ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,995)
  • American Institute of Physics (AIP)  (7,995)
  • Physics of Plasmas  (7,015)
  • Low Temperature Physics  (980)
  • 1812
  • 810
Collection
  • Articles  (7,995)
Publisher
Years
Topic
  • 1
    Publication Date: 2016-07-12
    Description: A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10 17  m −3 and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma source is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10 4  V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-12
    Description: The paper analyzes the dielectric breakdown properties of N 2 –O 2 mixtures at different O 2 concentrations and gas pressures, taking into account electron detachments from negative ions. The reduced effective ionization coefficients α(eff)/N in N 2 –O 2 mixtures at different O 2 concentrations and gas pressures were calculated and analyzed, by considering electron detachments. The critical reduced electric fields (E/N) cr and the critical electron temperature T b were then determined. The result indicates a clear enhancement of α(eff)/N by collisional detachments, which causes a reduction in the (E/N) cr . In addition, a synergistic effect in the N 2 –O 2 mixture was also observed in both (E/N) cr and T b . The value of T b was decreased by the increase of pd product, however, T b tended to be constant at relatively high pd products.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-13
    Description: A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electron beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-13
    Description: Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium plasma in large aspect ratio approximation with E × B flow and specified toroidal plasma velocity, electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent time modes, is used to describe the transport dependence on the electric, magnetic, and plasma velocity shears. We also show that resonant perturbations and their correspondent islands in the Poincaré maps are much affected by the toroidal velocity profiles. Moreover, shearless transport barriers, identified by extremum values of the perturbed rotation number profiles of the invariant curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal plasma velocity profile on these shearless transport barriers.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-13
    Description: The propagation of surface plasmons on a quantum plasma half-space in the absence of any external confinement is investigated. By means of the Quantum Hydrodynamic Model in the electrostatic limit, it is found that the equilibrium density profile is a smooth continuous function which, in the linear regime, supports multiple non-normal surface modes. Defining a spectrum function and using a cutting condition, the dispersion relations of these modes and their relevance for realistic dynamics are computed. It is found that the multiple surface plasmons present a significant red-shift with respect to the case of fully bounded quantum plasmas.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-13
    Description: Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-13
    Description: The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding to 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-13
    Description: The properties of bound-bound transitions in hydrogen-like ions in dense quantum plasmas, characterized by a cosine-Debye-Hückel interaction between charged particles, are studied in detail. The transition frequencies, oscillator strengths, and radiative transition probabilities of Lyman and Balmer series are calculated for a wide range of screening strengths of the interaction up to the n  = 5 shell. For Δ n ≠ 0 transitions, all these quantities exhibit a significant decrease with increasing screening strength, while for the Δ n = 0 transitions and for the radiative lifetimes, the opposite is true. The present results are compared with those available from the literature. They are also compared with the results for the pure Debye-Hückel potential with the same screening strength.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-15
    Description: Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-15
    Description: Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-15
    Description: In the literature, collisional processes are customarily discussed within the context of the Boltzmann-Balescu-Lenard-Landau type of collision integral, but such an equation is strictly valid for unmagnetized plasmas. For plasmas immersed in the ambient magnetic field, the foundational equation that describes binary collisions must be generalized to include the effects of magnetic field. The present paper makes use of such an equation in order to describe the collisional relaxation of temperatures under the assumption of bi-Maxwellian velocity distribution function. The formalism derived in the present paper may be useful for studying the effects of binary collisions on the isotropization of temperatures in the solar wind plasma, among possible applications.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-15
