ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,558)
  • American Institute of Physics (AIP)  (1,558)
  • Low Temperature Physics  (980)
  • APL Materials  (578)
  • 198986
  • 810
  • 1
    Publication Date: 2016-07-13
    Description: In semiconductors almost all heat is conducted by phonons (lattice vibrations), which is limited by their quasi-particle lifetimes. Phonon-phonon interactions represent scattering mechanisms that produce thermal resistance. In thermoelectric materials, this resistance due to anharmonicity should be maximised for optimal performance. We use a first-principles lattice-dynamics approach to explore the changes in lattice dynamics across an isostructural series where the average atomic mass is conserved: ZnS to CuGaS 2 to Cu 2 ZnGeS 4 . Our results demonstrate an enhancement of phonon interactions in the multernary materials and confirm that lattice thermal conductivity can be controlled independently of the average mass and local coordination environments.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-14
    Description: Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphs of VO 2 . This suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-16
    Description: We demonstrated epitaxial growth of GaN (0001) films on nearly lattice-matched Hf (0001) substrates by using a low-temperature (LT) epitaxial growth technique. High-temperature growth of GaN films results in the formation of polycrystalline films due to significant reaction at GaN/Hf heterointerfaces, while LT-growth allowed us to suppress the interfacial reactions and to obtain epitaxial GaN films on Hf substrates with a GaN 11 2 ̄ 0 / / Hf 11 2 ̄ 0 in-plane orientation. LT-grown GaN films can act as buffer layers for GaN growth at high temperatures. The interfacial layer thickness at the LT-GaN/Hf heterointerface was as small as 1 nm, and the sharpness of the contact remained unchanged even after annealing up to approximately 700 °C, which likely accounts for the dramatic improvement in GaN crystalline quality on Hf substrates.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-22
    Description: The hybrid perovskite CH 3 NH 3 PbI 3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-22
    Description: III-nitride semiconductors hold tremendous promise for realizing high efficiency photoelectrodes. However, previously reported InGaN photoelectrodes generally exhibit very low photocurrent densities, due to the presence of extensive defects, dislocations, and indium phase separation. Here, we show that In 0.5 Ga 0.5 N nanowires with nearly homogeneous indium distribution can be achieved by plasma-assisted molecular beam epitaxy. Under AM1.5G one sun illumination, the InGaN nanowire photoanode exhibits a photocurrent density of 7.3 mA/cm 2 at 1.2 V ( vs . NHE) in 1M HBr. The incident-photon-to-current efficiency is above 10% at 650 nm, which is significantly higher than previously reported values of metal oxide photoelectrodes.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-22
    Description: We study the two-dimensional electron gas at the interface of NdTiO 3 and SrTiO 3 to reveal its nanoscale transport properties. At electron densities approaching 10 15 cm −2 , our terahertz spectroscopy data show conductivity levels that are up to six times larger than those extracted from DC electrical measurements. Moreover, the largest conductivity enhancements are observed in samples intentionally grown with larger defect densities. This is a signature of electron transport over the characteristic length-scales typically probed by electrical measurements being significantly affected by scattering by structural defects introduced during growth, and, a trait of a much larger electron mobility at the nanoscale.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-23
    Description: Alloying in the system Cu 2 ZnSnSe 4 –CuInSe 2 –ZnSe (CZTISe) is investigated experimentally and theoretically. The goal is to distinguish single-phase and multi-phase regions within the Cu 2 ZnSnSe 4 -2CuInSe 2 -4ZnSe pseudo-ternary phase diagram. CZTISe thin films are prepared by co-evaporation of the chemical elements and are investigated in real-time during growth using in situ angle dispersive X-ray diffraction. The focus is mainly on thin films along the Cu 2 ZnSnSe 4 –2CuInSe 2 isopleth with small ZnSe addition as well as on films along the Cu 2 ZnSnSe 4 -4ZnSe isopleth with small CuInSe 2 addition. For both cases, ab initio calculations with density-functional theory are performed to estimate the stability of the alloy with respect to the formation of secondary phases. Both in experiment and calculation, we find a surprisingly large single-phase region in the Cu 2 ZnSnSe 4 corner of the pseudo-ternary phase diagram slightly off the Cu 2 ZnSnSe 4 -4ZnSe isopleth. This may help avoiding secondary phase formation under Zn-rich conditions and open up new possibilities for the application of CZTISe thin films in solar cells.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-26
    Description: We report the in-plane thermoelectric properties of suspended (Bi 1− x Sb x ) 2 Te 3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p -type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ∼ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F 4 -TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi 2 Te 3 nanoplates of comparable thickness and in the range of 0.2–0.7 W m −1 K −1 at room temperature.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-30
    Description: We studied the optical absorption and luminescence of agate (SiO 2 ), topaz (Al 2 [SiO 4 ](F,OH) 2 ), beryl (Be 3 Al 2 Si 6 O 18 ), and prehnite (Ca 2 Al(AlSi 3 O 10 )(OH) 2 ) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-30
    Description: We analyzed carefully the experimental kinetics of the low-temperature diffusion-controlled F, H center recombination in a series of irradiated alkali halides and extracted the migration energies and pre-exponential parameters for the hole H centers. The migration energy for the complementary electronic F centers in NaCl was obtained from the colloid formation kinetics observed above room temperature. The obtained parameters were compared with data available from the literature.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-30
    Description: The effect of low-temperature uniaxial deformation on the self-trapping-limited mean free path of excitons in a KI–Tl crystal was revealed from x-ray luminescence spectra. The analysis of the dependence of the intensity ratio of the Tl-center emission (2.85 eV) and the luminescence of self-trapped excitons (π-component; 3.3 eV) on the extent of low-temperature deformation showed that in the KI–Tl crystal (3 × 10 −3 mol. %) the self-trapping-limited mean free path of excitons is comparable with the distance between Tl atoms (20–27) a under a deformation ε = 2%. As the compression increases to ε ≥ 2%–5%, the mean free path drops to (27-5.35) a . The results of modeling based on the continuum approximation showed that with increasing temperature and the degree of low-temperature deformation the height of the potential barrier for the exciton self-trapping drops, which is consistent with the reduction of the mean free path of excitons in the KI–Tl crystal.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-30
    Description: Free volume and pore size distribution size in functional micro and macro-micro-modified Cu 0.4 Co 0.4 Ni 0.4 Mn 1.8 O 4 ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu 0.4 Co 0.4 Ni 0.4 Mn 1.8 O 4 ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-30
    Description: In order to predict optical properties of insulating materials under intensive laser excitation, we generalized methods of quantum electrodynamics, allowing us to simulate excitation of electrons and holes, interacting with each other and acoustic phonons. The prototypical model considers a two-band dielectric material characterized by the dispersion relations for electron and hole states. We developed a universal description of excited electrons, holes and acoustic phonons within joint quantum kinetics formalism. Illustrative solutions for the quasiparticle birth-annihilation operators, applicable at short laser pulses at 0 K, are obtained by the transition from the macroscopic description to the quantum field formalism.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-30
