ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,097)
  • MDPI Publishing  (1,097)
  • Atmosphere  (1,097)
  • 160231
Collection
  • Articles  (1,097)
Publisher
Years
Topic
  • 1
    Publication Date: 2018-07-28
    Description: Atmosphere, Vol. 9, Pages 293: The Impact of Mount Washington on the Height of the Boundary Layer and the Vertical Structure of Temperature and Moisture Atmosphere doi: 10.3390/atmos9080293 Authors: Eric Kelsey Adriana Bailey Georgia Murray Discrimination of the type of air mass along mountain slopes can be a challenge and is not commonly performed, but is critical for identifying factors responsible for influencing montane weather, climate, and air quality. A field campaign to measure air mass type and transitions on the summit of Mount Washington, New Hampshire, USA was performed on 19 August 2016. Meteorological observations were taken at the summit and at several sites along the east and west slopes. Ozone concentrations were measured at the summit and on the valley floor. Additionally, water vapor stable isotopes were measured from a truck that drove up and down the Mount Washington Auto Road concurrent with radiosonde launches that profiled the free atmosphere. This multivariate perspective revealed thermal, moisture, and air mass height differences among the free atmosphere, leeward, and windward mountain slopes. Both thermally and mechanically forced upslope flows helped shape these differences by altering the height of the boundary layer with respect to the mountain surface. Recommendations for measurement strategies hoping to develop accurate observational climatologies of air mass exposure in complex terrain are discussed and will be important for evaluating elevation-dependent warming and improving forecasting for weather and air quality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-28
    Description: Atmosphere, Vol. 9, Pages 292: A Mechanism of the Interdecadal Changes of the Global Low-Frequency Oscillation Atmosphere doi: 10.3390/atmos9080292 Authors: Ruowen Yang Quanliang Chen Yuyun Liu Lin Wang Based on the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset from 1948 to 2009, this study reveals that global low-frequency oscillation features two major temporal bands. One is a quasi-60-day period known as the intraseasonal oscillation (ISO), and the other is a quasi-15-day period known as the quasi-biweekly oscillation (QBWO). After the mid-1970s, both the ISO and QBWO become intensified and more active, and these changes are equivalently barotropic. The primitive barotropic equations are adopted to study the involved mechanism. It reveals that the e-folding time of the least stable modes of both the ISO and QWBO becomes shorter if the model is solved under the atmospheric basic state after the mid-1970s than if solved under the basic state before the mid-1970s. This result suggests that the atmospheric basic flow after the mid-1970s facilitates a more rapid growth of the ISO and QBWO, and thereby an intensification of the low-frequency oscillations at the two bands.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-28
    Description: Atmosphere, Vol. 9, Pages 291: A Statistical Parameter Correction Technique for WRF Medium-Range Prediction of Near-Surface Temperature and Wind Speed Using Generalized Linear Model Atmosphere doi: 10.3390/atmos9080291 Authors: Jinmyeong Jeong Seung-Jae Lee A statistical post-processing method was developed to increase the accuracy of numerical weather prediction (NWP) and simulation by matching the daily distribution of predicted temperatures and wind speeds using the generalized linear model (GLM) and parameter correction, considering an increase in model bias when the range of the prediction time lengthens. The Land Atmosphere Modeling Package Weather Research and Forecasting model, which provides 12-day agrometeorological predictions for East Asia, was employed from May 2017 to April 2018. Training periods occurred one month prior to and after the test period (12 days). A probabilistic consideration accounts for the relatively short training period. Based on the total and monthly root mean square error values for each test site, the results show an improvement in the NWP accuracy after bias correction. The spatial distributions in July and January were compared in detail. It was also shown that the physical consistency between temperature and wind speed was retained in the correction procedure, and that the GLM exhibited better performance than the quantile matching method based on monthly Pearson correlation comparison. The characteristics of coastal and mountainous sites are different from inland automatic weather stations, indicating that supplements to cover these distinctive topographic locations are necessary.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-29
