ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,268)
  • American Institute of Physics (AIP)  (1,268)
  • Chaos  (1,268)
  • 1757
  • 1
    Publication Date: 2016-07-12
    Description: We present experimental results obtained under normal gravity on the dynamics of solid particles in periodic oscillatory thermocapillary-driven flows in a non-isothermal liquid bridge made of decane. Inertial particles of different densities and in the size range approximately 0.75 − 75 μ m are able to form stable coherent structures (particle accumulation structures, or PASs). Two image processing techniques were developed and successfully applied to compute time required for an ensemble of particles to form a structure. It is shown that the formation time grows with the decrease of the Stokes number. The observations indicate the probable irrelevance of the memory term for these experiments. Two types of PAS were observed—single (SL-I) and double-loop (SL-II)—which sometimes co-existed. Only large or very dense particles may form an SL-II type structure. A number of novel features of the system were perceived. In some cases, intermittently stable structures emerged (their dynamics is characterized by alternating time intervals during which a structure exists and is destroyed). Whereas in most experiments we observed a conventional symmetric and centered PAS, there were cases when a long-term stable asymmetric structure appeared. Experiments wherein two different types of PAS-forming particles were used simultaneously revealed the destructive role of collisions between the particles on formation of structures.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-14
    Description: In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-20
    Description: This paper deals with the stability and bifurcation analysis of a general form of equation D α x ( t ) = g ( x ( t ) , x ( t − τ ) ) involving the derivative of order α ∈ (0, 1] and a constant delay τ  ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-20
    Description: In this paper, we propose a new consensus model in which the interactions among agents stochastically switch between attraction and repulsion. Such a positive-and-negative mechanism is described by the white-noise-based coupling. Analytic criteria for the consensus and non-consensus in terms of the eigenvalues of the noise intensity matrix are derived, which provide a better understanding of the constructive roles of random interactions. Specifically, we discover a positive role of noise coupling that noise can accelerate the emergence of consensus. We find that the converging speed of the multi-agent network depends on the square of the second smallest eigenvalue of its graph Laplacian. The influence of network topologies on the consensus time is also investigated.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-20
    Description: After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function E α , β ( z ) ,   z ∈ ℂ ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89 , 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on E α , β ( z ). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β . Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of E α , β ( z ), certainly opening new doors to modeling with two-parameter derivatives.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-23
    Description: The total electrostatic energy of systems of identical particles of equal charge is studied in configurations bounded in space, but divergent in the number of charges. This approach shall guide us to unveil a non-linear, functional form specifying the divergent nature of system energy. We consider fractals to be physical entities, with charges located in their vertices or nodes. This description is interesting since features, such as the corresponding fractal dimension, can characterize the total energy E N . Finally, at local length scales, we describe how energy diverges at charge accumulation points in the fractal, that is, almost everywhere by definition.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-23
    Description: The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-29
    Description: Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α -stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α = 0.5 ) metastability is enhanced for both symmetric and asymmetric potentials.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-29
    Description: We introduce mixing with piecewise isometries (PWIs) on a hemispherical shell, which mimics features of mixing by cutting and shuffling in spherical shells half-filled with granular media. For each PWI, there is an inherent structure on the hemispherical shell known as the exceptional set E , and a particular subset of E , E + , provides insight into how the structure affects mixing. Computer simulations of PWIs are used to visualize mixing and approximations of E + to demonstrate their connection. While initial conditions of unmixed materials add a layer of complexity, the inherent structure of E + defines fundamental aspects of mixing by cutting and shuffling.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-03
    Description: In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-03
    Description: The relation between the Fisher information and Rényi dimensions is established: the Fisher information can be expressed as a linear combination of the first and second derivatives of the Rényi dimensions with respect to the Rényi parameter β . The Rényi parameter β is the parameter of the Fisher information. A thermodynamical description based on the Fisher information with β being the inverse temperature is introduced for chaotic systems. The link between the Fisher information and the heat capacity is emphasized, and the Fisher heat capacity is introduced.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-03