    Description: Monoclinic antiferromagnetic NiWO 4 was studied by far-infrared (30–600 cm −1 ) absorption spectroscopy in the temperature range of 5–300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO 4 and ZnWO 4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO 4 and CoWO 4 below their Neel temperatures down to 5 K.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-30
    Description: The creation spectrum of stable F centres (being part of F-H pairs of Frenkel defects) by synchrotron radiation of 7–40 eV has been measured for highly pure NaCl single crystals at 12 K using a highly sensitive luminescent method. It is shown that the efficiency of F centre creation in a closely packed NaCl is low at the decay of anion or cation excitons (7.8–8.4 and 33.4 eV, respectively) or at the recombination of relaxed conduction electrons and valence holes. Only the recombination of nonrelaxed (hot) electrons with holes provides the energy exceeding threshold value E FD , which is sufficient for the creation of Frenkel defects at low temperature.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-30
    Description: An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD–EPR. The present survey reports on the advantages and disadvantages applying the MCD–EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-07-30
    Description: Luminescence properties of SiO 2 in different structural states are compared. Similar comparison is made for GeO 2 . Rutile and α-quartz structures as well as glassy state of these materials are considered. Main results are that for α-quartz crystals the luminescence of self-trapped exciton is the general phenomenon that is absent in the crystal with rutile structure. In rutile structured SiO 2 (stishovite) and GeO 2 (argutite) the main luminescence is due to a host material defect existing in as-received (as-grown) samples. The defect luminescence possesses specific two bands, one of which has a slow decay (for SiO 2 in the blue and for GeO 2 , in green range) and another, a fast ultraviolet (UV) band (4.75 eV in SiO 2 and at 3 eV in GeO 2 ). In silica and germania glasses, the luminescence of self-trapped exciton coexists with defect luminescence. The latter also contains two bands: one in the visible range and another in the UV range. The defect luminescence of glasses was studied in details during last 60–70 years and is ascribed to oxygen deficient defects. Analogous defect luminescence in the corresponding pure nonirradiated crystals with α-quartz structure is absent. Only irradiation of a α-quartz crystal by energetic electron beam, γ-rays and neutrons provides defect luminescence analogous to glasses and crystals with rutile structure. Therefore, in glassy state the structure containing tetrahedron motifs is responsible for existence of self-trapped excitons and defects in octahedral motifs are responsible for oxygen deficient defects.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-07-30
    Description: The ground state properties of cubic scandium trifluoride (ScF 3 ) perovskite were studied using first-principles calculations. The electronic structure of ScF 3 was determined by linear combination of atomic orbital (LCAO) and plane wave projector augmented-wave (PAW) methods using modified hybrid exchange-correlation functionals within the density functional theory (DFT). The comprehensive comparison of the results obtained by two methods is presented. Both methods allowed us to reproduce the lattice constant found experimentally in ScF 3 at low temperatures and to predict its electronic structure in good agreement with known experimental valence-band photoelectron and F 1 s x-ray absorption spectra.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-30
    Description: Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate (NiWO 4 ) were measured using UV-VUV synchrotron radiation source. The origin of the bands is interpreted using comparative analysis with isostructural ZnWO 4 tungstate and based on the results of recent first-principles band structure calculations. The influence of the local atomic structure relaxation and of Ni 2+ intra-ion d–d transitions on the photoluminescence band intensity are discussed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-30
    Description: In this paper a novel method for synthesis of LaInO 3 :Er 3+ is reported and upconversion luminescence properties of the synthesized material at different temperatures (9–300 K) are studied. The samples were prepared by co-precipitation and subsequent heat treatment of lanthanum, indium and erbium hydroxides. It is shown that the excitation at 980 nm leads to a strong green upconversion luminescence in the material. At the concentrations above 0.1 mol. % of Er 3+ the energy transfer upconversion mechanism of the luminescence becomes evident. Further increase of Er 3+ content in the material leads to higher red-to-green upconversion luminescence intensity ratio. The mechanisms responsible for the observed variation are discussed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-07-30
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-07-30
    Description: Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities n d of multiply charged ( Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), n d ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction E proxi ( n d ), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction E proxi is evaluated by comparing it with the properties of the well-known London dispersive attraction E Lond ( n d ) 〈 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon E proxi 〉0 and for the alkali and alkaline-earth elements E proxi 〈 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of E proxi . The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R 3 ∝ n −1 d of a Wigner-Seitz cell. E proxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving E proxi . Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2 l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2 l with a probability that depends, among other factors, on the properties of E proxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2 l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive E proxi 〉 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density n d ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T .
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-02
    Description: In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-07-19
    Description: Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La 0.7 Sr 0.3 MnO 3 ) 1−x : (LaFeO 3 ) x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ∼800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-07-19
    Description: An attempt was made to tailor the magnetostructural transitions over a wide temperature range under the principle of isostructural alloying. A series of wide Curie-temperature windows (CTWs) with a maximal width of 377 K between 69 and 446 K were established in the Mn 1− y Co y NiGe 1− x Si x system. Throughout the CTWs, the magnetic-field-induced metamagnetic behavior and giant magnetocaloric effects are obtained. The (Mn,Co)Ni(Ge,Si) system shows great potential as multifunctional phase-transition materials that work in a wide range covering liquid-nitrogen and above water-boiling temperatures. Moreover, general understanding of isostructural alloying and CTWs constructed in (Mn,Co)Ni(Ge,Si) as well as (Mn,Fe)Ni(Ge,Si) is provided.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-07-28
    Description: We report on a new polar interface state between two band insulators: LaInO 3 and BaSnO 3 , where the sheet conductance enhancement in the interface reaches more than the factor of 10 4 depending on the La doping concentration in BaSnO 3 layer, by monitoring the conductance change before and after the polar interface formation as a function of La doping in BaSnO 3 . By eliminating the possibilities of oxygen vacancy involvement and cation diffusion, we show that the conductance enhancement is due to electronic reconstruction in the interface. Furthermore, we have found that the interfaces between BaSnO 3 and the larger bandgap non-polar perovskites BaHfO 3 and SrZrO 3 did not show such a conductance enhancement. We discuss a model for the interface state where the Fermi level plays a critical role and the conductance enhancement is due to the existence of polarization in the polar perovskite, LaInO 3 .