    Description: Atmosphere, Vol. 9, Pages 294: The Influence of the North Atlantic Oscillation Index on Emergency Ambulance Calls for Elevated Arterial Blood Pressure Atmosphere doi: 10.3390/atmos9080294 Authors: Jone Vencloviene Agne Braziene Jurate Zaltauskaite Paulius Dobozinskas The North Atlantic Oscillation (NAO) is the most prominent pattern of atmospheric variability over the middle and high latitudes of the Northern Hemisphere, especially during the cold season. It is found that “weather types” are associated with human health. It is possible that variations in NAO indices (NAOI) had additional impact on human health. We investigated the association between daily emergency ambulance calls (EACs) for exacerbation of essential hypertension and the NAOI by using Poisson regression, adjusting for season, weather variables and exposure to CO, particulate matter and ozone. An increased risk of EACs was associated with NAOI < −0.5 (Rate Ratio (RR) = 1.07, p = 0.013) and NAOI > 0.5 (RR = 1.06, p = 0.004) with a lag of 2 days as compared to −0.5 ≤ NAOI ≤ 0.5. The impact of NAOI > 0.5 was stronger during November-March (RR = 1.10, lag = 0, p = 0.026). No significant associations were found between the NAOI and EACs during 8:00–13:59. An elevated risk was associated during 14:00–21:59 with NAOI < −0.5 (RR = 1.09, p = 0.003) and NAOI > 0.5 (RR = 1.09, p = 0.019) and during 22:00–7:59 with NAOI < −0.5 (RR = 1.12, lag = 1, p = 0.001). The non-linear associations were found between the NAO and EACs. The different impact of the NAO was found during the periods November–March and April–October. The impact of the NAOI was not identical for different times of the day.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-31
    Description: Atmosphere, Vol. 9, Pages 299: The Effect of Nonlocal Vehicle Restriction Policy on Air Quality in Shanghai Atmosphere doi: 10.3390/atmos9080299 Authors: Junjie Li Xiao-Bing Li Bai Li Zhong-Ren Peng In recent years, road space rationing policies have been increasingly applied as a traffic management solution to tackle congestion and traffic emission problems in big cities. Existing studies on the effect of traffic policy on air quality have mainly focused on the odd–even day traffic restriction policy or one-day-per-week restriction policy. There are few studies paying attention to the effect of nonlocal license plate restrictions on air quality in Shanghai. Restrictions toward nonlocal vehicles usually prohibit vehicles with nonlocal license plates from entering certain urban areas or using certain subsets of the road network (e.g., the elevated expressway) during specific time periods on workdays. To investigate the impact of such a policy on the residents’ exposure to pollutants, CO concentration and Air Quality Index (AQI) were compared during January and February in 2015, 2016 and 2017. Regression discontinuity (RD) was used to test the validity of nonlocal vehicle restriction on mitigating environmental pollution. Several conclusions can be made: (1) CO concentration was higher on ground-level roads on the restriction days than those in the nonrestriction days; (2) the extension of the restriction period exposed the commuters to high pollution for a longer time on the ground, which will do harm to them; and (3) the nonlocal vehicle restriction policy did play a role in improving the air quality in Shanghai when extending the evening rush period. Additionally, some suggestions are mentioned in order to improve air quality and passenger health and safety.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-31
    Description: Atmosphere, Vol. 9, Pages 297: Sources Profiles of Volatile Organic Compounds (VOCs) Measured in a Typical Industrial Process in Wuhan, Central China Atmosphere doi: 10.3390/atmos9080297 Authors: Longjiao Shen Ping Xiang Shengwen Liang Wentai Chen Ming Wang Sihua Lu Zuwu Wang Industrial emission is an important source of ambient volatile organic compounds (VOCs) in Wuhan City, Hubei Province, China. We collected 53 VOC samples from petrochemical, surface coating, electronic manufacturing, and gasoline evaporation using stainless canisters to develop localized source profiles. Concentrations of 86 VOC species, including hydrocarbons, halocarbons, and oxygenated VOCs, were quantified by a gas chromatography–flame ionization detection/mass spectrometry system. Alkanes were the major constituents observed in the source profile from the petrochemical industry. Aromatics (79.5~81.4%) were the largest group in auto-painting factories, while oxygenated VOCs (82.0%) and heavy alkanes (68.7%) were dominant in gravure printing and offset printing factories, respectively. Acetone was the largest contributor and the most frequently monitored species in printed circuit board (PCB) manufacturing, while VOC species emitted from integrated chip (IC) were characterized by high contents of isopropanol (56.4–98.3%) and acetone (30.8%). Chemical compositions from vapor of gasoline 92#, 93#, and 98# were almost identical. Alkanes were the dominant VOC group, with i-pentane being the most abundant species (31.4–37.7%), followed by n-butane and n-pentane. However, high loadings of heavier alkanes were observed in the profile of diesel evaporation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-31
    Description: Atmosphere, Vol. 9, Pages 298: Chemical Composition and Sources of Marine Aerosol over the Western North Pacific Ocean in Winter Atmosphere doi: 10.3390/atmos9080298 Authors: Hong-Wei Xiao Hua-Yun Xiao Chun-Yan Shen Zhong-Yi Zhang Ai-Min Long Atmospheric deposition of long-range transported continental substances from natural and anthropogenic sources affects biogeochemical processes in marine systems. Emissions of sea spray contribute aerosol particles to the marine atmosphere. Despite the importance of continental dispersion and atmospheric processes involving aerosol particles within remote marine atmosphere, knowledge of the sources of various water-soluble ions is limited because of insufficient observations. Concentrations of Total suspended particulates (TSPs) and major inorganic ions (Cl−, Na+, SO42−, Mg2+, Ca2+, K+, NO3−, NH4+), as well as organic nitrogen (ON-N) values, were