    Description: A Riesz difference is defined by the use of the Riemann–Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-03
    Description: We present a universal characterization scheme for chimera states applicable to both numerical and experimental data sets. The scheme is based on two correlation measures that enable a meaningful definition of chimera states as well as their classification into three categories: stationary , turbulent , and breathing . In addition, these categories can be further subdivided according to the time-stationarity of these two measures. We demonstrate that this approach is both consistent with previously recognized chimera states and enables us to classify states as chimeras which have not been categorized as such before. Furthermore, the scheme allows for a qualitative and quantitative comparison of experimental chimeras with chimeras obtained through numerical simulations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-08-04
    Description: A large parameter mismatch can induce amplitude death in two instantaneously coupled oscillators. Alternatively, a time delay in the coupling can induce amplitude death in two identical oscillators. We unify the mechanism of quenching of oscillation in coupled oscillators, either by a large parameter mismatch or a delay coupling, by a common lag scenario that is, surprisingly, different from the conventional lag synchronization. We present numerical as well as experimental evidence of this unknown kind of lag scenario when the lag increases with coupling and at a critically large value at a critical coupling strength, amplitude death emerges in two largely mismatched oscillators. This is analogous to amplitude death in identical systems with increasingly large coupling delay. In support, we use examples of the Chua oscillator and the Bonhoeffer-van der Pol system. Furthermore, we confirm this lag scenario during the onset of amplitude death in identical Stuart-Landau system under various instantaneous coupling forms, repulsive, conjugate, and a type of nonlinear coupling.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-04
    Description: Nonlinear oscillations lie at the heart of numerous complex systems. Impulsive forcing arises naturally in many scenarios, and we endeavour to study nonlinear oscillators subject to such forcing. We model these kicked oscillatory systems as a piecewise smooth dynamical system, whereby their dynamics can be investigated. We investigate the problem of pattern formation in a turbulent combustion system and apply this formalism with the aim of explaining the observed dynamics. We identify that the transition of this system from low amplitude chaotic oscillations to large amplitude periodic oscillations is the result of a discontinuity induced bifurcation. Further, we provide an explanation for the occurrence of intermittent oscillations in the system.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-08-04
    Description: Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-08-04
    Description: This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time ( T ), final number of controlled agents ( C ), and comprehensive efficiency ( E ). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-07-13
    Description: Cells in the brain's Suprachiasmatic Nucleus (SCN) are known to regulate circadian rhythms in mammals. We model synchronization of SCN cells using the forced Kuramoto model, which consists of a large population of coupled phase oscillators (modeling individual SCN cells) with heterogeneous intrinsic frequencies and external periodic forcing. Here, the periodic forcing models diurnally varying external inputs such as sunrise, sunset, and alarm clocks. We reduce the dimensionality of the system using the ansatz of Ott and Antonsen and then study the effect of a sudden change of clock phase to simulate cross-time-zone travel. We estimate model parameters from previous biological experiments. By examining the phase space dynamics of the model, we study the mechanism leading to the difference typically experienced in the severity of jet-lag resulting from eastward and westward travel.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-14
    Description: The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-19
    Description: The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-19
    Description: We construct a piecewise-linear (PWL) approximation of the Hindmarsh-Rose (HR) neuron model that is minimal, in the sense that the vector field has the least number of linearity zones, in order to reproduce all the dynamics present in the original HR model with classical parameter values. This includes square-wave bursting and also special trajectories called canards, which possess long repelling segments and organise the transitions between stable bursting patterns with n and n  + 1 spikes, also referred to as spike-adding canard explosions. We propose a first approximation of the smooth HR model, using a continuous PWL system, and show that its fast subsystem cannot possess a homoclinic bifurcation, which is necessary to obtain proper square-wave bursting. We then relax the assumption of continuity of the vector field across all zones, and we show that we can obtain a homoclinic bifurcation in the fast subsystem. We use the recently developed canard theory for PWL systems in order to reproduce the spike-adding canard explosion feature of the HR model as studied, e.g., in Desroches et al. , Chaos 23 (4), 046106 (2013).