    Description: The slowing down as well as the deflection time of test particles in the plasma is studied in the non-extensive statistics. The relevant relations are derived using Fokker Planck equation. It is remarked that the slowing down and deflection times modify considerably in the non-extensive statistics in comparison with Boltzmann Gibbs one. It is found that by decreasing non-extensivity index q ( 1 / 3 〈 q ≤ 1 which corresponds to plasma with excess super extensive particles), both the slowing down and deflection times will be increased. Also, for q ≥ 1 , i.e., the sub-extensive particles, the same results are obtained by decreasing q . Additionally, the effects of non-extensive distributed particles on the electrical conductivity and diffusion coefficient of plasma are studied. It is shown that plasmas with smaller q s are better conductors in both 1 / 3 〈 q ≤ 1 and q ≥ 1 . In addition, it is observed that by increasing q , Dreicer field will increase in both super-extensive and sub-extensive particles. Moreover, it is found that the diffusion coefficient across a magnetic field is decreased by decreasing q . Furthermore, our results reduce to the solutions of Maxwellian plasma at the extensive limit q → 1. This research will be helpful in understanding the relaxation times and transport properties of fusion and astrophysical plasmas.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-07-20
    Description: It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamics of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-21
    Description: A computational modeling study of high-voltage nanosecond pulsed microdischarge in xenon gas at 10 atm is presented. The discharge is observed to develop as two streamers originating from the cathode and the anode, and propagating toward each other until they merge to form a single continuous discharge channel. The peak plasma density obtained in the simulations is ∼10 24  m −3 , i.e., the ionization degree of plasma does not exceed 1%. The influence of the initial gas pre-ionization is established. It is seen that an increase in the seeded plasma density results in an increase in the streamer propagation velocity and an increase in the plasma density obtained after the merging of two streamers.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-22
    Description: One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Publication Date: 2016-07-22
    Description: We report the discovery of an envelope Hamiltonian describing the charged-particle dynamics in general linear coupled lattices.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-07-26
    Description: A diagnostic is developed for determining the hotspot mix in inertial confinement fusion experiments. A multi-channel pinhole camera measures Bremsstrahlung emissions from implosion capsules ranging from 6 keV to 30 keV and records an image of the hotspot. Meanwhile, a planar crystal spectrometer measures Ar line emissions used to deduce the electron density of the hotspot. An X-ray streaked camera records the burn duration. With the Bremsstrahlung spectrum, electron density, hotspot volume, and burn duration, the mix quantity is determined by solving a pair of linear equations. This inferred mix amount has an uncertainty due to the uncertainty of the electron density, but with the help of the measured neutron product, the most likely mix quantity value can be determined. This technique is applied to experimental images to infer the quantity of CH ablator mix into the hotspot.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-27
    Description: The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μ m scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-28
    Description: The effort to obtain a set of MagnetoHydroDynamic (MHD) equations for a magnetized collisionless plasma was started nearly 60 years ago by Chew et al . [Proc. R. Soc. London, Ser. A 236 (1204), 112–118 (1956)]. Many attempts have been made ever since. Here, we will show the derivation of a set of these equations from the gyrokinetic perspective, which we call it gyrokinetic MHD, and it is different from the conventional ideal MHD. However, this new set of equations still has conservation properties and, in the absence of fluctuations, recovers the usual MHD equilibrium. Furthermore, the resulting equations allow for the plasma pressure balance to be further modified by finite-Larmor-radius effects in regions with steep pressure gradients. The present work is an outgrowth of the paper on “Alfven Waves in Gyrokinetic Plasmas” by Lee and Qin [Phys. Plasmas 10 , 3196 (2003)].