measured in marine aerosol collected over the western north Pacific (WNP) during a cruise from 3 December 2014 to 13 March 2015. Aerosol samples were analyzed to determine their chemical characteristics and a source apportionment for this region and the continental influence on the open ocean when air masses are from continent in winter. TSP mass concentrations ranged from 14.1 to 136.0 μg/m3 with an average of 44.8 ± 28.1 μg/m3. Concentrations of TSPs and major ions were higher near the coast (close to Qingdao and Xiamen) and lower over the open ocean. The total mass of inorganic ions and organic nitrogen accounted for 51.1% of the total TSP. Cl− had highest concentrations among the major inorganic ions, followed by SO42−, NO3−, Mg2+, Ca2+, K+, and NH4+, respectively. However, Cl− showed a deficit relative to Na+ in most samples, likely related to heterogeneous reactions within the marine atmosphere. Most SO42−, Mg2+, Ca2+, and K+ were from sea salt, while other major ions were from continental sources. The non-sea-salt (nss) fractions of Ca2+, Mg2+ and K+ were derived from continental crust, while nss-SO42− and NO3− were derived from anthropogenic sources. ON had several sources, including reactions of NOx with volatile organic compounds (anthropogenic sources) or NH3 with gaseous hydrocarbons, as well as crustal and marine biogenic sources.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-08
    Description: Atmosphere, Vol. 9, Pages 306: Correction: Bärfuss et al. New Setup of the UAS ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and Solar Radiation. Atmosphere, 2018, 9, 28 Atmosphere doi: 10.3390/atmos9080306 Authors: Konrad Bärfuss Falk Pätzold Barbara Altstädter Endres Kathe Stefan Nowak Lutz Bretschneider Ulf Bestmann Astrid Lampert The authors would like to correct the published article [1] concerning acknowlegdements as follows[...]
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-14
    Description: Atmosphere, Vol. 9, Pages 229: Influences of the North Pacific Victoria Mode on the South China Sea Summer Monsoon Atmosphere doi: 10.3390/atmos9060229 Authors: Ruiqiang Ding Jianping Li Yu-heng Tseng Lijuan Li Cheng Sun Fei Xie Using the reanalysis data and the numerical experiments of a coupled general circulation model (CGCM), we illustrated that perturbations in the second dominant mode (EOF2) of springtime North Pacific sea surface temperature (SST) variability, referred to as the Victoria mode (VM), are closely linked to variations in the intensity of the South China Sea summer monsoon (SCSSM). The underlying physical mechanism through which the VM affects the SCSSM is similar to the seasonal footprinting mechanism (SFM). Thermodynamic ocean–atmosphere coupling helps the springtime SST anomalies in the subtropics associated with the VM to persist into summer and to develop gradually toward the equator, leading to a weakened zonal SST gradient across the western North Pacific (WNP) to central equatorial Pacific, which in turn induces an anomalous cyclonic flow over the WNP and westerly anomalies in the western equatorial Pacific that tend to strengthen the WNP summer monsoon (WNPSM) as well as the SCSSM. The VM influence on both the WNPSM and SCSSM is intimately tied to its influence on ENSO through westerly anomalies in the western equatorial Pacific.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-16
    Description: Atmosphere, Vol. 9, Pages 233: Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA Atmosphere doi: 10.3390/atmos9060233 Authors: Benjamin J. Hatchett On 5–7 April 2018, a landfalling atmospheric river resulted in widespread heavy precipitation in the Sierra Nevada of California and Nevada. Observed snow levels during this event were among the highest snow levels recorded since observations began in 2002 and exceeded 2.75 km for 31 h in the northern Sierra Nevada and 3.75 km for 12 h in the southern Sierra Nevada. The anomalously high snow levels and over 80 mm of precipitation caused flooding, debris flows, and wet snow avalanches in the upper elevations of the Sierra Nevada. The origin of this atmospheric river was super typhoon Jelawat, whose moisture remnants were entrained and maintained by an extratropical cyclone in the northeast Pacific. This event was notable due to its April occurrence, as six other typhoon remnants that caused heavy precipitation with high snow levels (mean = 2.92 km) in the northern Sierra Nevada all occurred during October.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-22
    Description: Atmosphere, Vol. 9, Pages 237: Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China Atmosphere doi: 10.3390/atmos9070237 Authors: Sicong Li Yunying Li Guorong Sun Zhixian Lu Stratocumulus (Sc) is the most common cloud type in China. Sc clouds may or may not be accompanied by various types of precipitation that are representative of different macro- and microphysical characteristics. The finely resolved CloudSat data products are used in this study to quantitatively investigate the macro- and microphysical characteristics of precipitating and non-precipitating Sc (PS and NPS, respectively) clouds over Eastern China (EC). Based on statistical information extracted from the CloudSat data, Sc clouds are highly likely to occur alone, in association with liquid precipitation, or in association with drizzle over 25% of EC. The cloud bases of NPS clouds are higher than those of PS clouds, although the latter display higher cloud top heights and thicker cloud thicknesses. The