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-07-30
    Description: The radiation properties and the electronic structure of hybrid composites based on suspension polystyrene (PS) and nanocrystals of BaZrO 3 (BZO) ( d 〈 50 nm) have been studied using luminescent spectroscopy and x-ray analysis. A strong cathodoluminescence (CL) in BZO-nanocrystals is observed in temperature range 80–293 K. It is modified in BZO-PS composites: both the low- and a high-energy bands (near 4 eV) appear, together with a significant reduction in the CL intensity. A decrease of the lattice parameter a for BZO phase in the composite and the modification of CL spectra indicate for changes in the nanocrystalline structure induced by the polymer.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-07-30
    Description: Fresh and aged melt-grown or gas-phase grown CdI 2 crystals are studied by means of low-temperature photoluminescence spectroscopy. Noticeable transformations of emission spectra are observed after long-term aging. The formation of nanostructures containing cadmium oxide and cadmium hydroxide as well as the changes in local surrounding of iodine atoms and the possible growth of polytypic modifications of CdI 2 are taken into account when considering the diversity of optical spectra.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-08-02
    Description: With molecular beam epitaxy we have grown Cr y (Bi x Sb 1-x ) 2-y Te 3 thin films with homogeneous distribution of Cr dopants and Curie temperature up to 77 K. The films with Cr concentration y ≥ 0.39 are found to be topologically trivial, highly insulating ferromagnets, whose conductivity can be tuned over two orders of magnitude by gate voltage. The ferromagnetic insulators with electrically tunable conductivity can be used to realize the quantum anomalous Hall effect at higher temperature in topological insulator heterostructures and to develop field effect devices for spintronic applications.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-08-05
    Description: The electronic structure of Heusler alloys having mixed magnetic phases, comprising of vicinal anti-ferromagnetic and ferromagnetic orders, is of great significance. We present the results of an electronic structure study on Ni x Cu 1− x MnSb Heusler alloys, using Mn-2p core-level photoemission spectroscopy. Room temperature data in the paramagnetic phase reveal a non-monotonic variation of both electron correlation strength and conduction-band hybridization such that the former enhances while the latter weakens for compositions showing a mixed phase relative to compositions at the phase boundaries to the ordered phases. The results suggest a possible electronic driving force for settling mixed-magnetic phases.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-08-06
    Description: We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 10 16 cm −3 , which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 10 17 cm −3 ) deposited by PSD showed hole mobilities of 34 and 62 cm 2 V −1 s −1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-07-08
    Description: We review the spin-Seebeck and magnon-electron drag effects in the context of solid-state energy conversion. These phenomena are driven by advective magnon-electron interactions. Heat flow through magnetic materials generates magnetization dynamics, which can strongly affect free electrons within or adjacent to the magnetic material, thereby producing magnetization-dependent (e.g., remnant) electric fields. The relative strength of spin-dependent interactions means that magnon-driven effects can generate significantly larger thermoelectric power factors as compared to classical thermoelectric phenomena. This is a surprising situation in which spin-based effects are larger than purely charge-based effects, potentially enabling new approaches to thermal energy conversion.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-08
    Description: Electronic structures and thermoelectric transport properties of α-NaFeO 2 -type d 0 -electron layered complex nitrides AMN 2 (A = Sr or Na; M = Zr, Hf, Nb, Ta) were evaluated using density-functional theory and Boltzmann theory calculations. Despite the layered crystal structure, all materials had three-dimensional electronic structures. Sr(Zr, Hf)N 2 exhibited isotropic electronic transport properties because of the contribution of the Sr 4 d orbitals to the conduction band minimums (CBMs) in addition to that of the Zr 4 d (Hf 5 d ) orbitals. Na(Nb,Ta)N 2 showed weak anisotropic electronic transport properties due to the main contribution of the Nb 4 d (Ta 5 d ) and N 2 p orbitals to the CBMs and no contribution of the Na orbitals.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-08
    Description: Analytical calculations of the potential barrier hindering rotation of the hydrogen molecules in the molecular field of neighboring molecules are performed for molecular solid hydrogen. The calculations are made for the four-sublattice Pca 2 1 lattice which minimizes the electrostatic energy of classical quadrupoles on an hcp lattice.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-07-08
    Description: The model describing the effect of anharmonicity on the spin-crossover properties of Fe(II) complex is proposed. It is shown that anharmonicity can be one of the important factors controlling the magnetic transitions of the low-spin high-spin type.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-07-08
    Description: We report Raman light scattering in the phase separated superconducting single crystal Rb 0.77 Fe 1.61 Se 2 with T c = 32 K over a wide temperature region 3–500 K. The observed phonon lines from the majority vacancy ordered Rb 2 Fe 4 Se 5 (245) antiferromagnetic phase with T N = 525 K demonstrate modest anomalies in the frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed Rb δ Fe 2 Se 2 (122) conductive phase. The superconducting gap with d x 2 − y 2 symmetry has been detected in our spectra. In the range 0–600 cm −1 we observe a weak but highly polarized B 1 g -type background which becomes well-structured upon cooling. A possible magnetic or multiorbital origin of this background is discussed. We argue that the phase separation in M 0.8+ x Fe 1 . 6+y Se 2 is of pure magnetic origin. It occurs below the Néel temperature when the magnetic moment of iron reaches a critical value. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab initio spin-polarized band structure calculations we demonstrate that the compressed vacancy ordered Rb 2 Fe 4 Se 5 phase can be conductive and therefore may serve as a protective interface spacer between the purely metallic Rb δ Fe 2 Se 2 phase and the insulating Rb 2 Fe 4 Se 5 phase providing percolative Josephson-junction like superconductivity all throughout of Rb 0.8+ x Fe 1.6+ y Se 2 . Our lattice dynamics calculations show significant differences in the phonon spectra of the conductive and insulating Rb 2 Fe 4 Se 5 phases.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-07-08
    Description: The relative elongation ε of samples of high purity (99.9999 mol. % with respect to nonhydrogenic impurities) parahydrogen ( p -H 2 , ∼0.2% o -H 2 ) with different amounts of the stable hydrogen isotope deuterium is measured as a function of applied stress σ at temperatures of 1.8–4.2 K. The samples were subjected to uniaxial tension by stepwise loading. The ratio [D]/[H] of the number [D] of deuterium atoms to the number [H] of p -H 2 hydrogen atoms ranged from 0.0055 ± 0.0005 at. % up to 0.07 at. %. For deuterium enriched p- H 2 , the easy slip dislocation stage vanished from the σ(ε) curves and there was a significant reduction in the total relative elongation of the samples, as well as a substantial increase in the hardening coefficient d σ/ d ε. Deformation of samples of p- H 2 with deuterium contents higher than the natural amount produces an unusual change in their shape owing to the appearance of a rotational component of the low-temperature plastic mass transfer.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-07-08
    Description: Raman spectrum of single-crystal SmFe 3 (BO 3 ) 4 was studied in the frequency range from 3 to 1500 cm −1 at temperatures 10–300 K. All the A 1 and E phonon modes predicted by the group theory for a given symmetry of the crystal were observed. The magnitudes of splitting between the LO and TO components of polar E phonons were determined. It was found that under the transition to a magnetically ordered phase, the behavior of the intensity of the line corresponding to the A 1 vibrational mode is anomalous. It was shown that at low temperatures the spectrum of two-magnon excitations has a complex shape and is observed with both nondiagonal and diagonal components of the scattering tensor. This complex shape reflects the features in the density of states of the magnetic branches. An estimate of the magnon energy E m at the Brillouin zone boundary gave ∼47 cm −1 . The structure of the ground multiplet 6 H 5/2 of a Sm +3 ion in paramagnetic and antiferromagnetic states as well as the effect of the magnetic phase transition on it were studied. Electron-phonon interaction for the electronic excitation at 225 cm −1 was revealed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-07-08