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-07-19
    Description: This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most. Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-07-19
    Description: We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential , i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable , while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-07-19
    Description: Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7 , 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-19
    Description: This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-08-03
    Description: This paper focuses on impulsive synchronization of fractional Takagi-Sugeno (T-S) fuzzy complex networks. A novel comparison principle is built for the fractional impulsive system. Then a synchronization criterion is established for the fractional T-S fuzzy complex networks by utilizing the comparison principle. The method is also illustrated by applying the fractional T-S fuzzy Rössler's complex networks.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-08-03
    Description: In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-08-03
    Description: Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-08-05
    Description: Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-05
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-07
    Description: The stable and unstable manifolds of an invariant set of a piecewise-smooth map are themselves piecewise-smooth. Consequently, as parameters of a piecewise-smooth map are varied, an invariant set can develop a homoclinic connection when its stable manifold intersects a non-differentiable point of its unstable manifold (or vice-versa). This is a codimension-one bifurcation analogous to a homoclinic tangency of a smooth map, referred to here as a homoclinic corner. This paper presents an unfolding of generic homoclinic corners for saddle fixed points of planar piecewise-smooth continuous maps. It is shown that a sequence of border-collision bifurcations limits to a homoclinic corner and that all nearby periodic solutions are unstable.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-06-23
    Description: In this study, we investigate the role of the mesoscopic structural properties of a scale-free social network on the contagion spreading. We focus on both the exponent of power-law community size distribution function ( β ) and the mixing parameter ( μ ). Findings show that increasing β reduces the rate of epidemic spreading. On the other hand, increasing μ increases the rate of epidemic spreading. Two innovating parameters, Temperature and cos   θ , are introduced here to analyze these effects.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-06-24
    Description: Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag–synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-06-24
    Description: We consider the effects of several forms of delays on the existence and stability of travelling waves in non-locally coupled networks of Kuramoto-type phase oscillators and theta neurons. By passing to the continuum limit and using the Ott/Antonsen ansatz, we derive evolution equations for a spatially dependent order parameter. For phase oscillator networks, the travelling waves take the form of uniformly twisted waves, and these can often be characterised analytically. For networks of theta neurons, the waves are studied numerically.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-22
    Description: In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-06-24
    Description: We study optimal synchronization of networks of coupled phase oscillators. We extend previous theory for optimizing the synchronization properties of undirected networks to the important case of directed networks. We derive a generalized synchrony alignment function that encodes the interplay between the network structure and the oscillators' natural frequencies and serves as an objective measure for the network's degree of synchronization. Using the generalized synchrony alignment function, we show that a network's synchronization properties can be systematically optimized. This framework also allows us to study the properties of synchrony-optimized networks, and in particular, investigate the role of directed network properties such as nodal in- and out-degrees. For instance, we find that in optimally rewired networks, the heterogeneity of the in-degree distribution roughly matches the heterogeneity of the natural frequency distribution, but no such relationship emerges for out-degrees. We also observe that a network's synchronization properties are promoted by a strong correlation between the nodal in-degrees and the natural frequencies of oscillators, whereas the relationship between the nodal out-degrees and the natural frequencies has comparatively little effect. This result is supported by our theory, which indicates that synchronization is promoted by a strong alignment of the natural frequencies with the left singular vectors corresponding to the largest singular values of the Laplacian matrix.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-24
    Description: We investigate synchronization in complex networks of noisy phase oscillators. We find that, while too weak a coupling is not sufficient for the whole system to synchronize, too strong a coupling induces a nontrivial type of phase slip among oscillators, resulting in synchronization failure. Thus, an intermediate coupling range for synchronization exists, which becomes narrower when the network is more heterogeneous. Analyses of two noisy oscillators reveal that nontrivial phase slip is a generic phenomenon when noise is present and coupling is strong. Therefore, the low synchronizability of heterogeneous networks can be understood as a result of the difference in effective coupling strength among oscillators with different degrees; oscillators with high degrees tend to undergo phase slip while those with low degrees have weak coupling strengths that are insufficient for synchronization.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-06-24
    Description: We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-06-24
    Description: A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-06-24
    Description: The existence of localized spin excitations and spin deviations along the site in a one-dimensional antiferromagnet with Dzyaloshinski-Moriya (D-M) interaction has been studied using quasiclassical approximation. By introducing the Holstein-Primakoff bosonic representation of spin operators, the coherent state ansatz, and the time dependent variational principle, a discrete set of coupled nonlinear partial differential equations governing the dynamics is derived. Employing the multiple-scale method, one, two and three solitary wave solutions are constructed and depicted graphically.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-06-24