spatial distributions of microphysical characteristics differ between PS and NPS clouds. The magnitudes of microphysical characteristics in NPS clouds are relatively small, whereas the magnitudes of microphysical characteristics in PS clouds are relatively large and peak in response to certain circulation patterns and over certain terrain. In NPS clouds, condensation is the primary mechanism for hydrometeor particle growth, and the liquid water content and effective radius increase with height. Once the particles are too large to be supported by the updrafts, cloud droplets form raindrops. In PS clouds, raindrops increase continuously in size via collision-coalescence processes as they fall, leading to an increase in the liquid water content and effective radius from cloud top to cloud base. The CFRHDs (contoured frequency by relative height diagrams) of radar reflectivity in different cloud thickness indicate the cloud evolution and the precipitation formation process. In thinner clouds, downward particle growth by coalescence and upward particle growth by condensation occur in the upper and lower layers of clouds, respectively. With the increases in cloud thickness, the collision-coalescence process becomes apparent in all cloud layers, and the upward condensation process is less pronounced near the cloud base. Particles can grow for a long period of time and increase to larger sizes in thicker clouds, resulting in increased precipitation frequency. In clouds thicker than 1.92 km, the continuous transition from cloud to drizzle to rain by the collision-coalescence process takes place mostly in the upper layers.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-26
    Description: Atmosphere, Vol. 9, Pages 241: Comment on “Spatial and Temporal Trends in the Location of the Lifetime Maximum Intensity of Tropical Cyclones” by Tennille and Ellis Atmosphere doi: 10.3390/atmos9070241 Authors: James Kossin The latitude where tropical cyclones (TCs) reach their peak intensity has migrated poleward in some regions [...]
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-08-02
    Description: Atmosphere, Vol. 9, Pages 302: Surface and Tropospheric Water Vapor Variability and Decadal Trends at Two Supersites of CO-PDD (Cézeaux and Puy de Dôme) in Central France Atmosphere doi: 10.3390/atmos9080302 Authors: Dani Hadad Jean-Luc Baray Nadège Montoux Joël Van Baelen Patrick Fréville Jean-Marc Pichon Pierre Bosser Michel Ramonet Camille Yver Kwok Nelson Bègue Valentin Duflot We present an analysis of decadal in situ and remote sensing observations of water vapor over the Cézeaux and puy de Dôme, located in central France (45° N, 3° E), in order to document the variability, cycles and trends of surface and tropospheric water vapor at different time scales and the geophysical processes responsible for the water vapor distributions. We use meteorological stations, GPS (Global Positioning System), and lidar datasets, supplemented with three remote sources of water vapor (COSMIC-radio-occultation, ERA-interim-ECMWF numerical model, and AIRS-satellite). The annual cycle of water vapor is clearly established for the two sites of different altitudes and for all types of measurement. Cezeaux and puy de Dôme present almost no diurnal cycle, suggesting that the variability of surface water vapor at this site is more influenced by a sporadic meteorological system than by regular diurnal variations. The lidar dataset shows a greater monthly variability of the vertical distribution than the COSMIC and AIRS satellite products. The Cézeaux site presents a positive trend for the GPS water vapor total column (0.42 ± 0.45 g·kg−1/decade during 2006–2017) and a significant negative trend for the surface water vapor mixing ratio (−0.16 ± 0.09 mm/decade during 2002–2017). The multi-linear regression analysis shows that continental forcings (East Atlantic Pattern and East Atlantic-West Russia Pattern) have a greater influence than oceanic forcing (North Atlantic Oscillation) on the water vapor variations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-08-09
    Description: Atmosphere, Vol. 9, Pages 308: Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia Atmosphere doi: 10.3390/atmos9080308 Authors: Alexey R. Desyatkin Shinya Iwasaki Roman V. Desyatkin Ryusuke Hatano Central Yakutia is in one of the most northern agricultural centers of the world. In this territory a notable area of arable land was made by removing the boreal Taiga with the primary purpose of crop cultivation. Such a method of cultivation significantly changes soil total carbon (STC, soil organic carbon + soil carbonate carbon) balance, because of the destroyed upper humus horizon. Soil organic carbon (SOC) of cultivated arable lands is almost a half of that in forest. In abandoned arable lands with grass vegetation, the recovery of SOC has increased to 30% in comparison with cultivated arable lands. On arable lands recovering with new growth of trees, the SOC is related to the abandonment period. Soil carbonates carbon (SCC) content was significantly lower than SOC and showed significant difference among abandoned and other types of arable lands. Objectives of this study are to identify how STC stocks change in response to conversion of the forests to agricultural land and to analyze the arable land system’s recovery process after abandonment. Furthermore, after transformation of forest to arable land, a significant decrease of STC was observed, primarily due to mechanical loss after plant