ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-13
    Description: Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-04
    Description: Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler ( Setophaga caerulescens ), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-05
    Description: Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent empirical studies present conflicting findings on this dynamic, reporting both rapid upward ecotonal shifts and concurrent increases in boreal species within the region. These discrepancies may result from the limited spatial extent of observations. We developed a method to model and map the montane forest ecotone using Landsat imagery to observe change at scales not possible for plot-based studies, covering mountain peaks over 39,000 km 2 . Our results show that ecotones shifted downward or stayed stable on most mountains between 1991 and 2010, but also shifted upward in some cases (13-15% slopes). On average, upper ecotone boundaries moved down -1.5 m·yr −1 in the Green Mountains, VT, and -1.3 m·yr −1 in the White Mountains, NH. These changes agree with re-measured forest inventory data from Hubbard Brook Experimental Forest, NH and suggest that processes of boreal forest recovery from prior red spruce decline, or human landuse and disturbance, may swamp out any signal of climate-mediated migration in this ecosystem. This approach represents a powerful framework for evaluating similar ecotonal dynamics in other mountainous regions of the globe. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-05
    Description: In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics difficult – especially when attempting to understand species composition changes against a backdrop of climate and ecological variability. Here we present an analysis of a community of juvenile nearshore fishes based on nearly 8 decades of highly standardized Norwegian survey records. Using multivariate statistical techniques, we: a) characterize the change in taxonomic community composition through time, b) determine whether there has been an increase in warm water affinity species relative to their cold water affinity counterparts, and c) characterize the temporal change in the species’ functional trait assemblage. Our results strongly indicate a shift towards a novel fish assemblage between the late 1990s and 2000s. The context of changes within the most recent two decades are in stark contrast to those during the 60s and 70s, but similar to those during the previous warm period during the 30s and 40s. This novel assemblage is tightly linked to the warming temperatures in the region portrayed by the increased presence of warm water species and a higher incidence of pelagic, planktivorous species. The results indicate a clear influence of ocean temperature on the region's juvenile fish community that points to climate mediated effects on the species assemblages of an important fish nursery area. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-18
    Description: High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO 2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO 2 (NEE: -0.3±13.5 g C m −2 ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3±20.0 g C m −2 ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO 2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO 2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against short-term changes in NEE. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-23
    Description: Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that: (H1.) Soil nitrate (NO 3 - ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2.) Exotic grasslands have drier soils, elevated NO 3 - , and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3.) Exotic grasslands have greater seasonality in soil NO 3 - versus secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO 3 - would be related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary-forest sites along a tropical urban-to-rural gradient during three dominant seasons (hurricane, dry, and early wet). We found that: (1.) Soil NO 3 - was generally elevated near the urban core, with particularly clear spatial trends for grasslands. (2.) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO 3 - was negatively related to enzyme activities, and was higher in forests than grasslands. (3.) Grasslands had greater soil NO 3 - seasonality versus forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO 3 - accumulation here was higher in urban forests than grasslands, potentially due to an interplay of aboveground N interception and soil processes. Net urban effects on C storage across tropical landscapes will likely vary depending on rates of N deposition, the mosaic of land covers, and responses by local decomposer communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-25
    Description: Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-25
    Description: The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue by using two decadally 13 C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally-cycling SOC (〉 23 years in one soil and 〉 55 years in the other soil) was significantly greater than that for faster-cycling SOC (〈 23 or 55 years) or for the entire SOC stock. Moreover, decadally-cycling SOC contributed substantially (35-59%) to the total CO 2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally-cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21 st century and beyond. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-14
    Description: Human induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval development and survival. However, the combined effect of changes in circulation and temperature on larval dispersal and survival has not been studied in a future climate scenario. Such understanding is crucial to predict future species distributions, anticipate ecosystem shifts, and design effective management strategies. We simulate contemporary (1990s) and future (2060s) dispersal of lobster larvae using an eddy-resolving ocean model in south-eastern Australia, a region of rapid ocean warming. Here we show that the effects of changes in circulation and temperature can counter each other: ocean warming favours the survival of lobster larvae, whereas a strengthened western boundary current diminishes the supply of larvae to the coast by restricting cross-current larval dispersal. Furthermore, we find that changes in circulation have a stronger effect on connectivity patterns of lobster larvae along south-eastern Australia than ocean warming in the future climate so that the supply of larvae to the coast reduces by ~ 4% and the settlement peak shifts poleward by ~270km in the model simulation. Thus ocean circulation may be one of the dominant factors contributing to the climate-induced expansion of species ranges. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-30
    Description: The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to ten tropical El Niño events. Measureable impacts on mesozooplankton of the northern California Current were observed during seven out of ten of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to two months) following the initiation of canonical Eastern Pacific events, but delayed (lag of two to eight months) following “Modoki” Central Pacific events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower-frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-05
    Description: Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (1) human activities as drivers of change; (2) variability of the climate system as a driver of change; (3) successes, disappointments and challenges of managing change at the sea-land interface; and (4) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes, and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-06-05
    Description: Soil is the largest stock of carbon (C) in the terrestrial biosphere, so even slight changes in soil C stock may induce significant fluctuations in the atmospheric C dioxide (CO 2 ) concentration. Early coupled C-climate models predicted that positive C-climate feedback would be triggered due to the acceleration of C release to the atmosphere under future climate warming (Cox et al ., 2000). However, due to the omission of key microbial components and biogeochemical mechanisms in these models (Wieder et al ., 2013), these predictions remain controversial, because soil C dynamics is still highly uncertain among results simulated by 11 Earth system models (ESMs) involved in CMIP5 (Ciais et al ., 2013). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-06-06
    Description: The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping nor non-overlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-07-30
    Description: Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long-term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for all lakes in China, corresponding to terrestrial organic matter input due to land use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (Mean ± SE) 0.47 ± 0.05 mm yr -1 and 7.7 ± 1.4 g C m -2 yr -1 in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr -1 ) was higher than those in other regions ( P 〈 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon-influenced regions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-09
    Description: There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options – planting date, fertilizer use and cultivar choice – using the crop simulation model APSIM at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five Global Circulation Models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069, and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was non-linear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st Century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-11