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-07-29
    Description: Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I 0  = 3 × 10 20  W/cm 2 and pulse duration τ  = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-07-29
    Description: The validity of virial analysis to infer global MHD equilibrium poloidal beta β p and internal inductance ℓ i from external magnetics measurements is examined for low aspect ratio configurations with A 〈 2 . Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high- A approximations to low- A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low- A . Highly paramagnetic configurations are found to be inadequately represented through the virial mean radius parameter R T . Alternate formulations for inferring β p and ℓ i that are independent of R T to avoid this difficulty are presented for the static isotropic limit. These formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-07-30
    Description: We studied the optical absorption and luminescence of agate (SiO 2 ), topaz (Al 2 [SiO 4 ](F,OH) 2 ), beryl (Be 3 Al 2 Si 6 O 18 ), and prehnite (Ca 2 Al(AlSi 3 O 10 )(OH) 2 ) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-07-30
    Description: We analyzed carefully the experimental kinetics of the low-temperature diffusion-controlled F, H center recombination in a series of irradiated alkali halides and extracted the migration energies and pre-exponential parameters for the hole H centers. The migration energy for the complementary electronic F centers in NaCl was obtained from the colloid formation kinetics observed above room temperature. The obtained parameters were compared with data available from the literature.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-07-30
    Description: The effect of low-temperature uniaxial deformation on the self-trapping-limited mean free path of excitons in a KI–Tl crystal was revealed from x-ray luminescence spectra. The analysis of the dependence of the intensity ratio of the Tl-center emission (2.85 eV) and the luminescence of self-trapped excitons (π-component; 3.3 eV) on the extent of low-temperature deformation showed that in the KI–Tl crystal (3 × 10 −3 mol. %) the self-trapping-limited mean free path of excitons is comparable with the distance between Tl atoms (20–27) a under a deformation ε = 2%. As the compression increases to ε ≥ 2%–5%, the mean free path drops to (27-5.35) a . The results of modeling based on the continuum approximation showed that with increasing temperature and the degree of low-temperature deformation the height of the potential barrier for the exciton self-trapping drops, which is consistent with the reduction of the mean free path of excitons in the KI–Tl crystal.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-07-30
    Description: Free volume and pore size distribution size in functional micro and macro-micro-modified Cu 0.4 Co 0.4 Ni 0.4 Mn 1.8 O 4 ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu 0.4 Co 0.4 Ni 0.4 Mn 1.8 O 4 ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-30
    Description: In order to predict optical properties of insulating materials under intensive laser excitation, we generalized methods of quantum electrodynamics, allowing us to simulate excitation of electrons and holes, interacting with each other and acoustic phonons. The prototypical model considers a two-band dielectric material characterized by the dispersion relations for electron and hole states. We developed a universal description of excited electrons, holes and acoustic phonons within joint quantum kinetics formalism. Illustrative solutions for the quasiparticle birth-annihilation operators, applicable at short laser pulses at 0 K, are obtained by the transition from the macroscopic description to the quantum field formalism.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-07-30
    Description: Monoclinic antiferromagnetic NiWO 4 was studied by far-infrared (30–600 cm −1 ) absorption spectroscopy in the temperature range of 5–300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO 4 and ZnWO 4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO 4 and CoWO 4 below their Neel temperatures down to 5 K.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-07-30
    Description: The creation spectrum of stable F centres (being part of F-H pairs of Frenkel defects) by synchrotron radiation of 7–40 eV has been measured for highly pure NaCl single crystals at 12 K using a highly sensitive luminescent method. It is shown that the efficiency of F centre creation in a closely packed NaCl is low at the decay of anion or cation excitons (7.8–8.4 and 33.4 eV, respectively) or at the recombination of relaxed conduction electrons and valence holes. Only the recombination of nonrelaxed (hot) electrons with holes provides the energy exceeding threshold value E FD , which is sufficient for the creation of Frenkel defects at low temperature.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-30
    Description: An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD–EPR. The present survey reports on the advantages and disadvantages applying the MCD–EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-07-30