residue removal. It was also identified that the restoration and self-recovery of STC in abandoned arable lands of Central Yakutia continuously and slightly increase. Grass vegetation regenerates STC for 20 years. While the difference of average STC of forests and cultivated arable lands reached 41%, a new growth of forest on some abandoned arable land follows the tendency of STC decrease due to a low productivity level and suppressing effect on grass vegetation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 309: Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States Atmosphere doi: 10.3390/atmos9080309 Authors: Thomas Rickenbach The association between instantaneous extreme precipitation and mesoscale organization over the southeastern United States is not well known. This study addresses whether isolated precipitation features have a distinct distribution and spatial pattern of extreme rain compared to mesoscale precipitation features, and how these distributions and spatial patterns change from spring to summer. Using a four-year surface radar precipitation data set, hourly images of instantaneous extreme rain rates were separated into isolated and mesoscale precipitation features from March through August for the four-year period of 2009–2012. Results show that that compared to isolated convection, mesoscale precipitation organization is more commonly associated with higher extremes in instantaneous rainfall in the southeastern U.S. Extreme rain values tied to mesoscale organization shift eastward and toward the coasts from spring to summer, while extreme rain from isolated convection is mainly a summer phenomenon concentrated in Florida and along the coastal plain. The implication is that dynamical processes favoring mesoscale organization such as high shear associated with baroclinic circulations are more associated with higher values of extreme rain, while thermodynamic forcing and local circulations favoring isolated convection are associated with lower values of extreme rain.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 310: The FuGas 2.3 Framework for Atmosphere–Ocean Coupling: Comparing Algorithms for the Estimation of Solubilities and Gas Fluxes Atmosphere doi: 10.3390/atmos9080310 Authors: Vasco M. N. C. S. Vieira Pavel Jurus Emanuela Clementi Marcos Mateus Accurate estimates of the atmosphere–ocean fluxes of greenhouse gases and dimethyl sulphide (DMS) have great importance in climate change models. A significant part of these fluxes occur at the coastal ocean which, although much smaller than the open ocean, have more heterogeneous conditions. Hence, Earth System Modelling (ESM) requires representing the oceans at finer resolutions which, in turn, requires better descriptions of the chemical, physical and biological processes. The standard formulations for the solubilities and gas transfer velocities across air–water surfaces are 36 and 24 years old, and new alternatives have emerged. We have developed a framework combining the related geophysical processes and choosing from alternative formulations with different degrees of complexity. The framework was tested with fine resolution data from the European coastal ocean. Although the benchmark and alternative solubility formulations generally agreed well, their minor divergences yielded differences of up to 5.8% for CH4 dissolved at the ocean surface. The transfer velocities differ strongly (often more than 100%), a consequence of the benchmark empirical wind-based formulation disregarding significant factors that were included in the alternatives. We conclude that ESM requires more comprehensive simulations of atmosphere–ocean interactions, and that further calibration and validation is needed for the formulations to be able to reproduce it. We propose this framework as a basis to update with formulations for processes specific to the air–water boundary, such as the presence of surfactants, rain, the hydration reaction or biological activity.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-08-11
    Description: Atmosphere, Vol. 9, Pages 313: Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland Atmosphere doi: 10.3390/atmos9080313 Authors: Dariusz Młyński Marta Cebulska Andrzej Wałęga The aim of this study was to detect trends in maximum annual daily precipitation in the Upper Vistula Basin. We analyzed data from 51 weather stations between 1971 and 2014. Then we used the Mann–Kendall test to detect monotonical trends of the precipitation for three significance levels: 1, 5, and 10%. Our analysis of weather conditions helped us describe the mechanism behind the formation of maximum annual daily precipitation. To analyze precipitation seasonality, we also used Colwell indices. Our study identified a significant trend of the highest daily precipitation for the assumed significance levels (0.01, 0.05, 0.1) for 22% of the investigated weather stations at different elevations. The significant trends found were positive and an increase in precipitation is expected. From 1971 to 2014, the maximum daily total precipitation most often occurred in the summer half-year, i.e., from May until September. These months included a total of 88% of days with the highest daily precipitation. The predictability index for the highest total precipitation within the area was high and exceeded 5%. It was markedly affected by the coefficient of constancy (C) and to a lesser degree by the seasonality index (M). Our analysis demonstrated a convergence of the Colwell indices and frequency of cyclonic situation and, therefore, confirmed their usability in the analysis of precipitation seasonality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-08-14