    Description: We survey general results relating patterns of synchrony to network topology, applying the formalism of coupled cell systems. We also discuss patterns of phase-locking for periodic states, where cells have identical waveforms but regularly spaced phases. We focus on rigid patterns, which are not changed by small perturbations of the differential equation. Symmetry is one mechanism that creates patterns of synchrony and phase-locking. In general networks, there is another: balanced colorings of the cells. A symmetric network may have anomalous patterns of synchrony and phase-locking that are not consequences of symmetry. We introduce basic notions on coupled cell networks and their associated systems of admissible differential equations. Periodic states also possess spatio-temporal symmetries, leading to phase relations; these are classified by the H / K theorem and its analog for general networks. Systematic general methods for computing the stability of synchronous states exist for symmetric networks, but stability in general networks requires methods adapted to special classes of model equations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-07
    Description: A hybrid multi-agent systems model integrating the advantages of both metric interaction and topological interaction rules, called the metric-topological model, is developed. This model describes planar motions of mobile agents, where each agent can interact with all the agents within a circle of a constant radius, and can furthermore interact with some distant agents to reach a pre-assigned number of neighbors, if needed. Some sufficient conditions imposed only on system parameters and agent initial states are presented, which ensure achieving synchronization of the whole group of agents. It reveals the intrinsic relationships among the interaction range, the speed, the initial heading, and the density of the group. Moreover, robustness against variations of interaction range, density, and speed are investigated by comparing the motion patterns and performances of the hybrid metric-topological interaction model with the conventional metric-only and topological-only interaction models. Practically in all cases, the hybrid metric-topological interaction model has the best performance in the sense of achieving highest frequency of synchronization, fastest convergent rate, and smallest heading difference.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-06-24
    Description: Exploring the dynamical behaviors of high water cut and low velocity oil-water flows remains a contemporary and challenging problem of significant importance. This challenge stimulates us to design a high-speed cycle motivation conductance sensor to capture spatial local flow information. We systematically carry out experiments and acquire the multi-channel measurements from different oil-water flow patterns. Then we develop a novel multivariate weighted recurrence network for uncovering the flow behaviors from multi-channel measurements. In particular, we exploit graph energy and weighted clustering coefficient in combination with multivariate time-frequency analysis to characterize the derived complex networks. The results indicate that the network measures are very sensitive to the flow transitions and allow uncovering local dynamical behaviors associated with water cut and flow velocity. These properties render our method particularly useful for quantitatively characterizing dynamical behaviors governing the transition and evolution of different oil-water flow patterns.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-06-24
    Description: We discuss the influence of small phase lags on the synchronization transitions in the Kuramoto model for a large inhomogeneous population of globally coupled phase oscillators. Without a phase lag, all unimodal distributions of the natural frequencies give rise to a classical synchronization scenario, where above the onset of synchrony at the Kuramoto threshold, there is an increasing synchrony for increasing coupling strength. We show that already for arbitrarily small phase lags, there are certain unimodal distributions of natural frequencies such that for increasing coupling strength synchrony may decrease and even complete incoherence may regain stability. Moreover, our example allows a qualitative understanding of the mechanism for such non-universal synchronization transitions.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-06-24
    Description: Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain—in the particular case of the Wei system—such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it. We will show that the attractor is spiralling and twisted in the neighborhood of one-dimensional sets where points are characterized by a pair of complex conjugated eigenvalues. We then show that such one-dimensional sets are also useful in explaining the structure of attractors produced by systems with singular points, by considering the case of the Lorenz system.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-03-24
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-03-24
    Description: Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-03-24
    Description: Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative transitions between dynamic states occur are determined by independently varying the rate constants of all reactions that constitute the model. Bifurcation types were further characterized using continuation algorithms and scale factor methods. Regions of bistability and transitions through supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis predicts that the HPA axis operates under basal (healthy) physiological conditions close to an Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been characterized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which is essential for maintaining homeostasis. The analysis presented here reflects the properties of a low-dimensional model that succinctly describes neurochemical transformations underlying the HPA axis. However, the model accounts correctly for a number of experimentally observed properties of the stress-response axis. We therefore regard that the presented analysis is meaningful, showing how in silico investigations can be used to guide the experimentalists in understanding how the HPA axis activity changes under chronic disease and/or specific pharmacological manipulations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-03-24