    Description: Luminescence properties of SiO 2 in different structural states are compared. Similar comparison is made for GeO 2 . Rutile and α-quartz structures as well as glassy state of these materials are considered. Main results are that for α-quartz crystals the luminescence of self-trapped exciton is the general phenomenon that is absent in the crystal with rutile structure. In rutile structured SiO 2 (stishovite) and GeO 2 (argutite) the main luminescence is due to a host material defect existing in as-received (as-grown) samples. The defect luminescence possesses specific two bands, one of which has a slow decay (for SiO 2 in the blue and for GeO 2 , in green range) and another, a fast ultraviolet (UV) band (4.75 eV in SiO 2 and at 3 eV in GeO 2 ). In silica and germania glasses, the luminescence of self-trapped exciton coexists with defect luminescence. The latter also contains two bands: one in the visible range and another in the UV range. The defect luminescence of glasses was studied in details during last 60–70 years and is ascribed to oxygen deficient defects. Analogous defect luminescence in the corresponding pure nonirradiated crystals with α-quartz structure is absent. Only irradiation of a α-quartz crystal by energetic electron beam, γ-rays and neutrons provides defect luminescence analogous to glasses and crystals with rutile structure. Therefore, in glassy state the structure containing tetrahedron motifs is responsible for existence of self-trapped excitons and defects in octahedral motifs are responsible for oxygen deficient defects.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-07-30
    Description: The ground state properties of cubic scandium trifluoride (ScF 3 ) perovskite were studied using first-principles calculations. The electronic structure of ScF 3 was determined by linear combination of atomic orbital (LCAO) and plane wave projector augmented-wave (PAW) methods using modified hybrid exchange-correlation functionals within the density functional theory (DFT). The comprehensive comparison of the results obtained by two methods is presented. Both methods allowed us to reproduce the lattice constant found experimentally in ScF 3 at low temperatures and to predict its electronic structure in good agreement with known experimental valence-band photoelectron and F 1 s x-ray absorption spectra.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-30
    Description: Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate (NiWO 4 ) were measured using UV-VUV synchrotron radiation source. The origin of the bands is interpreted using comparative analysis with isostructural ZnWO 4 tungstate and based on the results of recent first-principles band structure calculations. The influence of the local atomic structure relaxation and of Ni 2+ intra-ion d–d transitions on the photoluminescence band intensity are discussed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-07-30
    Description: In this paper a novel method for synthesis of LaInO 3 :Er 3+ is reported and upconversion luminescence properties of the synthesized material at different temperatures (9–300 K) are studied. The samples were prepared by co-precipitation and subsequent heat treatment of lanthanum, indium and erbium hydroxides. It is shown that the excitation at 980 nm leads to a strong green upconversion luminescence in the material. At the concentrations above 0.1 mol. % of Er 3+ the energy transfer upconversion mechanism of the luminescence becomes evident. Further increase of Er 3+ content in the material leads to higher red-to-green upconversion luminescence intensity ratio. The mechanisms responsible for the observed variation are discussed.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-07-30
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-07-30
    Description: Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities n d of multiply charged ( Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), n d ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction E proxi ( n d ), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction E proxi is evaluated by comparing it with the properties of the well-known London dispersive attraction E Lond ( n d ) 〈 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon E proxi 〉0 and for the alkali and alkaline-earth elements E proxi 〈 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of E proxi . The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R 3 ∝ n −1 d of a Wigner-Seitz cell. E proxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving E proxi . Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2 l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2 l with a probability that depends, among other factors, on the properties of E proxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2 l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive E proxi 〉 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density n d ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T .