    Description: Atmosphere, Vol. 9, Pages 317: The Three-Dimensional Locating of VHF Broadband Lightning Interferometers Atmosphere doi: 10.3390/atmos9080317 Authors: Hengyi Liu Shi Qiu Wansheng Dong VHF (Very High Frequency) lightning interferometers can locate and observe lightning discharges with a high time resolution. Especially the appearance of continuous interferometers makes the 2-D location of interferometers further improve in time resolution and completeness. However, there is uncertainty in the conclusion obtained by simply analyzing the 2-D locating information. Without the support of other 3-D total lightning locating networks, the 2-station interferometer becomes an option to obtain 3-D information. This paper introduces a 3-D lightning location method of a 2-station broadband interferometer, which uses the theodolite wind measurement method for reference, and gives the simulation results of the location accuracy. Finally, using the multi-baseline continuous 2-D locating method and the 3-D locating method, the locating results of one intra-cloud flash and the statistical results of the initiation heights of 61 cloud-to-ground flashes and 80 intra-cloud flashes are given. The results show that the two-station interferometer has high observation accuracy on both sides of the connection between the two sites. The locating accuracy will deteriorate as the distance between the radiation source and the two stations increases or the height decreases. The actual locating results are similar to those of the existing VHF TDOA (Time Difference of Arrival) lightning locating network.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-08-24
    Description: Atmosphere, Vol. 9, Pages 333: Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Localization and Quantification of Emission Rate Atmosphere doi: 10.3390/atmos9090333 Authors: Levi M. Golston Nicholas F. Aubut Michael B. Frish Shuting Yang Robert W. Talbot Christopher Gretencord James McSpiritt Mark A. Zondlo We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system equipped with a path-integrated methane sensor. The algorithms are developed as part of a system to enable the continuous monitoring of methane, supported by a series of over 200 methane release trials covering 51 release location and flow rate combinations. The system was found throughout the trials to reliably distinguish between cases with and without a methane release down to 2 standard cubic feet per hour (0.011 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum path-integrated methane reading performed best with a mean absolute error of 1.2 m if the results from several flights are spatially averaged. Additionally, a method of rotating the data around the estimated leak location according to the wind is developed, with the leak magnitude calculated from the average crosswind integrated flux in the region near the source location. The system is initially applied at the well pad scale (100–1000 m2 area). Validation of these methods is presented including tests with unknown leak locations. Sources of error, including GPS uncertainty, meteorological variables, data averaging, and flight pattern coverage, are discussed. The techniques described here are important for surveys of small facilities where the scales for dispersion-based approaches are not readily applicable.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 329: Numerical Simulation of a Heavy Precipitation Event in the Vicinity of Madrid-Barajas International Airport: Sensitivity to Initial Conditions, Domain Resolution, and Microphysics Parameterizations Atmosphere doi: 10.3390/atmos9090329 Authors: Pedro Bolgiani Sergio Fernández-González Francisco Valero Andrés Merino Eduardo García-Ortega José Luis Sánchez María Luisa Martín Deep convection is a threat to many human activities, with a great impact on aviation safety. On 7 July 2017, a widespread torrential precipitation event (associated with a cut-off low at mid-levels) was registered in the vicinity of Madrid, causing serious flight disruptions. During this type of episode, accurate short-term forecasts are key to minimizing risks to aviation. The aim of this research is to improve early warning systems by obtaining the best WRF model setup. In this paper, the aforementioned event was simulated. Various model configurations were produced using four different physics parameterizations, 3-km and 1-km domain resolutions, and 0.25° and 1° initial condition resolutions. Simulations were validated using data from 17 rain gauge stations. Two validation indices are proposed, accounting for the temporal behaviour of the model. Results show significant differences between microphysics parameterizations. Validation of domain resolution shows that improvement from 3 to 1 km is negligible. Interestingly, the 0.25° resolution for initial conditions produced poor results compared with 1°. This may be linked to a timing error, because precipitation was simulated further east than observed. The use of ensembles generated by combining different WRF model configurations produced reliable precipitation estimates.