    Description: Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hotspots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which whilst varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH 4 flux at high nutrients). In contrast, at low nutrients, the CO 2 efflux was lower in the elevated temperature treatments, with no significant effect on CH 4 or N 2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels increased macrophyte abundance was associated with significantly reduced fluxes of both CH 4 and CO 2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH 4 and CO 2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale response to climate change may not follow predictions based on the temperature dependence of metabolic processes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-09-13
    Description: The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO 2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and C. canephora cv. Conilon CL153. Plants were grown for 1 year at 25/20ºC (day/night) and 380 or 700 μL CO 2 L -1 , then subjected to temperature increase (0.5ºC/day) to 42/34ºC. Leaf impacts related to stomatal traits, gas exchanges, C-isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20ºC, 31/25ºC, 37/30ºC and 42/34ºC. The results showed that 1) both species were remarkably heat tolerant up to 37/30ºC, but at 42/34ºC a threshold for irreversible non-stomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO 2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. 2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO 2 ] 3) strongly mitigated the impact of temperature on both species, particularly at 42/34ºC, modifying the response to supra-optimal temperatures, 4) promoted higher water use efficiency under moderately higher temperature (31/25 ºC), and 5) did not provoke photosynthetic down-regulation. Instead, enhancements in [CO 2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures.. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO 2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-09-15
    Description: Protected areas (PAs) are an essential tool for the conservation of biodiversity globally. Previous studies have focussed on the effectiveness of PAs and the design of optimal PA networks. However, not all PAs remain intact permanently; many PAs undergo downgrading, downsizing and/or degazettement (PADDD), a fact largely ignored until recently. The drivers of enacted PADDD events and the factors influencing its spatial occurrence are poorly understood, potentially undermining the efficacy of PAs and PA networks. Here we examine the spatial relationship between PADDD and economic, demographic, and structural variables, using a 110 year dataset of 342 enacted PADDD events across 44 countries in the tropics and sub tropics. We find that the probability of an enacted PADDD event increases with the size of the PA and through a synergistic interaction between PA size and local population densities. Our results are robust to the under-reporting of enacted PADDD events that occur among smaller PAs and in regions with lower population density. We find an economic motive for PADDD events, given that the opportunity costs associated with larger PAs are higher, on average, than smaller PAs. Our findings suggest a need for conservation practitioners to better consider PA characteristics, as well as the social, economic, and political context in which PAs are situated, to aid the creation of more efficient and sustainable PA networks. In particular, the dynamics of enacted PADDD events highlight the need to explicitly consider PA robustness as a core component of systematic conservation planning for PA networks. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-09-15
    Description: Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM-based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5 / RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of Protected Areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hotspots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate change models suggested (in comparison to the present distribution model) an increase in area of 3.0-10.0% and 3.0-9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long-term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggests that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool in order to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-09-15
    Description: Avian communities of arid ecosystems may be particularly vulnerable to global climate change due to the magnitude of projected change for desert regions and the inherent challenges for species residing in resource limited ecosystems. How arid-zone birds will be affected by rapid increases in air temperature and increased drought frequency and severity is poorly understood because avian responses to climate change have primarily been studied in the relatively mesic northern temperate regions. We studied the effects of increasing air temperature and aridity on a Burrowing Owl ( Athene cunicularia ) population in the southwestern USA from 1998-2013. Over 16 years, the breeding population declined 98.1%, from 52 pairs to 1 pair, and nest success and fledgling output also declined significantly. These trends were strongly associated with the combined effects of decreased precipitation and increased air temperature. Arrival on the breeding grounds, pair formation, nest initiation, and hatch dates all showed significant delays ranging from 9.4 to 25.1 days over 9 years, which have negative effects on reproduction. Adult and juvenile body mass decreased significantly over time, with a loss of 7.9% mass in adult males and 10.9% mass in adult females over 16 years, and a loss of 20.0% mass in nestlings over 8 years. Taken together, these population and reproductive trends have serious implications for local population persistence. The southwestern USA has been identified as a climate change hotspot, with projections of warmer temperatures, less winter precipitation, and an increase in frequency and severity of extreme events including drought and heat waves. An increasingly warm and dry climate may contribute to this species’ decline, and may already be a driving force of their apparent decline in the desert southwest. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-09-15
    Description: Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analysed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-09-15
    Description: Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: communities of similarly-sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Non-random extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-09-15
    Description: Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-09-20
    Description: Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH 4 ) / nitrous oxide (N 2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH 4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH 4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N 2 O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH 4 led to a significantly lower (p〈0.05) annual GWP (CH 4 +N 2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and three years after introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed since it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase of water scarcity it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-09-23
    Description: Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using six years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern US is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-09-23
    Description: The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; 1) the availability of ice-free ground for breeding, and 2) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species’ responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds proximate to breeding locations, as well as the potential role of polynyas as future Southern Ocean refugia. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-09-26
    Description: Human activities are causing rapid environmental change at a global scale. Urbanization is responsible for some of the most extreme human-altered habitats and is a known driver of evolutionary change, but evidence and understanding of these processes is limited. Here, we investigate the potential underlying mechanisms contributing to the contemporary evolution of migration behaviour in the Eurasian blackcap ( Sylvia atricapilla ). Blackcaps from central Europe have been wintering in urban areas of Britain with increasing frequency over the past 60 years, rather than migrating south to the Mediterranean. It has been hypothesized that the popularization of providing supplementary foods for wild birds within Britain may have influenced this marked migratory change, but quantifying the selective forces shaping evolutionary changes remains challenging. Using a long-term national scale data set, we examine both the spatial distribution and interannual variation in blackcap wintering behaviour in Britain in relation to supplementary food availability and local climate. Over a 12-year period, we show that blackcaps are becoming increasingly associated with the provision of supplementary foods in British gardens, and that the reliability of bird food supplies is influencing their winter distribution at a national scale. In addition, local climatic temperatures and broader scale weather variation are also important determinants of blackcap wintering patterns once they arrive in Britain. Based on our findings, we conclude that a synergistic effect of increased availability of feeding resources, in the form of garden bird food, coupled with climatic amelioration, has enabled a successful new wintering population to become established in Britain. As global biodiversity is threatened by human-induced environmental change, this study presents new and timely evidence of the role human activities can play in shaping evolutionary trajectories.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-09-26
    Description: Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of “shredding” detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (〉60m riparian width). We advocate greater urgency in efforts to understand the ecosystem consequences of climate change adaptation in order to guide future actions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-11-22