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-07-30
    Description: This paper presents a scheme for the generation of high power terahertz radiation by the beating of two femtosecond super Gaussian lasers in plasma having dc electric field in the transverse direction. In this mechanism, a strong nonlinear ponderomotive force acts on the plasma electrons at the frequency difference of the two lasers ( ω 1 − ω 2 ) that imparts a nonlinear oscillatory velocity to plasma electrons which further result in the generation of a nonlinear current at this difference frequency (lying in THz domain). The dynamical equations governing the generation of THz waves have been solved semi-analytically; the result shows that the amplitude of the generated waves is considerably enhanced in the presence of dc electric field, and the index of super Gaussian beams also plays a keen role in governing the yield of THz waves.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-07-30
    Description: We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-07-30
    Description: Anomalous current pinch, in addition to the anomalous diffusion due to stochastic magnetic perturbations, is theoretically found, which may qualitatively explain the recent DIII-D experiment on resonant magnetic field perturbation. The anomalous current pinch, which may resolve the long-standing issue of seed current in a fully bootstrapped tokamak, is also discussed for the electrostatic turbulence.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-07-30
    Description: The parametric decay of large amplitude non-resonant beating mode of counter-propagating lasers (having a frequency difference ≥ 2 ω p ) into a pair of upper hybrid waves is studied in magnetized plasma. One of the excited upper hybrid waves (known as fast wave) having phase velocity close to c , can be utilized for electron acceleration. The coupled mode equations of fast and slow upper hybrid waves are modelled by solving equation of motion and continuity equation simultaneously (using the density perturbation technique) to derive the dispersion relation for two plasmon decay process. The growth rate of the present excitation process using right circularly polarized beating lasers is higher as compared with the growth rates of the excitation processes using ordinary and extraordinary beating lasers. However, the growth rate is not significant in the case of left circularly polarized beating lasers. The growth rate ∼ 0.15 ω p s − 1 is achieved for right circularly polarized beating lasers having v 1 , 2 / c = 0.1 for scattering angle θ s ∼ 160 ° and applied magnetic field ∼ 90 T. The growth rate of fast upper hybrid wave was reduced with the applied axial magnetic field in the present case. The present work is not only significant for the electron acceleration by fast upper hybrid wave but also for diagnostic purpose.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-30
    Description: This work presents a numerical investigation, using a 1-D fluid model, on the generation and loss of oxygen-related species and the spatial-temporal evolutions of the species densities in the atmospheric-pressure pulsed dielectric barrier discharge in the argon/oxygen mixture. The reaction pathways as well as their contributions to the generation and loss of oxygen-related species are given. The considered oxygen-related species include O, O( 1 D), O 2 ( 1 Δ g ), O 3 , O + , O 2 + , O − , O 2 − , and O 3 − . The following significant results are obtained. O, O( 1 D), O 2 ( 1 Δ g ), and O − are produced mainly via the electron impact with O 2 . Ar + plays an essential role in the generation of O + and O 2 + . Almost all of O 3 derives from the reaction O 2 + O 2 + O → O 3 + O 2 . The O 3 -related reactions produce an essential proportion of O 2 − and O 3 − . The substantial loss of O − , O 2 − , and O 3 − is induced by their reactions with O 2 + . Loss of O + , O, and O( 1 D) is mainly due to their reactions with O 2 , loss of O 2 ( 1 Δ g ) due to O 2 ( 1 Δ g ) impacts with O 3 as well as the de-excitation reactions between O 2 ( 1 Δ g ) and e, O 2 , and O, and loss of O 3 due to the reactions between O 3 and other neutral species. In addition, the densities of O + and O( 1 D) present two obvious peaks at the pulse duration, but the densities of O 2 + , O, O 2 ( 1 Δ g ), and O 3 are almost unchanged. The densities of negative oxygen ions increase at the pulse duration and then decline. O − density is obviously large nearby the dielectric surfaces and the densities of O 2 − and O 3 − present generally uniform distributions.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-07-30
    Description: Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β . Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-08-02
    Description: The comparison between experimental data of ion distribution function at the parent gas plasma obtained by the authors and results of calculations presented by Lampe et al. are considered. It is shown that the experimental and calculated angular distributions of ions in the case at least of argon differ considerably. The analysis of Lampe et al. assumptions showed that the main reasons of these discrepancies were the assumptions of ion distribution function independence on field orientation and independence of charge exchange cross-section on the relative velocity of ion and atom.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-08-02
    Description: Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-08-02
    Description: We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved information about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-08-02
    Description: We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-08-02
    Description: The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word “nonlocal” denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the “local” represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al. , Nucl. Fusion 47 , L10 (2007)].