    Description: Two series of nanosized cobalt spinel ferrites CoFe 2 O 4 are synthesized from metal salts using high-energy ball milling with the addition of NaCl as a growth agent (series CFO-NaCl), and without (CFO Series). The particle properties are characterized using atomic force microscopy, as well as magnetic and calorimetric measurements. It is shown that the average sizes of the nanoparticles were ∼5.6 and ∼10.3 nm for CFO and CFO-NaCl series, respectively. We performed magnetostatic measurements and determined the parameters that are required to analyze the magnetic state and remagnetization processes of the nanoparticles. It is shown that the blocking temperature is ≈160 K for CFO samples and ≈300 K for the CFO-NaCl series. It was concluded that at 293 K the CFO series particles exhibit a superparamagnetic state, whereas the CFO-NaCl series are in the blocked state. The specific loss power that is scattered by the synthesized nanoparticle ensembles placed in an alternating magnetic field, is measured experimentally and theoretically assessed. The nature of the processes that determine the thermal characteristics of the nanoparticles is analyzed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-07-08
    Description: Amplification of acoustic in-plane phonons due to an external temperature gradient (∇ T ) in single-layer graphene (SLG) was studied theoretically. The threshold temperature gradient ( ∇ T ) 0 g and the threshold voltage ( V T ) 0 g in SLG were evaluated. For T = 77   K , the calculated value for ( ∇ T ) 0 g = 746.8     K / cm and ( V T ) 0 g = 6.6   mV . The calculation was done in the hypersound regime. Further, the dependence of the normalized amplification ( Γ / Γ 0 ) on the frequency ω q and ∇ T / T were evaluated numerically and presented graphically. The calculated threshold temperature gradient ( V T ) 0 g for SLG was higher than that obtained for homogeneous semiconductors ( n -InSb) ( ∇ T ) 0 hom ≈ 10 3   K / cm , superlattices ( ∇ T ) 0 S L ≈ 384   K / cm , and cylindrical quantum wire ( ∇ T ) 0 c q w ≈ 10 2   K / cm . This makes SLG a much better material for thermoelectric phonon amplification.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-08
    Description: We found that the coupled system of Josephson junctions under external electromagnetic radiation demonstrates a cascade of parametric instabilities. These instabilities appear along the IV characteristics within bias current intervals corresponding to Shapiro step subharmonics and lead to charging in the superconducting layers. The amplitudes of the charge oscillations increase with increasing external radiation power. We demonstrate the existence of longitudinal plasma waves at the corresponding bias current values. An essential advantage of the parametric instabilities in the case of subharmonics is the lower amplitude of radiation that is needed for the creation of the longitudinal plasma wave. This fact gives a unique possibility to create and control longitudinal plasma waves in layered superconductors. We propose a novel experiment for studying parametric instabilities and the charging of superconducting layers based on the simultaneous variation of the bias current and radiation amplitude.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-08
    Description: The Coulombic effect on the stability range of the photo-excited electron gas on liquid helium is shown to favor formation of domains of different densities. Domains appear to eliminate or greatly reduce regions with negative conductivity. An analysis of the density domain structure allows explaining remarkable observations reported recently for the photo-excited electron gas.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-07-08
    Description: We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J -aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J -aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J -aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ε LR /2β, wherein ε LR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J -aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J -aggregates can have both a weak ( g 〈 1) and a strong ( g 〉 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J -aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J -aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J -aggregates by varying the values of g , which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J -aggregates, which has thus far been explained by the strongly localized exciton model.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-07-08
    Description: We present results of theoretical and experimental studies of the electronic structure and magnetic properties of RFe 4 Al 8 , RMn 4 Al 8 , and RCr 4 Al 8 compounds with nonmagnetic elements R = Sc, Y, La, and Lu. The electron spectrum and field induced magnetic moment, as well as their dependences on the unit cell volume, are calculated for the paramagnetic phase of the RT 4 Al 8 systems. The calculations are supplemented by measurements of the magnetic susceptibility of representative RT 4 Al 8 compounds as a function of temperature and hydrostatic pressure.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-07-08
    Description: Negative magnetoresistance of InSb whiskers with different impurity concentrations 4.4 × 10 16 –7.16 × 10 17 cm −3 was studied in longitudinal magnetic field 0–14 T in the temperature range 4.2–77 K. The negative magnetoresistance reaches about 50% for InSb whiskers with impurity concentration in the vicinity to the metal–insulator transition. The negative magnetoresistance decreases to 35 and 25% for crystals with Sn concentration from the metal and dielectric side of the transition. The longitudinal magnetoresistance twice crosses the axis of the magnetic field induction for the lightly doped crystals. The behavior of the negative magnetoresistance could be explained by the existence of classical size effect, in particular boundary scattering in the subsurface whisker layer.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-06-22
    Description: Materials’ design for high-performance thermoelectric oxides is discussed. Since chemical stability at high temperature in air is a considerable advantage in oxides, we evaluate thermoelectric power factor in the high temperature limit. We show that highly disordered materials can be good thermoelectric materials at high temperatures, and the effects of strong correlation can further enhance the figure of merit by adding thermopower arising from the spin and orbital degrees of freedom. We also discuss the Kelvin formula as a promising expression for strongly correlated materials and show that the calculation based on the Kelvin formula can be directly compared with the cross-layer thermopower of layered materials.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-06-23
    Description: In this study, a series of copper sulfides Cu x S with x spanning from 1.8 to 1.96 was prepared and their crystal structures, elemental valence states, and thermoelectric properties were systematically studied. The valence state of Cu in Cu x S is unchanged as the ratio of Cu/S varies, while the thermoelectric properties are very sensitive to the deficiency of Cu. In addition, the type of sulfur arrangement in the crystal structure also plays an important role on the electrical transports. Finally, the optimum Cu/S atomic ratios in the binary Cu x S system were identified for high power factor and thermoelectric figure of merit.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-06-21
    Description: Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-06-22
    Description: Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn) n :(HfNiSn) 6−n , and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity ( κ ) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured κ can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-06-24
    Description: Here we demonstrate a method to tune a ferroelectric imprint, which is stable in time, based on the coupling between the non-switchable polarization of ZnO and switchable polarization of PbZr x Ti (1−x) O 3 . SrRuO 3 /PbZr x Ti (1−x) O 3 /ZnO/SrRuO 3 heterostructures were grown with different ZnO thicknesses. It is shown that the coercive voltages and ferroelectric imprint vary linearly with the thickness of ZnO. It is also demonstrated that the ferroelectric imprint remains stable with electric field cycling and electric field stress assisted aging.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-06-24