    Description: Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large-scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional datasets for fishes in river and stream reaches, we ask two questions: 1) does a negative relationship exist between native and non-native species richness and 2) do non-native species originate from higher diversity systems. A negative relationship between native and non-native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non-native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species-rich systems inhibit establishment of generalist non-native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively un-impacted by human actions, and may explain the conflicting relationship between native and non-native species richness found at different spatial scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-11-22
    Description: The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically-based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here we report on the elevation and soil-type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating of patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four inter-connected findings. First, geographic variation at the soil Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation-dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including non-structural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation- and soil-dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-28
    Description: Elevated atmospheric CO 2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (van Groenigen et al., 2014), we used experimental data to inform a one-pool model, and showed that elevated CO 2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two-pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO 2 on decomposition rates. To address this issue, we refit our data to a two-pool soil C model. We found that CO 2 enrichment increases decomposition rates of both fast and slow C pools. In addition, elevated CO 2 decreased the carbon use efficiency of soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-28
    Description: Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is evident in global meta-analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β-carotene, pheophytin a ) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulphur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-05-31
    Description: Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30 year old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short-term (tiller population growth rates) and long-term (17 year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum. Analyzing the transplant study as a climate transfer experiment, we showed that the climate optimum for plant performance was displaced ca. 140 km north of home sites, although plants were not generally declining in size at home sites. Adaptational lag is expected to be widespread globally for long-lived, ecotypically specialized plants, with disruptive consequences for communities and ecosystems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-05-31
    Description: Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO 2 ] (C E ) and elevated temperature (T E ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima . Both genotypes were positively responsive to C E (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to T E . We found that the Coastal genotype exhibited greater growth response to T E (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under C E or T E , and the interactive effects of C E and T E on intraspecific variation in phenotypic plasticity were also largely absent. Overall, T E was a more effective climate factor than C E in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-05-31
    Description: In their recent Letter Olalla-Tárraga et al. (2015; hereafter ‘OT&al’) applied phylogenetic path analysis to investigate the determinants of range size in terrestrial mammals. They concurred with Di Marco & Santini (2015; hereafter ‘DM&S’) in identifying the predictive importance of human pressure, but disagreed that this role prevails over biological traits, criticizing some conceptual and methodological aspects of DM&S. OT&al found that climatic niche is the primary predictor of range size, while human pressure and biological traits were of secondary importance. Here we discuss that the two studies are not directly comparable, and we address the criticisms to DM&S. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-05-31
    Description: In a recent letter, Thomsen and Wernberg (2015) reanalyzed data compiled for our recent paper (Lyons et al. 2014). In that paper, we examined the effects of macroalgal blooms and macroalgal mats on seven important measures of community structure and ecosystem functioning, and explored several ecological and methodological factors that might explain some of the variation in the observed effects. Thomsen and Wernberg (2015) reanalyzed two small subsets of the data, focusing on experimental studies examining effects of blooms/mats on invertebrate abundance. Their analyses revealed two interesting patterns. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-05-31
    Description: Global warming will jeopardize the persistence and genetic diversity of many species. Assisted colonization, or the movement of species beyond their current range boundary, is a conservation strategy proposed for species with limited dispersal abilities or adaptive potential. However, species that rely on photoperiodic and thermal cues for development may experience conflicting signals if transported across latitudes. Relocating multiple, distinct populations may remedy this quandary by expanding genetic variation and promoting evolutionary responses in the receiving habitat - a strategy known as assisted gene flow. In order to better inform these policies, we planted seeds from latitudinally distinct populations of the annual legume, Chamaecrista fasciculata , in a potential future colonization site north of its current range boundary. Plants were exposed to ambient or elevated temperatures via infrared heating. We monitored several life history traits and estimated patterns of natural selection in order to determine the adaptive value of plastic responses. To assess the feasibility of assisted gene flow between phenologically distinct populations, we counted flowers each day and estimated the degree of temporal isolation between populations. Increased temperatures advanced each successive phenological trait more than the last, resulting in a compressed life cycle for all but the southern-most population. Warming altered patterns of selection on flowering onset and vegetative biomass. Population performance was dependent on latitude of origin, with the northern-most population performing best under ambient conditions and the southern-most performing most poorly, even under elevated temperatures. Among-population differences in flowering phenology limited the potential for genetic exchange among the northern and southern-most populations. All plastic responses to warming were neutral or adaptive, however photoperiodic constraints will likely necessitate evolutionary responses for long-term persistence, especially when involving populations from disparate latitudes. With strategic planning, our results suggest that assisted colonization and assisted gene flow may be feasible options for preservation. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-05-31
    Description: Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large-scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters ( Saccostrea glomerata and diploid and triploid Crassostrea gigas, n  = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin-producing species Alexandrium minutum . While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm-acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum , toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm-acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas . The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-05-31
    Description: Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO 2 ) in the atmosphere, and annual fluxes of CO 2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems, and that our respective scientific communities would benefit from closer collaboration. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-05-24
    Description: The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequester C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious and therefore PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 114-379 Tg C yr −1 , i.e. ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (〈2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-05-24
    Description: Although the influence of nitrogen (N) addition on grassland plant communities has been widely studied, it is still unclear whether observed patterns and underlying mechanisms are constant across biomes. In this systematic review, we use meta-analysis and meta-regression to investigate the influence of N addition (here referring mostly to fertilisation) upon the biodiversity of temperate mountain grasslands (including montane, subalpine and alpine zones). Forty-two studies met our criteria of inclusion, resulting in 134 measures of effect size. The main general responses of mountain grasslands to N addition were increases in phytomass and reductions in plant species richness, as observed in lowland grasslands. More specifically, the analysis reveals that negative effects on species richness were exacerbated by dose (ha −1 year −1 ) and duration of N application (years) in an additive manner. Thus, sustained application of low to moderate levels of N over time had effects similar to short term application of high N doses. The climatic context also played an important role: the overall effects of N addition on plant species richness and diversity (Shannon index) were less pronounced in mountain grasslands experiencing cool rather than warm summers. Furthermore, the relative negative effect of N addition on species richness was more pronounced in managed communities, and was strongly negatively related to N-induced increases in phytomass, i.e. the greater the phytomass response to N addition, the greater the decline in richness. Altogether, this review not only establishes that plant biodiversity of mountain grasslands is negatively affected by N addition, it also demonstrates that several local management and abiotic factors interact with N addition to drive plant community changes. This synthesis yields essential information for a more sustainable management of mountain grasslands, emphasizing the importance of preserving and restoring grasslands with both low agricultural N application and limited exposure to N atmospheric deposition. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-07-10