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-08-02
    Description: A dimensionless empirical scaling for intrinsic toroidal rotation is given: M A ∼ β N ρ * , where M A is the toroidal velocity divided by the Alfvén velocity, β N is the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. This scaling establishes the basic magnitude of the intrinsic toroidal rotation, and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed. This scaling has some similarities to existing dimensioned scalings, both the Rice scaling [J. E. Rice et al. , Phys. Plasmas 7 , 1825 (2000)] and the scaling of Parra et al. [Phys. Rev. Lett. 108 , 095001 (2012)]. These relationships are described.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-08-02
    Description: The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-08-03
    Description: The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-08-04
    Description: Atmospheric pressure H 2 O / O 2 gliding arc plasma is generated by a 88   Hz , 6   kV AC power supply. The properties of the produced plasma are investigated by optical emission spectroscopy. The relative intensity, rotational, vibrational, excitation temperatures and electron density are studied as a function of applied voltage, electrode spacing, and oxygen flow rate. The rotational and vibrational temperatures are determined simulating the OH ( A 2 Σ + ( v ″ = 0 ) → X 2 Π ( v ′ = 0 ) ) bands with the aid of LIFBASE simulation software. The excitation temperature is obtained from the CuI transition taking non-thermal equilibrium condition into account employing intensity ratio method. The electron density is approximated from the   H α Stark broadening using the Voigt profile fitting method. It is observed that the rotational and vibrational temperatures decrease with increasing electrode spacing and O 2 flow rate, but increase with the applied voltage. The excitation temperature is found to increase with increasing applied voltage and O 2 flow rate, but decrease with electrode spacing. The electron density increases with increasing applied voltage while it seems to be in a downward trend with increasing electrode spacing and O 2 flow rate.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-08-04
    Description: This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J  =  g ( β E ) 2 J 0 , where J 0 is the classical (1D) Child-Langmuir current density, β E is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-08-04
    Description: Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-08-04
    Description: The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-08-04
    Description: Fluid-based models of collisional transport in multi-species plasmas have typically been applied to parameter regimes where a local thermal equilibrium is assumed. While this parameter regime is valid for low temperature and/or high density applications, it begins to fail as plasmas enter the collisionless regime and kinetic effects dominate the physics. A plasma model is presented that lays the foundation for extending the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the pressure tensor and heat flux vector along with the density and flow velocity to capture dynamics usually restricted to kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collisional interactions.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-08-04
    Description: The plasma equilibrium in a linear trap at β  ≈ 1 (or above the mirror-instability threshold) under the topology-conservation constraint evolves into a kind of diamagnetic “bubble.” This can take two forms: either the plasma body greatly expands in radius while containing the same magnetic flux, or, if the plasma radius is limited, the plasma distribution across flux-tubes changes, so that the same cross-section contains a greatly reduced flux. If the magnetic field of the trap is quasi-uniform around its minimum, the bubble can be made roughly cylindrical, with radius much larger than the radius of the corresponding vacuum flux-tube, and with non-paraxial ends. Then the effective mirror ratio of the diamagnetic trap becomes very large, but the cross-field transport increases. The confinement time can be found from solution of the system of equilibrium and transport equations and is shown to be τ E ≈ τ ∥ τ ⊥ . If the cross-field confinement is not too degraded by turbulence, this estimate in principle allows construction of relatively compact fusion reactors with lengths in the range of a few tens of meters. In many ways, the described diamagnetic confinement and the corresponding reactor parameters are similar to those claimed by the field-reversed configurations.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-08-05
    Description: When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-08-05
    Description: The Brownian motion of a micro-particle, which is suspended in the sheath of a radio-frequency discharge, is studied by high-speed video microscopy. In this environment, stochastic heating by charge fluctuations is expected, which should lead to an anisotropic kinetic temperature of the particle with a preferential heating in the direction of the mean electric field in the sheath. The stochastic heating should become more effective at low gas pressures where cooling by the neutral gas becomes ineffective. Our refined experiments confirm the anisotropic heating and the temperature rise for diminishing pressure. Particle-in-cell simulations have guided us in modifying the gap width of the discharge and to specify the dependence of the plasma density on gas pressure as n i ∝ p 1 / 2 . Since the stochastic heating rate also depends on the life-time of charge fluctuations, a temperature scaling T kin ∝ p 3 / 2 results, which is in agreement with the experimental data. The experimental procedure to eliminate other spurious heating mechanisms is described in detail.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-08-05
    Description: The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-08-06
    Description: We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120 , 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-08-06