    Description: In this article, we develop some approaches, which enable us to more accurately and analytically identify the essential patterns that guarantee the almost sure stability of discrete-time systems with random switches. We allow for the case that the elements in the switching connection matrix even obey some unbounded and continuous-valued distributions. In addition to the almost sure stability, we further investigate the almost sure synchronization in complex dynamical networks consisting of randomly connected nodes. Numerical examples illustrate that a chaotic dynamics in the synchronization manifold is preserved when statistical parameters enter some almost sure synchronization region established by the developed approach. Moreover, some delicate configurations are considered on probability space for ensuring synchronization in networks whose nodes are described by nonlinear maps. Both theoretical and numerical results on synchronization are presented by setting only a few random connections in each switch duration. More interestingly, we analytically find it possible to achieve almost sure synchronization in the randomly switching complex networks even with very large population sizes, which cannot be easily realized in non-switching but deterministically connected networks.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-03-24
    Description: This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-07-16
    Description: Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension ( D ) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥ 1024 × 1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-07-16
    Description: The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-07-20
    Description: The spatial distributions of system's frequencies have significant influences on the critical coupling strengths for amplitude death (AD) in coupled oscillators. We find that the left and right critical coupling strengths for AD have quite different relations to the increasing spatial period m of the frequency distribution in coupled oscillators. The left one has a negative linear relationship with m in log-log axis for small initial frequency mismatches while remains constant for large initial frequency mismatches. The right one is in quadratic function relation with spatial period m of the frequency distribution in log-log axis. There is an optimal spatial period m 0 of frequency distribution with which the coupled system has a minimal critical strength to transit from an AD regime to reviving oscillation. Moreover, the optimal spatial period m 0 of the frequency distribution is found to be related to the system size N . Numerical examples are explored to reveal the inner regimes of effects of the spatial frequency distribution on AD.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-21
    Description: We propose a systematic methodology for creating 2 N +  1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a 12 a 21  =  0, while the Chua system satisfies a 12 a 21  〉  0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2 N +  1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2 N +  1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1 -, 3 - , 5 - , and 7 - scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-07-28
    Description: Electrocardiogram (ECG) data from patients with a variety of heart conditions are studied using ordinal pattern partition networks. The ordinal pattern partition networks are formed from the ECG time series by symbolizing the data into ordinal patterns. The ordinal patterns form the nodes of the network and edges are defined through the time ordering of the ordinal patterns in the symbolized time series. A network measure, called the mean degree, is computed from each time series-generated network. In addition, the entropy and number of non-occurring ordinal patterns (NFP) is computed for each series. The distribution of mean degrees, entropies, and NFPs for each heart condition studied is compared. A statistically significant difference between healthy patients and several groups of unhealthy patients with varying heart conditions is found for the distributions of the mean degrees, unlike for any of the distributions of the entropies or NFPs.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-07-29
    Description: This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-07-29
    Description: We construct spatiotemporal localized envelope solutions of a (3 + 1)-dimensional nonlinear Schrödinger equation with varying coefficients such as dispersion, nonlinearity and gain parameters through similarity transformation technique. The obtained localized rational solutions can serve as prototypes of rogue waves in different branches of science. We investigate the characteristics of constructed localized solutions in detail when it propagates through six different dispersion profiles, namely, constant, linear, Gaussian, hyperbolic, logarithm, and exponential. We also obtain expressions for the hump and valleys of rogue wave intensity profiles for these six dispersion profiles and study the trajectory of it in each case. Further, we analyze how the intensity of another localized solution, namely, breather, changes when it propagates through the aforementioned six dispersion profiles. Our studies reveal that these localized solutions co-exist with the collapsing solutions which are already found in the (3 + 1)-dimensional nonlinear Schrödinger equation. The obtained results will help to understand the corresponding localized wave phenomena in related fields.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-07-30
    Description: The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico , as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-03-25
    Description: We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows. Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretching material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in steady and time-aperiodic ABC-type flows.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-04-05
    Description: We examine the use of recurrence networks in studying non-linear deterministic dynamical systems. Specifically, we focus on the case of k -nearest neighbour networks, which have already been shown to contain meaningful (and more importantly, easily accessible) information about dynamics. Superfamily phenomena have previously been identified, although a complete explanation for its appearance was not provided. Local dimension of the attractor is presented as one possible determinant, discussing the ability of specific motifs to be embedded in various dimensions. In turn, the Lyapunov spectrum provides the link between attractor dimension and dynamics required. We also prove invertibility of k -nearest neighbour networks. A new metric is provided, under which the k -nearest neighbour and ϵ -recurrence construction methods produce identical networks. Hence, the already established ϵ -recurrence inversion algorithm applies equally to the k -nearest neighbour case, and inversion is proved. The change in metric necessarily distorts the shape of the reconstructed attractor, although topology is conserved.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-03-08
    Description: Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-03-10
    Description: A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the transition between high and low power output levels. It is shown that the presence of a chaotic attractor is a sufficient condition to predict high power output, though there are relatively small areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight into the development of the chaotic region as the input power level is varied, as well as the intermixed periodic windows.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-01-08