    Description: Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ , were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-07-21
    Description: Despite covering only approximately 138,000 km 2 , mangroves are globally important carbon sinks with carbon density values 3-4 times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1m of belowground carbon (BGC). Carbon stored at depths beyond 1m, and the effects of mangrove species, location and environmental context on these stores, is poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (Reduced Emissions from Deforestation and Degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5t C ha −1 . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5m 2 resolution, produced an estimate of 69.41 Mt C (± 9.15 95% C.I.) for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (± 12.21 95% C.I.); an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country level mangrove map provides a valuable tool for assessing carbon stocks and visualising the distribution of BGC. Estimates at the 2.5m 2 resolution provide sufficient detail for highlighting and prioritising areas for mangrove conservation and restoration. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-07-23
    Description: In light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land cover conversions. Here we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process-understanding and data availability. Our review shows that ca. one tenth of the ice free land surface is under intense human management, half under medium and one fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (1) management activities for which datasets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (2) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global datasets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N-fertilization); and (3) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in e.g. Earth System or Dynamic Vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-07-29
    Description: Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-07-30
    Description: A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern U.S. to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four Atmosphere-Ocean General Circulation Models (AOGCMs) (CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern U.S. are anticipated to increase evapotranspiration across all sites, although invoking CO 2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snowpacks, longer growing seasons and associated water deficits. Considering future CO 2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern U.S. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrologic responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-07-31
    Description: Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies, and quantifying the impacts of land cover change on the climate system. Here we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-07-31
    Description: Understanding the evolutionary consequences of the Green Revolution, particularly in wild populations, is an important frontier in contemporary biology. Because human impacts have occurred at varying magnitudes or time periods depending on the study ecosystem, evolutionary histories may vary considerably among populations. Paleogenetics in conjunction with paleolimnology enable us to associate microevolutionary dynamics with detailed information on environmental change. We used this approach to reconstruct changes in the temporal population genetic structure of the keystone zooplankton grazer, Daphnia pulicaria , using dormant eggs extracted from sediments in two Minnesota lakes (South Center, Hill). The extent of agriculture and human population density in the catchment of these lakes has differed markedly since European settlement in the late 19 th century, and is reflected in their environmental histories reconstructed here. The reconstructed environments of these two lakes differed strongly in terms of environmental stability and their associated patterns of Daphnia population structure. We detected long periods of stability in population structure and environmental conditions in South Center Lake that were followed by a dramatic temporal shift in population genetic structure after the onset of European settlement and industrialized agriculture in its watershed. In particular, we noted a 24.3-fold increase in phosphorus (P) flux between pre-European and modern sediment P accumulation rates (AR) in this lake. In contrast, no such shifts were detected in Hill Lake, where the watershed was not as impacted by European settlement and rates of change were less directional with a much smaller increase of sediment P AR (2.3-fold). We identify direct and indirect effects of eutrophication proxies on genetic structure in these lake populations, and demonstrate the power of using this approach in understanding the consequences of anthropogenic environmental change on natural populations throughout historic time periods. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-08-03
    Description: The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soils ‘response’ to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly ( P 〈0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha −1 and 0.58 t N ha −1 in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO 2 in the atmosphere, and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-08-03
    Description: From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 mol mol −1 to 400 mol mol −1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of Free Air CO 2 Enrichment (FACE) experiments. These experiments have found a) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, b) variable decreases in stomatal conductance, and c) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115 year long selection of grasses collected in New Mexico since 1892 is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere; with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2 = 0.32, p 〈 0.01) before 1950, with no correlation (r 2 = 0.00, p = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short term water shortage. Comparison with C 3 trees from arid environments ( Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments ( Bromus and Poa grasses in New Mexico) suggest differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . The present study suggests that a) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and b) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-08-03
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-08-05
    Description: Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous down-regulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-07-12
    Description: Each year, two or three species that had been considered to be extinct are rediscovered. Uncertainty about whether or not a species is extinct is common, because rare and highly threatened species are difficult to detect. Biological traits such as body size and range size are expected to be associated with extinction. However, these traits, together with the intensity of search effort, might influence the probability of detection and extinction differently. This makes statistical analysis of extinction and rediscovery challenging. Here we use a variant of survival analysis known as cure rate modelling to differentiate factors that influence rediscovery from those that influence extinction. We analyse a global dataset of 99 mammals that have been categorised as extinct or possibly extinct. We estimate the probability that each of these mammals is still extant, and thus estimate the proportion of missing (presumed extinct) mammals that are incorrectly assigned extinction. We find that body mass and population density are predictors of extinction, and body mass and search effort predict rediscovery. In mammals, extinction rate increases with body mass and population density, and these traits act synergistically to greatly elevate extinction rate in large species that also occurred in formerly dense populations. However, when they remain extant, larger-bodied missing species are rediscovered sooner than smaller species. Greater search effort increases the probability of rediscovery in larger species of missing mammals, but has a minimal effect on small species, which take longer to be rediscovered, if extant. By separating the effects of species characteristics on extinction and detection, and using models with the assumption that a proportion of missing species will never be rediscovered, our new approach provides estimates of extinction probability in species with few observation records and scant ecological information. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-15
    Description: Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62 and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67 and 25.87%, respectively in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C:N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate- biosphere feedbacks. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-07-15
    Description: Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than three-fold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-07-15
