. Our next key contribution is an active learning criterion which enables learning an image-based reward model during an exploration mission by communicating with the science team efficiently. We show that using these together can result in a robotic explorer collecting up to 230% more scientifically relevant observations in a single mission than when using lawnmower trajectories.
    Description: This work was partially supported by the National Science Foundation (NSF) Award #1734400, as well as by the Woods Hole Oceanographic Institution (WHOI). The author would like to thank both organizations for their support.
    Keywords: Robotics ; Autonomous ; Exploration
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: A detailed understanding of the intensity and three-dimensional spatial distribution of diabatic abyssal turbulence is germane to understanding the abyssal branch of the global overturning circulation. This thesis addresses the issue through 1) an investigation of the dynamics of an abyssal boundary layer and through 2) the construction of a probabilistic finescale parameterization using mixture density networks (MDNs). A boundary layer, formed by the interaction of heaving isopycnals by the tide and viscous/adiabatic boundary conditions, is investigated through direct numerical simulations (DNS) and Floquet analysis. Turbulence is sustained throughout the tidal period in the DNS on extra-critical slopes characterized by small slope Burger numbers, leading to the formation of turbulent stratified Stokes-Ekman layers. Floquet analysis suggests that the boundary layers are unstable to disturbances to the vorticity component aligned with the across-isobath tidal velocity on extra-critical slopes. MDNs, trained on microstructure observations, are used to construct probabilistic finescale parameterization dependent on the finescale vertical kinetic energy (VKE), N2f2, , and both variables. The MDN model predictions are as accurate as conventional parameterizations, but also predict the underlying probability density function of the dissipation rate as a function of the dependent parameters.
    Description: My doctoral studies in the WHOI/MIT Joint Program were funded by the National Science Foundation (OCE-1657870) and the National Science Foundation Graduate Research Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Romagnoni, G., Kvile, K. o., Dagestad, K., Eikeset, A. M., Kristiansen, T., Stenseth, N. C., & Langangen, O. Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation. Fisheries Oceanography, (2020): 1-16, doi:10.1111/fog.12474.
    Description: The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua ). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.
    Description: G.R. was supported by the Norden Top‐level Research Initiative sub‐programme “Effect Studies and Adaptation to Climate Change” through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER). K.Ø.K. was supported by the WHOI John H. Steele Post‐doctoral Scholar award and VISTA – a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor. We thank an anonymous referee for valuable comments that substantially improved the article.
    Keywords: Atlantic cod ; biophysical model ; larval transport ; North Sea ; populations ; stock–recruitment ; temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Developing accurate and computationally efficient models for ocean acoustics is inherently challenging due to several factors including the complex physical processes and the need to provide results on a large range of scales. Furthermore, the ocean itself is an inherently dynamic environment within the multiple scales. Even if we could measure the exact properties at a specific instant, the ocean will continue to change in the smallest temporal scales, ever increasing the uncertainty in the ocean prediction. In this work, we explore ocean acoustic prediction from the basics of the wave equation and its derivation. We then explain the deterministic implementations of the Parabolic Equation, Ray Theory, and Level Sets methods for ocean acoustic computation. We investigate methods for evolving stochastic fields using direct Monte Carlo, Empirical Orthogonal Functions, and adaptive Dynamically Orthogonal (DO) differential equations. As we evaluate the potential of Reduced-Order Models for stochastic ocean acoustics prediction, for the first time, we derive and implement the stochastic DO differential equations for Ray Tracing (DO-Ray), starting from the differential equations of Ray theory. With a stochastic DO-Ray implementation, we can start from non-Gaussian environmental uncertainties and compute the stochastic acoustic ray fields in a reduced order fashion, all while preserving the complex statistics of the ocean environment and the nonlinear relations with stochastic ray tracing. We outline a deterministic Ray-Tracing model, validate our implementation, and perform Monte Carlo stochastic computation as a basis for comparison. We then present the stochastic DO-Ray methodology with detailed derivations. We develop varied algorithms and discuss implementation challenges and solutions, using again direct Monte Carlo for comparison. We apply the stochastic DO-Ray methodology to three idealized cases of stochastic sound-speed profiles (SSPs): constant-gradients, uncertain deep-sound channel, and a varied sonic layer depth. Through this implementation with non-Gaussian examples, we observe the ability to represent the stochastic ray trace field in a reduced order fashion.