    Description: We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 10 18 – 10 20   m − 3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δ n i ∼ 10 18   m − 3 in the first ∼ 100   μ s after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-07-12
    Description: Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition that the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10 5  V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-07-12
    Description: The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-12
    Description: A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. For example, in a fixed, isolated system subject to non-conservative forces, a species' canonical helicity changes less than total energy only if gradients in density or distribution function are shallow.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-07-12
    Description: A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KP and the different modified KP equations are investigated by the small- k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3 , 567 (1969); 8 , 105 (1972); 10 , 293 (1973); 33 , 171 (1985); 41 , 139 (1989); Sov. Phys. - JETP 38 , 494 (1974)] at the lowest order of k , where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-07-12
    Description: The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-07-12
    Description: Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-12
    Description: The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-12
    Description: A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. This method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimated that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24  μ m/ns. By inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. This technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ∼13  μ m/ns and ∼14°, respectively.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-07-13
    Description: Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-07-13
    Description: The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime of subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-07-15
    Description: In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities ( n e ) of 10 17  m −3 and electron temperatures ( T e ) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al 2 O 3 ) particles into the helium plasma. The density of the dust particle ( n d ) in the device is about 10 11 –10 12  m −3 . The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4–6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-15
    Description: Recent experiments with pure electron plasmas in a Malmberg–Penning trap have observed the algebraic damping of m  = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r  =  R w at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the “cat's eye” orbits of the resonant wave-particle interaction, they form a dipole ( m  = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m  = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-07-15
    Description: Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-07-16
    Description: The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-07-16
    Description: The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-07-16
    Description: The coarse-grain averaged distribution function of the one-dimensional Vlasov system is obtained by numerical simulation. The entropy productions in cases of the random field, the linear Landau damping, and the bump-on-tail instability are computed with the coarse-grain averaged distribution function. The computed entropy production is converged with increasing length of coarse-grain average. When the distribution function differs slightly from a Maxwellian distribution, the converged value agrees with the result computed by using the definition of thermodynamic entropy. The length of the coarse-grain average to compute the coarse-grain averaged distribution function is discussed.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-07-16
    Description: Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “ in-situ ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H 2 ) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ i ( s   λ i ), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization in the sheath on the origin and intensity of low-energy peaks in IED is discussed compared to ion charge-exchange collisions. Obviously, the extrapolation of the “virtual IED sensor” approach to higher pressures requires developing some other sheath models, taking into account both ion and electron collisions and probably including even a model of the whole plasma volume instead of plasma sheath one.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-07-16
    Description: Propagation of electromagnetic wave through an inhomogeneous magnetized nonextensive plasma sheath is numerically examined for a realistic density profile of a reentry problem around a hypersonic vehicle. The effect of nonextensivity and inhomogeneity on radio wave communication is studied parametrically. Variation of reflection and transmission coefficients, total attenuation, and total phase shift over the plasma sheath with respect to the strength of applied magnetic field are derived and compared for different values of q-nonextensive parameter. The obtained results for inhomogeneous plasma sheath are compared with previously obtained results of authors for homogeneous plasma sheath. The comparison shows that radio communication in the inhomogeneous plasma sheath is more advantageous than that in the homogeneous case. The transmission coefficient of a plasma sheath with superthermal electrons ( 1 3 〈 q 〈 1 ) has larger value compared to that with q  〉 1. Moreover, for ω c e 〉 ω , the minimum value of total attenuation corresponds to the range 1 3 〈 q 〈 1 . An interesting result is that nonextensivity effect on wave propagation in plasma sheath depends on the strength of the ambient magnetic field. The effect of nonextensivity on attenuation coefficient is found to be negligible for ω c e 〈 ω while it is significant for ω c e 〉 ω .