    Description: We study transient spatiotemporal structures induced by a weak space-time localized stimulus in an excitable contractile fiber within a two-component globally coupled reaction-diffusion model. The model which we develop allows us to analyze various regimes of excitation spreading and determine origin of the induced structures for various contraction types (defined by the fiber fixation) and global coupling strengths. One of the most notable effects we observed is the after-excitation effect. It leads to emergence of multiple excitation pulses excited by a single external stimulus and can result in long-lasting transient activity and appearance of new oscillatory attractor regimes, including the ones with multiple phase clusters.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-03-30
    Description: We obtain the bright similariton solutions for generalized inhomogeneous nonlinear Schrödinger equation (GINLSE) which governs the pulse propagation in a tapered graded index diffraction decreasing waveguide (DDW). The exact solutions have been worked out by employing similarity transformations which involve the mapping of the GINLSE to standard NLSE for the certain conditions of the parameters. By making use of the exact analytical solutions, we have investigated the dynamical behavior of optical similariton pairs and have suggested the methods to control them as they propagate through DDW. Moreover, pulse width of similariton is controlled through various profiles. These results are helpful to understand the similaritons in DDW and can be potentially useful for future experiments in optical communications which involve optical amplifiers and long-haul telecommunication networks.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-29
    Description: The integrable nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential [M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. Lett. 110 , 064105 (2013)] is investigated, which is an integrable extension of the standard nonlinear Schrödinger equation. Its novel higher-order rational solitons are found using the nonlocal version of the generalized perturbation ( 1 , N − 1 ) -fold Darboux transformation. These rational solitons illustrate abundant wave structures for the distinct choices of parameters (e.g., the strong and weak interactions of bright and dark rational solitons). Moreover, we also explore the dynamical behaviors of these higher-order rational solitons with some small noises on the basis of numerical simulations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-07-02
    Description: In this paper, the problems of robust dissipativity and robust exponential dissipativity are discussed for a class of recurrent neural networks with time-varying delay and discontinuous activations. We extend an invariance principle for the study of the dissipativity problem of delay systems to the discontinuous case. Based on the developed theory, some novel criteria for checking the global robust dissipativity and global robust exponential dissipativity of the addressed neural network model are established by constructing appropriate Lyapunov functionals and employing the theory of Filippov systems and matrix inequality techniques. The effectiveness of the theoretical results is shown by two examples with numerical simulations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-07-02
    Description: In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-02
    Description: Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-02
    Description: In the present paper, we study the mechanism of formation and bifurcations of highly nonstationary regimes manifested by different energy transport intensities, emerging in an anharmonic trimer model. The basic model under investigation comprises a chain of three coupled anharmonic oscillators subject to localized excitation, where the initial energy is imparted to the first oscillator only. We report the formation of three basic nonstationary transport states traversed by locally excited regimes. These states differ by spatial energy distribution, as well as by the intensity of energy transport along the chain. In the current study, we focus on numerical and analytical investigation of the intricate resonant mechanism governing the inter-state transitions of locally excited regimes. Results of the analytical study are in good agreement with the numerical simulations of the trimer model.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-17
    Description: In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-08-20
    Description: The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully incoherent states when the phase-lags are near ± π 2 (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-20
    Description: This Special Focus Issue contains several recent developments and advances on the subject of Fractional Dynamics and its widespread applications in various areas of the mathematical, physical, and engineering sciences.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-08-20
    Description: A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. For many real world networks, the mechanism of preferential attachment plays a significant role in the formation of heterogeneous structures, but the network percolation in evolution process with preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-08-20
    Description: A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-24
    Description: The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-08-24
    Description: The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-08-25
    Description: We study the co-existence of stable patterns of synchrony in two coupled populations of identical Kuramoto oscillators with inertia. The two populations have different sizes and can split into two clusters where the oscillators synchronize within a cluster while there is a phase shift between the dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase shifts, is described by a driven pendulum equation. We also discuss the implications of our stability results to the stability of chimeras.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-06-28
    Description: We devise a pseudorandom number generator that exactly computes chaotic true orbits of the Bernoulli map on quadratic algebraic integers. Moreover, we describe a way to select the initial points (seeds) for generating multiple pseudorandom binary sequences. This selection method distributes the initial points almost uniformly (equidistantly) in the unit interval, and latter parts of the generated sequences are guaranteed not to coincide. We also demonstrate through statistical testing that the generated sequences possess good randomness properties.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-07-01