    Description: Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species’ shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species’ traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-07-21
    Description: Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land-use. In order to address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N) and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was: biodiversity〉grazing〉precipitation〉N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is: precipitation〉grazing〉temperature〉biodiversity〉N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global-change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-07-21
    Description: Evapotranspiration, defined as the total flux of water from the land surface to the atmosphere, is a major component of the hydrologic cycle and surface energy balance. Although evapotranspiration is expected to intensify with increasing temperatures, long-term, regional trends in evapotranspiration remain uncertain due to spatially and temporally limited direct measurements. In this study, we utilize an emergent relation between the land surface and atmospheric boundary layer to infer daily evapotranspiration from historical meteorological data collected at 236 weather stations across the U.S. Our results suggest a statistically significant ( α = 0.05) decrease in evapotranspiration of approximately 6% from 1961 to 2014, with a significant ( α = 0.05) sharp decline of 13% from 1998 to 2014. We attribute the decrease in evapotranspiration mostly to declines in surface conductance, but also to offsetting changes in longwave radiation, wind speed, and incoming solar radiation. Using an established stomatal conductance model, we explain the changes in inferred surface conductance as a response to increases in carbon dioxide and, more recently, to an abrupt decrease in atmospheric humidity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-07-21
    Description: Forest ecosystems across western North America will likely see shifts in both tree species dominance and composition over the rest of this century in response to climate change. Our objective in this paper is to identify which ecological regions might expect the greatest changes to occur. We used the process-based growth model 3-PG, to provide estimates of tree species responses to changes in environmental conditions and to evaluate the extent that species are resilient to shifts in climate over the rest of this century. We assessed the vulnerability of 20 tree species in western North America using the Canadian global circulation model under three different emission scenarios. We provided detailed projections of species shifts by including soil maps that account for the spatial variation in soil water availability and soil fertility as well as by utilizing annual climate projections of monthly changes in air temperature, precipitation, solar radiation, vapor pressure deficit and frost at a spatial resolution of 1 km. Projected suitable areas for tree species were compared to their current ranges based on observations at 〉40,000 field survey plots. Tree species were classified as vulnerable if environmental conditions projected in the future appear outside that of their current distribution ≥70% of the time. We added a migration constraint that limits species dispersal to 〈200 m year −1 to provide more realistic projections on species distributions. Based on these combinations of constraints, we predicted the greatest changes in the distribution of dominant tree species to occur within the Northwest Forested Mountains and the highest number of tree species stressed will likely be in the North American Deserts. Projected climatic changes appear especially unfavorable for species in the subalpine zone, where major shifts in composition may lead to the emergence of new forest types. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-07-21
    Description: To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity ( GPP ), of photosynthetic capacity ( Pc ), and of other fluxes and pools. Models simulated consistent dry season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry season GPP reductions were driven by an external environmental factor, “soil water stress” and consequently by a constant or decreasing photosynthetic infrastructure ( Pc) , while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc ) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange ( NEE ) and respiration ( Re ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry season declines in GPP and Re consistent with most DGVMs simulations. While water-limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light harvesting adaptations (e.g. variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-07-30
    Description: Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus . Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-08-02
    Description: Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro-invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0–50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100–150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-08-05
    Description: Nitrogen (N) deposition (N DEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy N DEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of N DEP on the relative change in C (ΔC/ΔN) based on short term isotope-labelled mineral fertilizer additions should be questioned. We used 15 N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15 N to an equivalent amount in simulated N DEP treatments. By the end of the experiment, three times as much 15 N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60 % and 20 %, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15 N tracer from litter decomposition than from simulated mineral N DEP (7.5 % and 4.5 %) and compared to soil recovery, expressed proportionally more 15 N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of N DEP on forest ΔC/ΔN may not be apparent from mineral 15 N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of N DEP is its influence on the rate of N release from litter. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-07-08
    Description: A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States) input management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with inter-annual variability, and predictions for all agronomic variables were significantly different from one model to another (p 〈 0.001). Uncertainty averaged 15% higher for low- versus high- input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41 and 23% for yield and ET respectively as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for non-irrigated sites). Differences in predictions due to model representation of light utilization were significant (p 〈 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-07-08
    Description: Understanding responses of forests to increasing CO 2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, Van der Sleen et al. (2014) used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO 2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as “fast-growing” trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this “non-uniform age bias” on observed growth trends and find that Van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are -at least partially- driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species’ age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias results in significant positive growth trends of 1-2% per decade for the full period, and 6-10% since 1950. These observations however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-07-09
    Description: Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate – for example photoperiod, biotic interactions, or edaphic conditions – might limit the success of immigrants in a new location despite hospitable climatic conditions. Here we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and non-warmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species ( Oxyria digyna and Papaver radicatum ) originating from 3-5 populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-07-09
    Description: Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such ‘regime shifts’ can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 years and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-24
    Description: Droughts are expected to become more frequent and more intense under climate change. Plant mortality rates and biomass declines in response to drought depend on stomatal and xylem flow regulation. Plants operate on a continuum of xylem and stomatal regulation strategies from very isohydric (strict regulation) to very anisohydric. Co-existing species may display a variety of isohydricity behaviors. As such, it can be difficult to predict how to model the degree of isohydricity at the ecosystem scale by aggregating studies of individual species. This is nonetheless essential for accurate prediction of ecosystem drought resilience. In this study, we define a metric for the degree of isohydricity at the ecosystem scale in analogy with a recent metric introduced at the species-level. Using data from the AMSR-E satellite, this metric is evaluated globally based on diurnal variations in microwave vegetation optical depth (VOD), which is directly related to leaf water potential. Areas with low annual-mean radiation are found to be more anisohydric. Except for evergreen broadleaf forests in the tropics, which are very isohydric, and croplands, which are very anisohydric, land cover type is a poor predictor of ecosystem isohydricity, in accordance with previous species-scale observations. It is therefore also a poor basis for parameterizing water stress response in land-surface models. For taller ecosystems, canopy height is correlated with higher isohydricity (so that rainforests are mostly isohydric). Highly anisohydric areas show either high or low underlying water use efficiency. In seasonally dry locations, most ecosystems display a more isohydric response (increased stomatal regulation) during the dry season. In several seasonally dry tropical forests, this trend is reversed, as dry-season leaf-out appears to coincide with a shift towards more anisohydric strategies. The metric developed in this study allows for detailed investigations of spatial and temporal variations in plant water behavior. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-06-22