    Description: Office of Naval Research Grants N00014-19-1-2664 (Task Force Ocean: DEEP-AI) and N00014-19-1-2693 (INBDA)
    Keywords: Stochastic Processes ; Acoustic Wave Propagation ; Acoustic Rays
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yoshii, A., & Green, W. N. Editorial: role of protein palmitoylation in synaptic plasticity and neuronal differentiation. Frontiers in Synaptic Neuroscience, 12(27), (2020), doi:10.3389/fnsyn.2020.00027.
    Description: Protein palmitoylation, the reversible addition of palmitate to proteins, is a dynamic post-translational modification. Both membrane (e.g., channels, transporters, and receptors) and cytoplasmic proteins (e.g., cell adhesion, scaffolding, cytoskeletal, and signaling molecules) are substrates. In mammals, palmitoylation is mediated by 23-24 palmitoyl acyltransferases (PATs), also called ZDHHCs for their catalytic aspartate-histidine-histidine-cysteine (DHCC) domain. PATs are integral membrane proteins found in cellular membranes. In the palmitoylation cycle, palmitate is removed by the depalmitoylation enzymes, acyl palmitoyl transferases (APT1 and 2), and α/β Hydrolase domain-containing protein 17 (ABHD17A-C). These are cytoplasmic proteins that are targeted to membranes where they are substrates for PATs. The second class of depalmitoylating enzymes are palmitoyl thioesterases, PPT1 and 2, discovered through their association with infantile neuronal ceroid lipofuscinosis. These are secreted proteins found in the lumen of intracellular organelles, primarily lysosomes, where their function as depalmitoylating enzymes is unclear.
    Description: This work was supported by University of Illinois start-up fund (to AY) and NIH/NIDA (grant DA044760 to WG).
    Keywords: palmitoylation and depalmitoylation ; synaptic plasticity ; axonal growth ; lysosome ; neurodegenerative disease ; neuronal ceroid lipofuscinoses (NCL) ; Huntington disease
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
    Description: Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
    Description: This work was funded by the USA National Science Foundation grants 1441717, 1826734, and 1335810 (to RS); and 1460861 (REU site at Bigelow Laboratory for Ocean Sciences). RS was also supported by the Simons Foundation grant 510023. TW, FS, and JJ were funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. NR group was funded by the Russian Science Foundation (grant 19-14-00245). SS was funded by USA National Science Foundation grants OCE-0452333 and OCE-1136727. BH was funded by NASA Exobiology grant 80NSSC17K0548.
    Keywords: Bacteria ; Archaea ; evolution ; genomics fermentation ; respiration ; oxidoreductases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-04
    Description: Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to arctic coastal areas. With rapidly‐changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly‐dynamic nearshore zone of Herschel Island ‐ Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L‐1, within the first 100 – 300 meters offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (〈5 m water depth), predominantly deposited in nearshore sediments. While long‐term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine‐grained, OC‐rich sediments in the nearshore zone potentially enhances OC turnover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scalpone, C. R., Jarvis, J. C., Vasslides, J. M., Testa, J. M., & Ganju, N. K. Simulated estuary-wide response of seagrass (Zostera marina) to future scenarios of temperature and sea level. Frontiers in Marine Science, 7, (2020): 539946, doi:10.3389/fmars.2020.539946.