    Description: The dynamical behavior of delay-coupled networks of electrochemical reactions is investigated to explore the formation of amplitude death (AD) and the synchronization states in a parameter region around the amplitude death region. It is shown that difference coupling with odd and even numbered ring and random networks can produce the AD phenomenon. Furthermore, this AD can be restored by changing the coupling type from difference to direct coupling. The restored oscillations tend to create synchronization patterns in which neighboring elements are in nearly anti-phase configuration. The ring networks produce frozen and rotating phase waves, while the random network exhibits a complex synchronization pattern with interwoven frozen and propagating phase waves. The experimental results are interpreted with a coupled Stuart-Landau oscillator model. The experimental and theoretical results reveal that AD behavior is a robust feature of delayed coupled networks of chemical units; if an oscillatory behavior is required again, even a small amount of direct coupling could be sufficient to restore the oscillations. The restored nearly anti-phase oscillatory patterns, which, to a certain extent, reflect the symmetry of the network, represent an effective means to overcome the AD phenomenon.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-01
    Description: The regular structures of a generic 4 d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1 d -tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1 d -tori in a 3 d phase-space slice, local 2 d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-09
    Description: We rigorously prove the existence of chaotic dynamics for two nonlinear Cournot triopoly game models with heterogeneous players, for which in the existing literature the presence of complex phenomena and strange attractors has been shown via numerical simulations. In the first model that we analyze, costs are linear but the demand function is isoelastic, while, in the second model, the demand function is linear and production costs are quadratic. As concerns the decisional mechanisms adopted by the firms, in both models one firm adopts a myopic adjustment mechanism, considering the marginal profit of the last period; the second firm maximizes its own expected profit under the assumption that the competitors' production levels will not vary with respect to the previous period; the third firm acts adaptively, changing its output proportionally to the difference between its own output in the previous period and the naive expectation value. The topological method we employ in our analysis is the so-called “Stretching Along the Paths” technique, based on the Poincaré-Miranda Theorem and the properties of the cutting surfaces, which allows to prove the existence of a semi-conjugacy between the system under consideration and the Bernoulli shift, so that the former inherits from the latter several crucial chaotic features, among which a positive topological entropy.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-08-09
    Description: We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-08-09
    Description: This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-08-11
    Description: We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-08-11
    Description: Synchronization in networks of coupled oscillators is known to be largely determined by the spectral and symmetry properties of the interaction network. Here, we leverage this relation to study a class of networks for which the threshold coupling strength for global synchronization is the lowest among all networks with the same number of nodes and links. These networks, defined as being uniform, complete, and multi-partite (UCM), appear at each of an infinite sequence of network-complement transitions in a larger class of networks characterized by having near-optimal thresholds for global synchronization. We show that the distinct symmetry structure of the UCM networks, which by design are optimized for global synchronizability, often leads to formation of clusters of synchronous oscillators, and that such states can coexist with the state of global synchronization.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-08-13
    Description: It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-08-20
    Description: The finite-time Lyapunov exponent ( FTLE ) technique has shown substantial success in analyzing incompressible flows by capturing the dynamics of coherent structures. Recent applications include river and ocean flow patterns, respiratory tract dynamics, and bio-inspired propulsors. In the present work, we extend FTLE to the compressible flow regime so that coherent structures, which travel at convective speeds, can be associated with waves traveling at acoustic speeds. This is particularly helpful in the study of jet acoustics. We first show that with a suitable choice of integration time interval, FTLE can extract wave dynamics from the velocity field. The integration time thus acts as a pseudo-filter separating coherent structures from waves. Results are confirmed by examining forward and backward FTLE coefficients for several simple, well-known acoustic fields. Next, we use this analysis to identify events associated with intermittency in jet noise pressure probe data. Although intermittent events are known to be dominant causes of jet noise, their direct source in the turbulent jet flow has remained unexplained. To this end, a Large-Eddy Simulation of a Mach 0.9 jet is subjected to FTLE to simultaneously examine, and thus expose, the causal relationship between coherent structures and the corresponding acoustic waves. Results show that intermittent events are associated with entrainment in the initial roll up region and emissive events downstream of the potential-core collapse. Instantaneous acoustic disturbances are observed to be primarily induced near the collapse of the potential core and continue propagating towards the far-field at the experimentally observed, approximately 30° angle relative to the jet axis.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-08-23
    Description: In epidemiological modelling, dynamics on networks, and, in particular, adaptive and heterogeneous networks have recently received much interest. Here, we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model, qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description, one of these corresponds to a local bifurcation, whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation . In the respective parameter region, exposure of the system to a pathogen will lead to an outbreak that collapses but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-08-24