    Description: Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve–phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is predicted that bays with large rivers and high exchange with the open ocean will be more resilient under climate change when bivalve aquaculture is present.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-06-30
    Description: Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs ( Carcinus maenas ) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-05-08
    Description: Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold (TST) of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle, and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-05-06
    Description: There are several models in the literature for predicting enteric methane (CH 4 ) emissions. These models were often developed on region or country-specific data and may not be able to predict the emissions successfully in every region. The majority of extant models require dry matter intake of individual animals (DMI), which is not routinely measured. The objectives of this study were to 1) evaluate performance of extant models in predicting enteric CH 4 emissions from dairy cows in North America (NA), Europe (EU), and Australia and New Zealand (AUNZ), and 2) explore the performance using estimated DMI. Forty extant models were challenged on 55, 105, and 52 enteric CH 4 measurements (g/lactating cow/d) from NA, EU, and AUNZ, respectively. The models were ranked using root mean square prediction error as a percentage of the average observed value (RMSPE), and concordance correlation coefficient (CCC). A modified model of Nielsen et al . (2013) using DMI, and dietary digestible neutral detergent fiber and fatty acid contents as predictor variables, ranked highest in NA (RMSPE = 13.1%, and CCC = 0.78). The gross energy intake-based model of Yan et al . (2000) and the updated IPCC Tier 2 model were ranked highest in EU (RMSPE = 11.0%, and CCC = 0.66), and AUNZ (RMSPE = 15.6%, and CCC = 0.75), respectively. DMI of cows in NA and EU were estimated satisfactorily with body weight and fat corrected milk yield data (RMSPE 〈 12.0%, and CCC 〉 0.60). Using estimated DMI, the Nielsen et al . (2013) [RMSPE = 12.7, and CCC = 0.79], and Yan et al . (2000) [RMSPE = 13.7, and CCC = 0.50] models still predicted emissions in respective regions well. Enteric CH 4 emissions from dairy cows can be predicted successfully (i.e., RMSPE 〈 15%), if DMI can be estimated with reasonable accuracy (i.e., RMSPE 〈 10%). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-05-07
    Description: Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon, and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO 2 and N 2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-05-27
    Description: Removal of biologically available nitrogen (N) by the microbially mediated processes denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. Although few studies have examined temperature responses of denitrification and anammox, previous work suggests that denitrification could become more important than anammox in response to climate warming. To test this hypothesis, we determined whether temperature responses of denitrification and anammox differed in shelf and estuarine sediments from coastal Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was further assessed in a 12-week laboratory microcosm experiment. Temperature responses, as characterized by thermal optima (T opt ) and apparent activation energy (E a ), were determined by measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging from 3 to 59°C. With a few exceptions, T opt and E a of denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments, E a  was somewhat lower for anammox compared to denitrification across all treatments. However, T opt  did not differ between processes, and neither E a  nor T opt  changed with warming or carbon addition. Thus, the two processes behaved similarly in terms of temperature response, and this response was not influenced by warming. This led us to reject the hypothesis that anammox is more cold-adapted than denitrification in our study system. Overall, our study suggests that temperature responses of both processes can be accurately modeled for temperate regions in the future using a single set of parameters, which are likely not to change over the next century as a result of predicted climate warming. We further conclude that climate warming will not directly alter the partitioning of N flow through anammox and denitrification. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-05-12
    Description: Forest stand age plays a major role in regulating carbon fluxes in boreal and temperate ecosystems. Young boreal forests represent a relatively small but persistent source of carbon to the atmosphere over 30 years after disturbance, while temperate forests switch from a substantial source over the first 10 years to a notable sink until they reach maturity. Russian forests are the largest contiguous forest belt in the world that accounts for 17% of the global forest cover; however, despite its critical role in controlling global carbon cycle, little is known about spatial patterns of young forest distribution across Russia as a whole, particularly before the year 2000. Here we present a map of young (0-27 years of age) forests, where 12-27 year old forests were modeled from the single-date 500 m satellite record and augmented with the 0-11 year old forest map aggregated from the 30 m resolution contemporary record between 2001 and 2012. The map captures the distribution of forests with the overall accuracy exceeding 85% within three largest bioclimatic vegetation zones (northern, middle and southern taiga), although mapping accuracy for disturbed classes was generally low (the highest of 31% for user's and producer's accuracy for the 12-27 age class and the maximum of 74% for user's and 32% for producer's accuracy for the 0-11 age class). The results show that 75.5 ± 17.6 Mha (roughly 9%) of Russian forests were younger than 30 years of age at the end of 2012. The majority of these 47 ± 4.7 Mha (62%) were distributed across the middle taiga bioclimatic zone. Based on the published estimates of Net Ecosystem Production (NEP) and the produced map of young forests, this study estimates that young Russian forests represent a total sink of carbon at the rate of 1.26 Tg C yr −1 . This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-05-12
    Description: Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940–2012) and productivity (1990–2012) in Brazil using a new high-resolution (approximately 1 km 2 ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-05-13
    Description: Estimates of global riverine nitrous oxide (N 2 O) emissions contain great uncertainity. We conducted a meta-analysis incorporating 169 observations from published literature to estimate global riverine N 2 O emission rates and emission factors. Riverine N 2 O flux was significantly correlated with NH 4 , NO 3 and DIN (NH 4 +NO 3 ) concentrations, loads and yields. The emission factors EF(a) ( i.e., the ratio of N 2 O emission rate and DIN load) and EF(b) ( i.e., the ratio of N 2 O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon:DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone, and sub-tropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N 2 O emission rates (EF(a): R 2 =0.92 for both global and climatic zone models, n=70; EF(b): R 2 =0.91 for global model and R 2 =0.90 for climatic zone models, n=70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N 2 O emission rates of 29.6–35.3 (mean=32.2) Gg N 2 O-N yr −1 and emission factors of 0.16–0.19% (mean=0.17%). Global riverine N 2 O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration , Order from Strength , Technogarden , and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N 2 O emission rates (300–2100 Gg N 2 O-N yr −1 ) since they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N 2 O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks, and improving estimates of global riverine nitrogen loads. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-07-12
    Description: The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field, and that protected areas cannot address climate change may be over-simplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially-explicit manner, and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may re-distribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-07-14
    Description: Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate-related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade-off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change-related range shifts and extinctions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-14
    Description: The earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.g., kelp) and animal (e.g., shellfish) species. We quantified changes in the abundance of the blue mussel ( Mytilus edulis ), a foundation species known to influence diversity and productivity of intertidal habitats, over the past 40 years in the Gulf of Maine, USA, one of the fastest warming regions in the global ocean. Using consistent survey methods, we compared contemporary population sizes to historical data from sites spanning 〉400 km. The results of these comparisons showed that blue mussels have declined in the Gulf of Maine by 〉60% (range: 29-100%) at the site level since the earliest benchmarks in the 1970s. At the same time as mussels declined, community composition shifted: at the 4 sites with historical community data, the sessile community became increasingly algal-dominated. Contemporary (2013-14) surveys across 20 sites showed that sessile species richness was positively correlated to mussel abundance in mid to high intertidal zones. These results suggest that declines in a critical foundation species may have already impacted the intertidal community. To inform future conservation efforts, we provide a database of historical and contemporary baselines of mussel population abundance and dynamics in the Gulf of Maine. Our results underscore the importance of anticipating not only changes in diversity but also changes in the abundance and identity of component species, as strong interactors like foundation species have the potential to drive cascading community shifts. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-07-15