    Description: The main ideas in the theory of thermoelectrics are discussed. We discuss power generation, thermoelectric cooling, transport theory, the Seebeck coefficient, and phonon drag.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-06-24
    Description: In this review, we focus on the celebrated interface between two band insulators, LaAlO 3 and SrTiO 3 , that was found to be conducting, superconducting, and to display a strong spin-orbit coupling. We discuss the formation of the 2-dimensional electron liquid at this interface, the particular electronic structure linked to the carrier confinement, the transport properties, and the signatures of magnetism. We then highlight distinctive characteristics of the superconducting regime, such as the electric field effect control of the carrier density, the unique tunability observed in this system, and the role of the electronic subband structure. Finally we compare the behavior of T c versus 2D doping with the dome-like behavior of the 3D bulk superconductivity observed in doped SrTiO 3 . This comparison reveals surprising differences when the T c behavior is analyzed in terms of the 3D carrier density for the interface and the bulk.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-05-28
    Description: The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al. , Phys. Rev. X 4 , 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine ( http://thermoelectrics.citrination.com ) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE 12 Co 5 Bi ( RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT ; we selected RE 12 Co 5 Bi for this study due to its interesting chemical composition and known facile synthesis.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-05-28
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-07-13
    Description: Synthetic minerals and related systems based on Cu–S are attractive thermoelectric (TE) materials because of their environmentally benign characters and high figures of merit at around 700 K. This overview features the current examples including kesterite, binary copper sulfides, tetrahedrite, colusite, and chalcopyrite, with emphasis on their crystal structures and TE properties. This survey highlights the superior electronic properties in the p -type materials as well as the close relationship between crystal structures and thermophysical properties. We discuss the mechanisms of high power factor and low lattice thermal conductivity, approaching higher TE performances for the Cu–S based materials.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-03-25
    Description: A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-04-07
    Description: Anomalously strong change of ferromagnetic ordering parameters upon a small variation of aluminum content was revealed in low-temperature experimental studies of electrical resistivity and galvanomagnetic properties of iron-vanadium-aluminum magnetic alloys with the compositions near the stoichiometric Fe 2 VAl. By comparing the temperature and magnetic field dependences of the electrical resistivity and Hall effect in Fe 2.1 V 0.91 Al 0.99 and Fe 2.05 V 0.91 Al 1.04 alloys, it was shown that a small increase of aluminum content leads to doubling of the Curie temperature and a sharp change in the temperature dependences of the magnetoresistance and saturation of the spontaneous magnetization.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-04-07
    Description: Specific heat C M ( T ) of polycrystalline Dy 0.6 Y 0.4 Rh 4 B 4 and Dy 0.6 Y 0.4 Rh 3.85 Ru 0.15 B 4 was studied in the temperature range of 0.5–9 K and magnetic fields 0–10 kOe for the first time. It was found that the λ-anomaly in the specific heat exists at T c ≈ 6 K for Dy 0.6 Y 0.4 Rh 4 B 4 and at T c ≈ 6.6 K for Dy 0.6 Y 0.4 Rh 3.85 Ru 0.15 B 4. It is suppressed in a magnetic field and shifted to lower temperatures. Partial substitution of Rh by Ru enhances superconductivity, presumably, due to stronger inner magnetism of the dysprosium sublattice in Dy 0.6 Y 0.4 Rh 4 B 4 as compared with Dy 0.6 Y 0.4 Rh 3.85 Ru 0.15 B 4 . Furthermore, it was observed that the molar heat capacity C M ( T ) of Dy 0.6 Y 0.4 Rh 3.85 Ru 0.15 B 4 increases with decreasing temperature for T 〈 4 K. In Dy 0.6 Y 0.4 Rh 4 B 4 , an increase in C M ( T ) with decreasing temperature is accompanied by the appearance of a maximum at T max = 1.5 K, which might be a manifestation of the magnetic phase transition in the dysprosium subsystem at this temperature.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-04-07
    Description: The thermoluminescence spectra of impurity-helium condensates (IHC) submerged in superfluid helium have been observed for the first time. Thermoluminescence of impurity-helium condensates submerged in superfluid helium is explained by neutralization reactions occurring in impurity nanoclusters. Optical spectra of excited products of neutralization reactions between nitrogen cations and thermoactivated electrons were rather different from the spectra observed at higher temperatures, when the luminescence due to nitrogen atom recombination dominates. New results on current detection during the IHC destruction are presented. Two different mechanisms of nanocluster charging are proposed to describe the phenomena observed during preparation and warm-up of IHC samples in bulk superfluid helium, and destruction of IHC samples out of liquid helium.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-04-07
    Description: X-ray diffractometry is used to study samples of type PM-A group B polyimide (Kapton H) subjected to uniaxial tension at room temperature and cooling to liquid nitrogen and helium temperatures. An asymmetry in the halo of the diffraction pattern from the amorphous sample is observed as a result of deformation and cooling of the samples. Deformation and cooling are found to have different effects on the intensity distribution. Thus, deformation produces “stretched” regions, while cooling produces “compressed” regions. An analysis of the diffraction patterns shows that uniaxial tension leads to partial ordering of the polyimide molecules in a sample along the direction of the applied load. The observed changes in the structure during cooling of films may indicate that mutual ordering of some of the molecules relative to one another is taking place.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-04-07
    Description: Integrated phosphorescence spectra of meta-bromobenzophenone crystals were measured in the temperature range from 1.6 to 297 K. The spectra were found to contain two series of monomeric bands associated with the stretching mode of the C=O carbonyl at all temperatures. Above 70 K in the red spectral region, a broad structureless band of unknown nature was observed, the center of gravity of which was shifted to red with increasing temperature. The above phenomena and others anomalies can be due to the structural properties of both the molecule and the crystal.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-04-07
    Description: The energy spectrum of a quasi-two-dimensional electron gas in an in-plane magnetic field is studied using the perturbation theory and quasiclassical approach in the presence of the Rashba and Dresselhaus spin-orbit coupling. The existence of the intersection of energy sublevels in electron spectrum is demonstrated. The reciprocal mass tensor of electrons is analyzed. The heat capacity of the degenerate electron gas is examined, and its relations with the key features of the spectrum are shown.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-04-07
    Description: We discuss and analyze the dependence spectra of the transmission coefficient T on the quasiparticle energy E of one variety of graphene-based Fibonacci superlattices (SL). The SL is built from armchair graphene nanoribbons (GNR), and the quasi-periodicity is produced by metal-like (MGNR) and semiconductor (SCGNR) ribbons, placed along the lattice growth axis in accordance with the Fibonacci sequence, which are used as individual SL elements. It is shown that the difference in the values of quantized transverse quasi-momentum of electrons in MGNR and SCGNR is enough to form an effective quasi-periodic modulation in the examined structure (no additional factors required), and the optimal nanoribbon width range for this purpose is determined. We also analyzed the dependence of the spectral properties of the test structure on the geometric parameters of the superlattice, and the external electrostatic potential. We paid particular attention to the fact that each Fibonacci generation had a Dirac superlattice band gap. The results of the study can be useful in the determination of optimal parameters for graphene-based nanoelectronic devices.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-04-07