    Description: Chimera states occur when identically coupled groups of nonlinear oscillators exhibit radically different dynamics, with one group exhibiting synchronized oscillations and the other desynchronized behavior. This dynamical phenomenon has recently been studied in computational models and demonstrated experimentally in mechanical, optical, and chemical systems. The theoretical basis of these states is currently under active investigation. Chimera behavior is of particular relevance in the context of neural synchronization, given the phenomenon of unihemispheric sleep and the recent observation of asymmetric sleep in human patients with sleep apnea. The similarity of neural chimera states to neural “bump” states, which have been suggested as a model for working memory and visual orientation tuning in the cortex, adds to their interest as objects of study. Chimera states have been demonstrated in the FitzHugh-Nagumo model of excitable cells and in the Hindmarsh-Rose neural model. Here, we demonstrate chimera states and chimera-like behaviors in a Hodgkin-Huxley-type model of thermally sensitive neurons both in a system with Abrams-Strogatz (mean field) coupling and in a system with Kuramoto (distance-dependent) coupling. We map the regions of parameter space for which chimera behavior occurs in each of the two coupling schemes.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-08-24
    Description: A modified Penning trap with a spatially uniform magnetic field B inclined with respect to the axis of rotational symmetry of the electrodes is considered. The inclination angle can be arbitrary. Canonical transformation of phase variables transforming the Hamiltonian of the considered system into a sum of three uncoupled harmonic oscillators is found. We determine the region of stability in space of two parameters controlling the dynamics: the trapping parameter κ and the squared sine of the inclination angle ϑ 0 . If the angle ϑ 0 is smaller than 54°, a charge occupies a finite spatial volume within the processing chamber. A rigid hierarchy of trapping frequencies is broken if B is inclined at the critical angle: the magnetron frequency reaches the modified cyclotron frequency while the axial frequency exceeds them. Apart from this resonance, we reveal the family of resonant curves in the region of stability. In the relativistic regime, the system is not linear. We show that it is not integrable in the Liouville sense. The averaging over the fast variable allows to reduce the system to two degrees of freedom. An analysis of the Poincaré cross-sections of the averaged systems shows the regions of effective stability of the trap.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In: Chaos
    Publication Date: 2016-06-08
    Description: Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ̃ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-06-08
    Description: The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-06-11
    Description: We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-06-14
    Description: The paper describes the results of study of a system of coupled nonlinear, Duffing-type oscillators, from the viewpoint of their self-synchronization, i.e., generation of a coherent field (order parameter) via instability of an incoherent (random-phase) initial state. We consider both the cases of dissipative coupling (e.g., via the joint radiation) and reactive coupling in a Hamiltonian system.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-06-09
    Description: Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f . This analysis shows that a metastable region exists for all finite values of f  〉 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks ( N  ∼ 10 6 ) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-06-14
    Description: We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-06-14
    Description: Accurate identification of effective epidemic threshold is essential for understanding epidemic dynamics on complex networks. In this paper, we systematically study how the recovery rate affects the susceptible-infected-removed spreading dynamics on complex networks, where synchronous and asynchronous updating processes are taken into account. We derive the theoretical effective epidemic threshold and final outbreak size based on the edge-based compartmental theory. To validate the proposed theoretical predictions, extensive numerical experiments are implemented by using asynchronous and synchronous updating methods. When asynchronous updating method is used in simulations, recovery rate does not affect the final state of spreading dynamics. But with synchronous updating, we find that the effective epidemic threshold decreases with recovery rate, and final outbreak size increases with recovery rate. A good agreement between the theoretical predictions and the numerical results are observed on both synthetic and real-world networks. Our results extend the existing theoretical studies and help us to understand the phase transition with arbitrary recovery rate.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-06-15
    Description: In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρ D X A , contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic ( MH ) and Δ MH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-06-17
    Description: Noise induced escape from the domain of attraction of a nonhyperbolic chaotic attractor in a periodically excited nonlinear oscillator is investigated. The general mechanism of the escape in the weak noise limit is studied in the continuous case, and the fluctuational path is obtained by statistical analysis. Selecting the primary homoclinic tangency as the initial condition, the action plot is presented by parametrizing the set of escape trajectories and the global minimum gives rise to the optimal path. Results of both methods show good agreements. The entire process of escape is discussed in detail step by step using the fluctuational force. A structure of hierarchical heteroclinic crossings of stable and unstable manifolds of saddle cycles is found, and the escape is observed to take place through successive jumps through this deterministic hierarchical structure.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-06-17
    Description: We study the multistability that results when a chaotic response system that has an invariant symmetry is driven by another chaotic oscillator. We observe that there is a transition from a desynchronized state to a situation of multistability. In the case considered, there are three coexisting attractors, two of which are synchronized and one is desynchronized. For large coupling, the asynchronous attractor disappears, leaving the system bistable. We study the basins of attraction of the system in the regime of multistability. The three attractor basins are interwoven in a complex manner, with extensive riddling within a sizeable region of (but not the entire) phase space. A quantitative characterization of the riddling behavior is made via the so–called uncertainty exponent, as well as by evaluating the scaling behavior of tongue–like structures emanating from the synchronization manifold.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...