    Description: Seagrass communities are a vital component of estuarine ecosystems, but are threatened by projected sea level rise (SLR) and temperature increases with climate change. To understand these potential effects, we developed a spatially explicit model that represents seagrass (Zostera marina) habitat and estuary-wide productivity for Barnegat Bay-Little Egg Harbor (BB-LEH) in New Jersey, United States. Our modeling approach included an offline coupling of a numerical seagrass biomass model with the spatially variable environmental conditions from a hydrodynamic model to calculate above and belowground biomass at each grid cell of the hydrodynamic model domain. Once calibrated to represent present day seagrass habitat and estuary-wide annual productivity, we applied combinations of increasing air temperature and sea level following regionally specific climate change projections, enabling analysis of the individual and combined impacts of these variables on seagrass biomass and spatial coverage. Under the SLR scenarios, the current model domain boundaries were maintained, as the land surrounding BB-LEH is unlikely to shift significantly in the future. SLR caused habitat extent to decrease dramatically, pushing seagrass beds toward the coastline with increasing depth, with a 100% loss of habitat by the maximum SLR scenario. The dramatic loss of seagrass habitat under SLR was in part due to the assumption that surrounding land would not be inundated, as the model did not allow for habitat expansion outside the current boundaries of the bay. Temperature increases slightly elevated the rate of summer die-off and decreased habitat area only under the highest temperature increase scenarios. In combined scenarios, the effects of SLR far outweighed the effects of temperature increase. Sensitivity analysis of the model revealed the greatest sensitivity to changes in parameters affecting light limitation and seagrass mortality, but no sensitivity to changes in nutrient limitation constants. The high vulnerability of seagrass in the bay to SLR exceeded that demonstrated for other systems, highlighting the importance of site- and region-specific assessments of estuaries under climate change.
    Description: This research was supported by the National Science Foundation Research Experience for Undergraduates Program (OCE-1659463), the Woods Hole Oceanographic Institution Summer Student Fellowship Program, the Barnegat Bay Partnership (through a US EPA Clean Water Act grant to Ocean County College; CE98212313), and the USGS Coastal and Marine Hazards/Resources Program. Although this project has been funded in part by the United States Environmental Protection Agency pursuant to a grant agreement with Ocean County College, it has not gone through the Agency’s publications review process and may not necessarily reflect the views of the Agency; therefore, no official endorsement should be assumed. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Seagrass (Zostera) ; Climate change ; Spatial model ; Sea level rise ; Temperature ; North American Atlantic Coast ; Regional ; Eelgrass (Zostera marina)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography and Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: The redox cycling of oxygen between O2, water, and intermediate redox states including hydrogen peroxide and superoxide, has profound impact on the availability and distribution of dissolved O2, the habitability of the marine biosphere, and cellular metabolic and physiological reactions that utilize O2. The sum total of processes that produce, consume, and exchange atoms with O2 in the atmosphere, oceans, and subsurface leave their isotopic fingerprints on the abundance of the three stable isotopes of O2 in the environment. In this thesis, I explore two aspects of the oxygen cycle in the past and present. First, I investigate the ability of manganese (Mn) oxide minerals to capture and retain the oxygen isotopic signature of dissolved O2 during the oxidation of aqueous Mn(II) to Mn-oxide minerals. I determine that approximately half of the oxygen atoms in Mn(III,IV) oxides are directly incorporated from dissolved oxygen, and use isotope labeling techniques to further constrain how the dissolved oxygen isotope signature may be determined from that of Mn oxides. I perform an in-depth characterization of a ferromanganese crust from the central Pacific and, using triple oxygen isotope measurements, demonstrate that Mn oxides in ferromanganese crusts from around the world retain signatures of dissolved oxygen for at least 30 million years. I next turn to a previously unconsidered aspect of the global oxygen cycle: dark, extracellular superoxide production by marine microbes. I measure extracellular superoxide production rates by some of the ocean’s most abundant organisms. I use these rates along with previous measurements to estimate that extracellular superoxide production yields a net sink of 5-19% of marine dissolved oxygen. Ultimately, the degree to which superoxide production is a sink of oxygen lies in the fate of its primary decay product, hydrogen peroxide. I determine the range of oxidative and reductive decay of hydrogen peroxide across a range of environmental conditions in a meromictic pond, thus validating several assumptions from our global estimate. Altogether, this thesis illuminates a path toward investigating the oxygen cycle on million-year timescales in Earth’s recent past and demonstrates the importance of microbial superoxide production in the biogeochemical cycling of O2.
    Description: This work was funded by the following grants and organizations: NASA Earth and Space Science Fellowship (NNX15AR62H), MIT Praecis Presidential Graduate Fellowship, NASA Exobiology (NNX15AM046), NSF-OCE grant 1355720, WHOI Ocean Ventures Fund, MIT Student Assistance Fund, WHOI Academic Programs Office, and the Stanford Synchrotron Radiation Lightsource. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...