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 330: Evaluation of the Polarimetric-Radar Quantitative Precipitation Estimates of an Extremely Heavy Rainfall Event and Nine Common Rainfall Events in Guangzhou Atmosphere doi: 10.3390/atmos9090330 Authors: Yang Zhang Liping Liu Hao Wen Chong Wu Yonghua Zhang The development and application of operational polarimetric radar (PR) in China is still in its infancy. In this study, an operational PR quantitative precipitation estimation (QPE) algorithm is suggested based on data for PR hydrometeor classification and local drop size distribution (DSD). Even though this algorithm performs well for conventional rainfall events, in which hourly rainfall accumulations are less than 50 mm, the capability of a PR to estimate extremely heavy rainfall remains unclear. The proposed algorithm is used for nine different types of rainfall events that occurred in Guangzhou, China, in 2016 and for an extremely heavy rainfall event that occurred in Guangzhou on 6 May 2017. It performs well for all data of these nine rainfall events and for light-to-moderate rain (hourly accumulation <50 mm) in this extremely heavy rainfall event. However, it severely underestimated heavy rain (>50 mm) and the extremely heavy rain at stations where total rainfall exceeded 300 mm within 5 h in this extremely heavy rainfall event. To analyze the reasons for underestimation, a rain microphysics retrieval algorithm is presented to retrieve Dm and Nw from the PR measurements. The DSD characteristics and the factors affecting QPE are analyzed based on Dm and Nw. The results indicate that compared with statistical DSD data in Yangjiang (estimators are derived from these data), the average raindrop diameter during this rainfall event occurred on 6 May 2017 was much smaller and the number concentration was higher. The algorithm underestimated the precipitation with small and midsize particles, but overestimated the precipitation with midsize and large particles. Underestimations occurred when Dm and Nw are both very large, and the severe underestimations for heavy rain are mainly due to these particles. It is verified that some of these particles are associated with melting hail. Owing to the big differences in DSD characteristics, R(KDP, ZDR) underestimates most heavy rain. Therefore, R(AH), which is least sensitive to DSD variations, replaces R(KDP, ZDR) to estimate precipitation. This improved algorithm performs well even for extremely heavy rain. These results are important for evaluating S-band Doppler radar polarization updates in China.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-08-30
    Description: Atmosphere, Vol. 9, Pages 339: Dynamic Ensemble Analysis of Frontal Placement Impacts in the Presence of Elevated Thunderstorms during PRECIP Events Atmosphere doi: 10.3390/atmos9090339 Authors: Joshua Kastman Patrick Market Neil Fox The Program for Research on Elevated Convection with Intense Precipitation (PRECIP) field campaign sampled 10 cases of elevated convection during 2014 and 2015. These intense observing periods (IOP) mostly featured well-defined stationary or warm frontal zones, over whose inversion elevated convection would form. However, not all frontal zones translated as expected, with some poleward motions being arrested and even returning equatorward. Prior analyses of the observed data highlighted the downdrafts in these events, especially diagnostics for their behavior: the downdraft convective available potential energy (DCAPE) and the downdraft convective inhibition (DCIN). With the current study, the DCAPE and DCIN are examined for four cases: two where frontal motion proceeded poleward, as expected, and two where the frontal motions were slowed significantly or stalled altogether. Using the Weather Research and Forecasting (WRF) model, a multi-model ensemble was created for each of the four cases, and the best performing members were selected for additional deterministic examination. Analyses of frontal motions and surface cold pools are explored in the context of DCAPE and DCIN. These analyses further establish the DCAPE and DCIN, not only as a means to classify elevated convection, but also to aid in explaining frontal motions in the presence of elevated convection.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-09-03
    Description: Atmosphere, Vol. 9, Pages 343: The Characteristics and Contributing Factors of Air Pollution in Nanjing: A Case Study Based on an Unmanned Aerial Vehicle Experiment and Multiple Datasets Atmosphere doi: 10.3390/atmos9090343 Authors: Shudao Zhou Shuling Peng Min Wang Ao Shen Zhanhua Liu Unmanned aerial vehicle (UAV) experiments, multiple datasets from ground-based stations and satellite remote sensing platforms, and backward trajectory models were combined to investigate the characteristics and influential mechanisms of the air pollution episode that occurred in Nanjing during 3–4 December 2017. Before the experiments, the position of the detector mounted on a UAV that was minimally disturbed by the rotation of the rotors was analyzed based on computational fluid dynamics (CFD) simulations. The combined analysis indicated that the surface meteorological conditions—high relative humidity, low wind speed, and low temperature—were conducive to the accumulation of PM2.5. Strongly intense temperature inversion layers and the low thickness of the atmospheric mixed layer could have resulted in elevated PM2.5 mass concentrations. In the early stage, air pollution was affected by the synoptic circulation of the homogenous pressure field and low wind speeds, and the pollutants mainly originated from emissions from surrounding areas. The aggravated pollution was mainly attributed to the cold front and