    Description: Quasistable laminar flow of He II at a temperature of 140 mK is studied experimentally. The liquid flow was excited by a vibrating quartz tuning fork with a resonance frequency of about 24 kHz. It was found that for velocities of the tuning fork oscillations from 0.046 to 0.16 m/s, the He II flow can be both quasistable laminar and turbulent. Transitions between these flow regimes were observed. When the velocity of the tuning fork oscillations increases more rapidly, the velocity at which the quasistable flow becomes unstable and undergoes a transition to a turbulent flow is higher. Mechanisms for the dissipation of the energy of the oscillating tines of the tuning fork in the quasistable laminar flow regime are analyzed. It is found that there is an additional mechanism for dissipation of the energy of the oscillating tuning fork beyond internal friction in the quartz. This mechanism is associated with mutual friction owing to scattering of thermal excitations of He II on quantized vortices and leads to a cubic dependence of the exciting force on the fluid velocity.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-04-07
    Description: We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit's energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-04-07
    Description: The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic field and finite temperatures are reduced to the single equation for the one-component OP in the limit of zero magnetic field. Here this equation is solved analytically for arbitrary parametrization of the effective Skyrme interaction in neutron matter and as the main results the energy gap (in the energy spectrum of neutrons in SNM) is obtained as nonlinear function of temperature T and density n in two limiting cases: for low temperatures near T = 0 and in the vicinity of phase transition temperature T c 0 ( n ) for dense neutron matter from normal to superfluid state. These solutions for the energy gap are specified for generalized BSk21 and BSk24 parametrizations of the Skyrme forces (with additional terms dependent on density n ) and figures are plotted on the interval 0.1 n 0 〈 n 〈 2.0 n 0 , where n 0 = 0.17 fm −3 is nuclear density.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-04-12
    Description: Single crystals of Mott-Hubbard insulator LaVO 3 exhibit spin and orbital ordering along with a structural change below ≈140 K. The occurrence of orbital ordering in epitaxial LaVO 3 films has, however, been little investigated. By temperature-dependent Raman scattering spectroscopy, we probed and evidenced the transition to orbital ordering in epitaxial LaVO 3 film samples fabricated by pulsed-laser deposition. This opens up the possibility to explore the influence of different epitaxial strain (compressive vs . tensile) and of epitaxy-induced distortions of oxygen octahedra on the orbital ordering, in epitaxial perovskite vanadate films.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-01-01
    Description: An analysis of known experimental literature data on the temperature dependence of magnetic susceptibility of beryllium. It is shown that this dependence can be explained if we take into account that beryllium has an electron topological transition of 3½ kind near the Fermi level.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-01-01
    Description: The electronic structure and optical properties of the SmNi 5– x Cu x ( x = 0, 1, 2) compounds are studied. The band spectra of the studied intermetallics were calculated with LDA + U + SO method supplementing the local density approximation with a correction for strong electron interaction on the shell of the rare-earth element. Optical properties were studied by ellipsometry method in the wide wavelength range. It was found that the substitution of copper for nickel leads to local changes in the optical conductivity spectra. Both the spectroscopic measurements and theoretical calculations demonstrate the presence of a broad absorption band around 4 eV associated with the Cu 3 d → Ni 3 d electron transitions and increasing with the grown of copper content. The experimental dispersion curves of optical conductivity in the interband absorption region were interpreted using the results of the calculations.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-01-01
    Description: Magnetoresistance Δρ( H , T ) of several heavy-fermion compounds, CeAl 2 , CeAl 3 and CeCu 6 , substitutional solid solutions with quantum critical behavior CeCu 6– x Au x ( x = 0.1, 0.2) and alloys with magnetic ground state Ce(Al 1– x M x ) 2 (M = Co, Ni, x ≤ 0.8) was studied in a wide range of temperatures (1.8–40 K) in magnetic fields up to 80 kOe. It was shown that a consistent interpretation of the field dependences of the resistance for both non-magnetic and magnetically ordered cerium-based intermetallic compounds with strong electron correlations can be achieved within the framework of an approach that accounts for scattering of charge carriers by localized magnetic moments in a metal matrix. Within this approach, three different components of the magnetoresistance of cerium intermetallic compounds were identified: the negative Brillouin contribution proportional to the local magnetization ( − Δ ρ / ρ ∼ M loc 2 ), the alternating linear contribution ( Δ ρ / ρ ∼ H ) and the magnetic component, saturating in magnetic fields below 15 kOe. In the framework of the Yosida model for the cerium alloys under study, estimates of the local magnetic susceptibility χ loc ( H , T 0 ) were obtained from the magnetoresistance data. Numerical differentiation of the magnetoresistance with respect to the magnetic field and analysis of the obtained d ( Δ ρ / ρ ) / d H = f ( H , T ) dependences allowed us to reconstruct the H–T magnetic phase diagrams of the strongly correlated electron systems under study as well as to examine the effects of spin polarization and renormalization of the electronic states on charge transport both in the regime of quantum critical behavior and in the magnetically ordered state.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-01-01
    Description: We consider the field dependence of magnetization in the paramagnetic phase of manganese monosilicde, MnSi, which is characterized by an anomalously large effective magnetic moment μ* = 5.3μ B , and a small saturation magnetization M 0 = 0.3μ B /Mn. It follows from the conducted analysis, that neither the theory of band magnetism, nor the cluster approach can explain the experimental data, but an adequate description is possible within the framework of the spin-polaron model, in which the spin-polaron is a quasi-bonded state of the band electron and localized magnetic moment of Mn. It is found that the inclusion of specific interaction for a simple ferrimagnet-like configuration that characterizes the spin-polaron, allows us to explain the experimental data, wherein the observed values of μ* are not associated with large localized magnetic moments in the sample volume. The possible methods of experimental verification of the spin-polaron model are analyzed, including experimentum crucis . The obtained results show that the paramagnetic phase of MnSi should be regarded as a phase in which its physical properties are determined by the magnetic inhomogeneities on a nanometer spatial scale.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-01-05
    Description: We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C 8 -BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C 8 -BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature 〉60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm 2 /V-s has been observed.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-01-05
    Description: For use in high-magnetic-field coil-based applications, the critical current density ( J c ) of REBa 2 Cu 3 O y (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the J c for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO 3 (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique ( T s = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 10 3 μ m −2 of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In J c measurements, the J c of the T s = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The J c min (6.4 MA/cm 2 ) of the former was more than 6 times higher than that (1.0 MA/cm 2 ) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m 3 was realized; this value was comparable to the highest value recorded, to date.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-01-05