    Description: The ongoing climate change is expected to modify the atmospheric carbon (C) sink function of peatlands, which store about 450 Gt of carbon accumulated over centuries and millennia (Fenner and Freeman, 2011). Indeed, the simultaneous rise of temperature and decrease of water level favors soil oxygenation, organic matter (OM) decomposition and in turn, the release of large amounts of CO 2 into the atmosphere. Recently, Bragazza et al. (2016) suggested that climate extreme events reduce carbon accumulation in peatlands by up to 30% owing to the decline of Sphagnum productivity and the rise of microbial decomposition of OM. However, investigating the impact of climate extreme events on OM decomposition requires that indirect effects, such as vegetation changes and water physicochemical properties, did not falsify interpretation of the changes in the microbial activities (Delarue et al., 2014; Delarue et al., 2015). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-07-15
    Description: Although the impacts of nutrient pollution on coral reefs are well known, surprisingly, no statistical relationships have ever been established between water quality parameters, coral biodiversity and coral cover. Hong Kong provides a unique opportunity to assess this relationship. Here, coastal waters have been monitored monthly since 1986, at 76 stations, providing a highly spatially resolved water quality dataset including 68,903 data points. Moreover, a robust coral species richness ( S ) dataset is available from more than 100 surveyed locations, composed of 3,453 individual colonies’ observations, as well as a coral cover ( CC ) dataset including 85 sites. This wealth of data provides a unique opportunity to test the hypothesis that water quality, and in particular nutrients, drives coral biodiversity. The influence of water quality on S and CC was analyzed using GIS and multiple regression modeling. Eutrophication (as chlorophyll-a concentration; CHLA) was negatively correlated with S and CC , whereas physico-chemical parameters (DO and salinity) had no significant effect. The modeling further illustrated that PSM, DIN and DIP had a negative effect on S and on CC , however, the effect of nutrients was 1.5 to 2-fold greater. The highest S and CC occurred where CHLA 〈 2 μ g.L −1 , DIN 〈 2 μ M and DIP 〈 0.1 μ M. Where these values were exceeded, S and CC were significantly lower and no live corals were observed where CHLA 〉 15 μ g.L −1 , DIN 〉 9 μ M and DIP 〉 0.33 μ M. This study demonstrates the importance of nutrients over other water quality parameters in coral biodiversity loss and highlights the key role of eutrophication in shaping coral reef ecosystems. This work also provides ecological thresholds that may be useful for water quality guidelines and nutrient-mitigation policies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-16
    Description: Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH 4 ) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH 4 . Here, we present results of in situ CH 4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH 4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open-top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH 4 -C m −2 (8.1 ± 1.2 g CO 2 -eq m −2 ) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH 4 -C m −2 (3.9 ± 0.6 g CO 2 -eq m −2 ). These uptake rates were subsequently scaled to the entire study area of 0.15 km 2 , a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH 4 -C m −2 (3.7 ± 1.2 g CO 2 -eq m −2 ). The result was a net landscape sink of 12.71 kg CH 4 -C (0.48 tonne CO 2 -eq) during the growing season. A nonsignificant trend was noticed in seasonal CH 4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH 4 fluxes. Overall, the net landscape sink of CH 4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH 4 budget of the Arctic due to their potential role in counterbalancing CH 4 emissions from wetlands – not the least when taking the future climatic scenarios of the Arctic into account.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-07-16
    Description: Understandings of contemporary forest cover loss are critical for policy but have come at the expense of long-term, multi-directional analyses of land cover change. This is a critical gap given (i) profound reconfigurations in land use and land control over the past several decades and (ii) evidence of widespread “woodland resurgence” throughout the tropics. In this paper, we argue that recent advancements within the field of land change science provide new opportunities to address this gap. In turn, we suggest that multi-decadal and multi-directional analyses of land cover change can facilitate richer social analyses of land cover change and more relevant conservation policies and practice. Our argument is grounded in a case study from Southeast Sulawesi, Indonesia. Using a novel analytical platform, Google Earth Engine, and open access to high-quality Landsat data, we map land cover change in Southeast Sulawesi, Indonesia from 1972-2014. We find that tree cover loss constitutes the single largest net change over the period 1972-2014 but that gross rates of tree cover gain were three times higher than gross loss rates from 1972-1995 and equivalent to loss rates from 1995-2014. We suggest the smallholder tree crop economy likely produced both forest loss and Imperata grassland restoration in this region. This case points to the need to expand rather than collapse the baselines used to study carbon and biodiversity change in tropical regions. It also demonstrates the possible utility of applying such methods to other regions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-19
    Description: Shifts in biodiversity and ecological processes in stream ecosystems in response to rapid climate change will depend on how numerically and functionally dominant aquatic insect species respond to changes in stream temperature and hydrology. Across 253 minimally perturbed streams in 8 ecoregions in the western US, we modeled the distribution of 88 individual insect taxa in relation to existing combinations of maximum summer temperature, mean annual streamflow, and their interaction. We used a heat map approach along with downscaled General Circulation Model (GCM) projections of warming and streamflow change to estimate site-specific extirpation likelihood for each taxon, allowing estimation of whole community change in streams across these ecoregions. Conservative climate change projections indicate a 30-40% loss of taxa in warmer, drier ecoregions and 10-20% loss in cooler, wetter ecoregions where taxa are relatively buffered from projected warming and hydrologic change. Differential vulnerability of taxa with key functional foraging roles in processing basal resources suggests that climate change has the potential to modify stream trophic structure and function (e.g., alter rates of detrital decomposition and algal consumption), particularly in warmer and drier ecoregions. We show that streamflow change is equally as important as warming in projected risk to stream community composition and that the relative threat posed by these two fundamental drivers varies across ecoregions according to projected gradients of temperature and hydrologic change. Results also indicate that direct human modification of streams through actions such as water abstraction are likely to further exacerbate loss of taxa and ecosystem alteration, especially in drying climates. Management actions to mitigate climate change impacts on stream ecosystems or to proactively adapt to them will require regional calibration, due to geographic variation in insect sensitivity and in exposure to projected thermal warming and hydrologic change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-19
    Description: De Oliveira Silva et al. (2016) model beef production in the Brazilian Cerrado , and conclude that – if accompanied by tight deforestation control – increasing production could lower emissions by incentivising better pasture management. While their analysis is valuable in identifying the conditions under which increasing meat consumption could be compatible with reducing greenhouse gas emissions, we believe that there is little chance of such conditions occurring in practice. Overall, increasing beef consumption and production is unlikely to be an effective lever for reducing emissions, and is more likely to exacerbate deforestation. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-19