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-16
    Description: This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improved if these phenomena can be reproduced on Mega-ampere facilities.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-07-16
    Description: To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a high power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-07-16
    Description: Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-19
    Description: This work focuses on the relationship between L–H (or L–I) transitions and MHD activity in the low magnetic shear TJ-II stellarator. It is shown that the presence of a low order rational surface in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed near the confinement transition. We apply a causality detection technique (based on the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to “fast” and “slow” transitions. With the “slow” transitions, the developing Zonal Flow prior to the transition is associated with the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of “information transfer” from magnetic to velocity oscillations, suggesting that the magnetic drive may play a role in setting up the final sheared flow responsible for the H-mode transport barrier. Similar observations were made for the “fast” transitions. Thus, it is shown that magnetic oscillations associated with rational surfaces play an important and active role in confinement transitions, so that electromagnetic effects should be included in any complete transition model.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-07-22
    Description: Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al. , Nucl. Fusion 44 , S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR . An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-22
    Description: Using 3 dimensional numerical simulations, this paper shows that grading the atomic number and thus the resistivity at the interface between an embedded high atomic number guide element and a lower atomic number substrate enhances the growth of a resistive magnetic field. This can lead to a large integrated magnetic flux density, which is fundamental to confining higher energy fast electrons. This results in significant improvements in both magnetic collimation and fast-electron-temperature uniformity across the guiding. The graded interface target provides a method for resistive guiding that is tolerant to laser pointing.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-23
    Description: Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al ., Phys. Plasmas 16 , 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-23
    Description: By reviewing the previous work [C. Li et al. , Phys. Plasmas 21 , 072114 (2014)] and the Comment of Moradi, some errors are found. Also, an erratum is given in this Response.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-26
    Description: Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gap separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-07-26
    Description: Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-07-27
    Description: Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM 0n modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM 0n . NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersion equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-27
    Description: Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-28
    Description: Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-07-29
    Description: Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number P r m 〉 1 ), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for P r m 〉 1 . The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently, boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr  
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-07-29
    Description: Comparisons of the plasma ion flow speed measurements from Mach probes and laser induced fluorescence were performed in the Controlled Shear Decorrelation Experiment. We show the presence of the probe causes a low density geometric shadow downstream of the probe that affects the current density collected by the probe in collisional plasmas if the ion-neutral mean free path is shorter than the probe shadow length, L g  = w 2 V drift /D ⊥ , resulting in erroneous Mach numbers. We then present a simple correction term that provides the corrected Mach number from probe data when the sound speed, ion-neutral mean free path, and perpendicular diffusion coefficient of the plasma are known. The probe shadow effect must be taken into account whenever the ion-neutral mean free path is on the order of the probe shadow length in linear devices and the open-field line region of fusion devices.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-07-29
    Description: In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-07-29
    Description: It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-07-29
    Description: The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At , and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ   0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ 
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-29
    Description: Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-30
    Description: The radiation properties and the electronic structure of hybrid composites based on suspension polystyrene (PS) and nanocrystals of BaZrO 3 (BZO) ( d 〈 50 nm) have been studied using luminescent spectroscopy and x-ray analysis. A strong cathodoluminescence (CL) in BZO-nanocrystals is observed in temperature range 80–293 K. It is modified in BZO-PS composites: both the low- and a high-energy bands (near 4 eV) appear, together with a significant reduction in the CL intensity. A decrease of the lattice parameter a for BZO phase in the composite and the modification of CL spectra indicate for changes in the nanocrystalline structure induced by the polymer.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-07-30
    Description: Fresh and aged melt-grown or gas-phase grown CdI 2 crystals are studied by means of low-temperature photoluminescence spectroscopy. Noticeable transformations of emission spectra are observed after long-term aging. The formation of nanostructures containing cadmium oxide and cadmium hydroxide as well as the changes in local surrounding of iodine atoms and the possible growth of polytypic modifications of CdI 2 are taken into account when considering the diversity of optical spectra.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...