    Description: Transport characteristics of TiN/Ta/TaO x /TiN resistive-switching crossbar devices with amorphous TaO x functional layer have been investigated at cryogenic temperatures. Quasi-DC I - V characteristics at 10 K show a negative differential resistance region followed by a rapid transition to the non-volatile formed state. Accounting for Joule heating, the device temperature at the point of switching was estimated at 150 K. Measurements of transient resistance at low stage temperatures revealed an abrupt drop of resistance delayed by a characteristic incubation time after the leading edge of the voltage pulse. The incubation time was a strong function of applied voltage but did not depend on temperature between 10 K and 100 K. This implies a very low activation energy of the threshold switching process at low temperatures. Both of these observations argue against the involvement of oxygen vacancy motion at the onset of the forming process.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-01-13
    Description: A large remanent polarization close to theoretical value 80 μ C/cm 2 of bulk PbTiO 3 is achieved in epitaxial heterostructures of (120–600)-nm-thick PbTiO 3 films grown by pulsed laser deposition on (001) SrTiO 3 substrate using a 100-nm-thick SrRuO 3 bottom electrode layer. The heterostructures employing a 50-nm-thick electrode exhibit a significantly smaller polarization of ≤60 μ C/cm 2 . A detailed x-ray diffraction analysis of the crystal structure allows for relating this large polarization to electrode-controlled relaxation of epitaxial strain in PbTiO 3 . Based on the observed results, we anticipate that the electrode-promoted strain relaxation can be used to enhance polarization in other epitaxial ferroelectric films.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-03-08
    Description: Computational capability has enabled materials design to evolve from trial-and-error towards more informed methodologies that require large amounts of data. Expert-designed tools and their underlying databases facilitate modern-day high throughput computational methods. Standard data formats and communication standards increase the impact of traditional data, and applying these technologies to a high throughput experimental design provides dense, targeted materials data that are valuable for material discovery. Integrated computational materials engineering requires both experimentally and computationally derived data. Harvesting these comprehensively requires different methods of varying degrees of automation to accommodate variety and volume. Issues of data quality persist independent of type.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-03-10
    Description: Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-02-09
    Description: Structural and transport properties in the normal and superconducting states are investigated in a Ca 0.8 La 0.2 FeAs 2 single crystal with T c = 27 K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J c for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as J c (B = 0) ∼ 10 5 A/cm 2 . This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly, this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresistivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-01-01
    Description: Exchange bias phenomenon, evident of antiferromagnetic–ferromagnetic phase segregation state, has been observed in (Nd 1− x Y x ) 2/3 Ca 1/3 MnO 3 ( x = 0, 0.1) compounds at low temperatures. A contribution to the total magnetization of the compounds due to the ferromagnetic phase has been evaluated. It has been found that yttrium doping leads to the growth of the ferromagnetic phase fraction. The ferromagnetic phase in the doped compound has a lower coercivity H c and more rectangular form of the hysteresis loop. The values of the exchange bias field H EB and coercivity are found to be strongly dependent on the cooling magnetic field H cool . In sufficiently high magnetic fields, H cool 〉 5 kOe, H EB in the doped compound is about twice as low as in the parent compound. This difference is attributed to a lower exchange interaction and higher saturation magnetization of the ferromagnetic phase in (Nd 0.9 Y 0.1 ) 2/3 Ca 1/3 MnO 3 .
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-01-01
    Description: The construction and operating principle of a pendulum magnetometer for measuring the magnetic susceptibility of solids under high gas pressures are described. This device is distinctive in having the pendulum mounted directly in the high pressure chamber. Experimental plots of the susceptibility of the compound V 4 S 9 Br 4 as a function of pressure up to 2 kbar at temperatures of 60–300 K are presented as an example of the use of the magnetometer.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-01-01
    Description: A study of the magnetocaloric effect for Tm 2 Fe 16 , Tm 2 Fe 17 , Tm 2 Fe 18 , Tm 2 Fe 19 , Tm 2 Fe 17− x Mn x ( x ≤ 1.5), Ce 2 Fe 17− x Mn x H y ( x 〈 2, y ≤ 3), Lu 2 Fe 17− x Mn x ( x ≤ 2) systems at magnetic ordering temperatures T C , T N and a ferro-antiferromagnet phase transition Θ T , from magnetization measurements. In alloys with ground ferromagnetic and high-temperature antiferromagnetic states, the change in the magnetic entropy peak −Δ S M increases as the magnetic phase transition temperatures Θ T and T N converge with varying compound composition. Extrapolating the difference T N − Θ T to zero for the initial and doped alloys allows us to determine the maximum possible value of −Δ S M in such systems and the composition of the corresponding alloy. A superposition of the −Δ S M (T) maxima at Θ T and T N for compounds with two magnetic phase transitions creates much higher values of relative cooling power in comparison to compounds with only one magnetic phase transition at T C .
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-01-01
    Description: The electronic structure of (Ti,Mn)O 2 diluted magnetic semiconductors was investigated theoretically from first principles using the fully relativistic Dirac linear muffin-tin orbital band structure method. The electronic structure was obtained with the local spin-density approximation taking into account strong Coulomb correlations in the frame of the LSDA + U approximation. The x-ray absorption spectra and x-ray magnetic circular dichroism spectra at the Mn and Ti L 2,3 and O K edges were investigated theoretically from first principles. The origin of the XMCD spectra in these compounds was examined. The calculated results are compared with available experimental data.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-03-25
    Description: Materials innovations enable new technological capabilities and drive major societal advancements but have historically required long and costly development cycles. The Materials Genome Initiative (MGI) aims to greatly reduce this time and cost. In this paper, we focus on data reuse in the MGI and, in particular, discuss the impact of three different computational databases based on density functional theory methods to the research community. We also discuss and provide recommendations on technical aspects of data reuse, outline remaining fundamental challenges, and present an outlook on the future of MGI’s vision of data sharing.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-03-25
    Description: Magnetic interfaces have been identified as promising systems upon which to base next-generation spintronic devices. In these nearly two-dimensional systems, deviations from bulk electronic structure and competition between nearly degenerate magnetic ground states allow the stabilization of widely tunable emergent properties. However, ever smaller length scales pose new challenges which must be overcome in order to understand and control magnetic properties at the atomic level. Using recent examples in oxide heterostructures and topological insulators, we discuss how combining techniques such as neutron scattering, X-ray scattering, X-ray spectroscopy, and transmission electron microscopy enables the probing of magnetism on the Angstrom scale.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-03-30
    Description: Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-04-01
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-04-01