    Description: Land-use change due to anthropogenic development is pervasive across the globe and commonly associated with negative consequences for biodiversity. While land-use change has been linked to shifts in the behavior and habitat-use patterns of wildlife species, little is known about its influence on animal population dynamics, despite the relevance of such information for conservation. We conducted the first broad-scale investigation correlating temporal patterns of land-use change with the demographic rates of mule deer, an iconic species in the western United States experiencing wide-scale population declines. We employed a unique combination of long-term (1980–2010) data on residential and energy development across western Colorado, in conjunction with congruent data on deer recruitment, to quantify annual changes in land-use and correlate those changes with annual indices of demographic performance. We also examined annual variation in weather conditions, which are well recognized to influence ungulate productivity, and provided a basis for comparing the relative strength of different covariates in their association with deer recruitment. Using linear mixed models, we found that increasing residential and energy development within deer habitat were correlated with declining recruitment rates, particularly within seasonal winter ranges. Residential housing had two times the magnitude of effect of any other factor we investigated, and energy development had an effect size similar to key weather variables known to be important to ungulate dynamics. This analysis is the first to correlate a demographic response in mule deer with residential and energy development at large spatial extents relevant to population performance, suggesting that further increases in these development types on deer ranges are not compatible with the goal of maintaining highly productive deer populations. Our results underscore the significance of expanding residential development on mule deer populations, a factor that has received little research attention in recent years, despite its rapidly increasing footprint across the landscape.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-19
    Description: The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. Since body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer ( Rangifer tarandus platyrhynchus ) from 1994-2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (Coefficient of variation, CV = 8.8%) but was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain-on-snow’ events. October body mass (CV =2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing-events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-05-02
    Description: Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5–24 kg N ha −1  yr −1 ) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha −1  year −1 , herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs ( Calluna vulgaris ) than by grasses ( Molinia caerulea ). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-05-05
    Description: The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO 2 concentration (C a ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP) to elevated CO 2 (eC a ) will increase with rising temperature, and will be substantially larger in warm tropical forests than in cold boreal forests. We tested these model predictions against evidence from eC a experiments by carrying out two meta-analyses. Firstly, we tested for an interaction effect on growth responses in factorial eC a x temperature experiments. This analysis showed a positive, but non-significant interaction effect (95% CI for above-ground biomass response = -0.8, 18.0%) between eC a and temperature. Secondly, we tested field-based eC a experiments on woody plants across the globe for a relationship between the eC a effect on plant biomass and mean annual temperature (MAT). This second analysis showed a positive but non-significant correlation between the eC a response and MAT. The magnitude of the interactions between CO 2 and temperature found in both meta-analyses were consistent with model predictions, even though both analyses gave non-significant results. Thus, we conclude that it is not possible to distinguish between the competing hypotheses of no interaction versus an interaction based on Rubisco kinetics from the available experimental database. Experiments in a wider range of temperature zones are required. Until such experimental data are available, model predictions should aim to incorporate uncertainty about this interaction. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-05-15
    Description: In a letter to the editor Sundby (2015) expresses concerns about our study of changing spawning locations of the Northeast Arctic (NEA) stock of Atlantic cod over the period 1866-1969, where we identified statistically significant effects of the stock's demography whereas various climate indices all fell below statistical significance. Our conclusion on the role ascribed to climate disagrees with that of Sundby & Nakken (2008), which, based on a subset of our data and without considering demography, concluded that spawning was shifted northwards in warm periods. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-05-15
    Description: Quantifying landscape-scale methane (CH 4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH 4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, versus larger areas with net CH 4 uptake, in controlling landscape-level fluxes. We measured CH 4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape; lichen heath and mountain birch forest. An inter-comparison was carried out between fluxes measured using static chambers, up-scaled using a high resolution landcover map derived from aerial photography, and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH 4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH 4 release. In contrast, chamber measurements identified net CH 4 uptake in birch forest soils. An inter-comparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH 4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km 2 area. For the full growing season (May to October), approximately 1.1 to 1.4 g CH 4 m −2 was released across the 100 km 2 area. This was based on up-scaled lawn emissions of 1.2 to 1.5 g CH 4 m −2 , versus an up-scaled uptake of 0.07 to 0.15 g CH 4 m −2 by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH 4 emissions in northern Finland, and in aapa mire regions in general. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-05-15
    Description: Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over two months. Unexpectedly, after amendments with specific residues we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO 2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-05-15
    Description: Methane is an important greenhouse gas but characterizing production by source sector has proven difficult. Current estimates suggest herbivores produce ~20% (~76-189 Tg yr −1 ) of methane globally, with wildlife contributions uncertain. We develop a simple and accurate method to estimate methane emissions and reevaluate production by wildlife. We find a strikingly robust relationship between body mass and methane output exceeding the scaling expected by differences in metabolic rate. Our allometric model gives a significantly better fit to empirical data than IPCC Tier 1 and 2 calculations. Our analysis suggests that: a) the allometric model provides an easier and more robust estimate of methane production than IPCC models currently in use, b) output from wildlife is much higher than previously considered, and c) because of the sublinear allometric scaling of methane output with body mass, national emissions could be reduced if countries favored more, smaller livestock, over fewer, larger ones. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-05-15
    Description: Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory towards an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, i.e . the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure and feedbacks. Here we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores shrub biomass in tundra continued to increase four years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-05-15
    Description: Estuaries are dynamic environments at the land-sea interface that are strongly affected by inter-annual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28) and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-05-02
    Description: Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15 year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of Regional Climate Change Models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15 year period. However, their predictions for the 2021-2080 period diverged. Rainfall based models predicted a maintenance of fungal yield, whereas water balance based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-05-02
    Description: Animal assemblages fulfill a critical set of ecological functions for ecosystems that may be altered substantially as climate change-induced distribution changes lead to community disaggregation and reassembly. We combine species and community perspectives to assess the consequences of projected geographic range changes for the diverse functional attributes of avian assemblages worldwide. Assemblage functional structure is projected to change highly unevenly across space. These differences arise from both changes in the number of species and changes in species’ relative local functional redundancy or distinctness. They sometimes result in substantial losses of functional diversity that could have severe consequences for ecosystem health. Range expansions may counter functional losses in high-latitude regions, but offer little compensation in many tropical and subtropical biomes. Future management of local community function and ecosystem services thus relies on understanding the global dynamics of species distributions and multiscale approaches that include the biogeographic context of species traits.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-05-02
    Description: Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-05-08
    Description: Increased reactive nitrogen (N r ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review is to: 1) clarify the direct and indirect effects of N r deposition on forest and lake food webs in N limited biomes, 2) compare and contrast how aquatic and terrestrial systems respond to increased N r deposition, and 3) identify how the nutrient pathways within and between ecosystems change in response to N r deposition. We present that N r deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants’ N-content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; Slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, N r deposition diminishes belowground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing N r deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, N r deposition promotes emergent insects which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far most studies have examined N r deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...