    Description: The dynamics of a magnetic domain wall (DW) under a transverse magnetic field H y are investigated in two-dimensional (2D) Co/Ni microstrips, where an interfacial Dzyaloshinskii-Moriya interaction (DMI) exists with DMI vector D lying in + y direction. The DW velocity exhibits asymmetric behavior for ± H y ; that is, the DW velocity becomes faster when H y is applied antiparallel to D . The key experimental results are reproduced in a 2D micromagnetic simulation, which reveals that the interfacial DMI suppresses the periodic change of the average DW angle φ even above the Walker breakdown and that H y changes φ , resulting in a velocity asymmetry. This suggests that the 2D DW motion, despite its microscopic complexity, simply depends on the average angle of the DW and thus can be described using a one-dimensional soliton model. These findings provide insight into the magnetic DW dynamics in 2D systems, which are important for emerging spin-orbitronic applications.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-04-08
    Description: Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001) wafers was studied. Antiphase boundary (APB) free epitaxial GaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm 2 /V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-04-08
    Description: A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-04-07
    Description: F-I-S tunnel junctions of Co 2 CrAl-I-Pb and Co 2 Cr 0.6 Fe 0.4 Al-I-Pb based on films of semimetal ferromagnetic Heusler alloys Co 2 CrAl (Curie temperature T C ≈ 334 K) have been fabricated and the features of spin-polarized current in them studied. A theoretical model of spin blocking of the tunnel current shows that the degree of spin polarization of the conduction electrons in quasi-single crystal films of Co 2 Cr 0.6 Fe 0.4 Al and Co 2 CrAl with B 2- and L 2 1 -type order is 0.91–0.97.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-04-07
    Description: We report an experimental investigation of the electric response of superfluid helium. Our results confirm the presence of electric potential that appears at the relative oscillatory motion of normal fluid and superfluid components in helium generated by the heater. The resonance of the electric potential was observed in the first four harmonics. A suggested method for the detection of the electric response allows the required resonance peak to be distinguished from spurious signals. Our results are in qualitative agreement with the data published by previous researchers. The reasons for the discrepancy in the measured values of the potential difference are discussed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-04-07
    Description: A continuation of the theoretical study of the intrinsic properties of dislocation and crowdion structural defects in 2D crystals [V. D. Natsik and S. N. Smirnov, Fiz. Nizk. Temp. 40 , 1366 (2014) and V. D. Natsik and S. N. Smirnov, Fiz. Nizk. Temp. 41 , 271 (2015)]. The atomic lattice model of conservative (glide) and non-conservative (climb) defect movement is discussed in detail. It is shown that given a continuum description of the 2D crystal, an individual defect can be examined as a point carrier of plastic deformation, its value being determined by the topological charge, which is compliant with the crystal geometry defect parameters. It is found that the strain rate depends on the rate at which the defect center moves, as well as its topological charge. The elastic forces acting on the dislocation and crowdion centers in the field of applied mechanical stresses, and the forces of elastic interaction between defects, are calculated in terms of the linear theory of elasticity of a 2D crystal. The non-linear effect pertaining to the interaction between defects and bending deformation of the crystalline membrane, which is specific to 2D crystals, is also discussed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-07-06
    Description: Metastable phases, such as bcc Co or Ni and hcp Fe or Ni, reportedly possess extraordinary magnetic properties for epitaxial ultra-thin films. To understand phase stability of these epitaxy-oriented phases upon substrate lattices, we calculated novel phase diagrams of Co, Fe, and Ni ultrathin films by considering the chemical free energy, elastic strain energy, and surface energy. Verified by experimental data in the literatures, the stable epitaxy-oriented phases are readily identified from the phase diagrams. The stabilization of these metastable phases is determined by the interplay between orientation-dependent elastic strain energy and surface energy.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-07-06
    Description: A series of anti-perovskites including Sr 3 PbO are recently predicted to be a three-dimensional Dirac material with a small mass gap, which may be a topological crystalline insulator. Here, we report the epitaxial growth of Sr 3 PbO thin films on LaAlO 3 using molecular beam epitaxy. X-ray diffraction indicates (001) growth of Sr 3 PbO, where [110] of Sr 3 PbO matches [100] of LaAlO 3 . Measurements of the Sr 3 PbO films with parylene/Al capping layers reveal a metallic conduction with p -type carrier density of ∼10 20 cm −3 . The successful growth of high quality Sr 3 PbO film is an important step for the exploration of its unique topological properties.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-07-01
    Description: Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-08-16
    Description: Composition-dependent charge transport and temperature-dependent density of state effective mass-dependent Seebeck coefficient were investigated in Bi 2− x Sb x Te 3 ( x = 1.56-1.68) compounds. The compounds were prepared by the spark plasma sintering of high-energy ball-milled powder. High-temperature Hall measurements revealed that the charge transport in the compounds was governed dominantly by phonon scattering and influenced additionally by alloy scattering depending on the amount of Sb. Contrary effects of Sb content on the Seebeck coefficient were discussed in terms of carrier concentration and density of state effective mass, and it was elucidated by temperature-normalized Pisarenko plot for the first time.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-08-16
    Description: Cu 12 Sb 4 S 13 -based tetrahedrites are high-performance thermoelectrics that contain earth-abundant and environmentally friendly elements. At present, the mechanistic understanding of their low lattice thermal conductivity (
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-08-16
    Description: We demonstrate crack-free ZnO/GaN distributed Bragg reflectors (DBRs) grown by hybrid plasma-assisted molecular beam epitaxy using the same growth chamber for continuous growth of both ZnO and GaN without exposure to air. This is the first time these ZnO/GaN DBRs have been demonstrated. The Bragg reflectors consisted up to 20 periods as shown with cross-sectional transmission electron microscopy. The maximum achieved reflectance was 77% with a 32 nm wide stopband centered at 500 nm. Growth along both (0001) and (000 1 ̄ ) directions was investigated. Low-temperature growth as well as two-step low/high-temperature deposition was carried out where the latter method improved the DBR reflectance. Samples grown along the (0001) direction yielded a better surface morphology as revealed by scanning electron microscopy and atomic force microscopy. Reciprocal space maps showed that ZnO(000 1 ̄ )/GaN reflectors are relaxed whereas the ZnO(0001)/GaN DBRs are strained. The ability to n-type dope ZnO and GaN makes the ZnO(0001)/GaN DBRs interesting for various optoelectronic cavity structures.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-08-24
    Description: Sputter deposition is a widely used growth technique for a large range of important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the effect of the strong permanent magnets in magnetron sputter sources on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer-by-layer control during sputter deposition by in situ RHEED.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-08-24
    Description: We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (In x Ga 1− x ) 2 O 3 for 0 ≤ x ≤ 1. We measured the growth rate of the alloy in situ by laser reflectrometry as a function of growth temperature T G for different metal-to-oxygen flux ratios r Me , and nominal In concentrations x nom in the metal flux. We determined ex situ the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration x shows a strong dependence on the growth parameters T G , r Me , and x nom whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼ μ m 3 x does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by Ga 2 O desorption the same way as during Ga 2 O 3 growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low T G and/or excessively low r Me kinetically enables In incorporation into (In x Ga 1− x ) 2 O 3 . This study may help growing high-quality ternary compounds (In x Ga 1− x ) 2 O 3 allowing band gap engineering over the range of 2.7–4.7 eV.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...