strong northwesterly winds above 850 hPa, and the pollutants mostly originated from the long-distance transport of emissions with northwesterly winds, mainly from the Beijing‒Tianjin‒Hebei (BTH) region and its surrounding areas. This long-distance transport predominated during this event. The air pollution level and aerosol optical depth (AOD) were positively correlated with respect to their spatial distributions; they could reflect shifts in areas of serious pollution. Pollution was concentrated in Anhui Province when it was alleviated in Nanjing. Polluted dust, polluted continental and smoke aerosols were primarily observed during this process. In particular, polluted dust aerosols accounted for a major part of the transport stage, and existed between the surface and 4 km. Moreover, the average extinction coefficient at lower altitudes (<1 km) was higher for aerosol deposition.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-09-06
    Description: Atmosphere, Vol. 9, Pages 347: The Effect of Aerosol Radiative Heating on Turbulence Statistics and Spectra in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study Atmosphere doi: 10.3390/atmos9090347 Authors: Cheng Liu Jianping Huang Evgeni Fedorovich Xiao-Ming Hu Yongwei Wang Xuhui Lee Turbulence statistics and spectra in a radiatively heated convective boundary layer (CBL) under aerosol pollution conditions are less investigated than their counterparts in the clear CBL. In this study, a large-eddy simulation (LES) coupled with an aerosol radiative transfer model is employed to determine the impact of aerosol radiative heating on CBL turbulence statistics. One-dimensional velocity spectra and velocity–temperature cospectra are invoked to characterize the turbulence flow in the CBL with varying aerosol pollution conditions. The results show that aerosol heating makes the profiles of turbulent heat flux curvilinear, while the total (turbulent plus radiative) heat flux profile retains the linear relationship with height throughout the CBL. The horizontal and vertical velocity variances are reduced significantly throughout the radiatively heated CBL with increased aerosol optical depth (AOD). The potential temperature variance is also reduced, especially in the entrainment zone and near the surface. The velocity spectral density tends to be smaller overall, and the peak of the velocity spectra is shifted toward larger wavenumbers as AOD increases. This shift reveals that the energy-containing turbulent eddies become smaller, which is also supported by visual inspection of the vertical velocity pattern over horizontal planes. The modified CBL turbulence scales for velocity and temperature are found to be applicable for normalizing the corresponding profiles, indicating that a correction factor for aerosol radiative heating is needed for capturing the general features of the CBL structure in the presence of aerosol radiative heating.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-09-15
    Description: Atmosphere, Vol. 9, Pages 355: Spatio-Temporal Characteristics of Tropospheric Ozone and Its Precursors in Guangxi, South China Atmosphere doi: 10.3390/atmos9090355 Authors: Yapeng Wang Chao Yu Jinhua Tao Zifeng Wang Yidan Si Liangxiao Cheng Hongmei Wang Songyan Zhu Liangfu Chen The temporal and spatial distributions of tropospheric ozone and its precursors (NO2, CO, HCHO) are analyzed over Guangxi (GX) in South China. We used tropospheric column ozone (TCO) from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite (OMI/MLS), NO2 and HCHO from OMI and CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument in the period 2005–2016. The TCO shows strong seasonality, with the highest value in spring and the lowest value observed in the monsoon season. The seasonal variation of HCHO is similar to that of TCO, while NO2 and CO show slightly different patterns with higher values in spring and winter compared to lower values in autumn and summer. The surface ozone, NO2 and CO observed by national air quality monitoring network sites are also compared with satellite-observed TCO, NO2 and CO, showing good agreement for NO2 and CO but a different seasonal pattern for ozone. Unlike TCO, surface ozone has the highest value in autumn and the lowest value in winter. To reveal the difference, the vertical profiles of ozone and CO from the measurement of ozone and water vapor by airbus in-service aircraft (MOZAIC) observations over South China are also examined. The seasonal averaged vertical profiles of ozone and CO show obvious enhancements at 2–6 km altitudes in spring. Furthermore, we investigate the dependence of TCO and surface ozone on meteorology and transport in detail along with the ECMWF reanalysis data, Tropical Rainfall Measuring Mission (TRMM) 3BV42 dataset, OMI ultraviolet index (UV index) dataset, MODIS Fire Radiative Power (FRP) and back trajectory. Our results show that the wind pattern at 800 hPa plays a significant role in determining the seasonality of TCO over GX, especially for the highest value in spring. Trajectory analysis, combined with MODIS FRP suggests that the air masses that passed through the biomass burning (BB) region of Southeast Asia (SEA) induced the enhancement of TCO and CO in the upper-middle troposphere in spring. However, the seasonal cycle of surface ozone is associated with wind patterns at 950 hPa, and the contribution of the photochemical effect is offset by the strong summer monsoon, which results in the maximum surface ozone concentration in post-monsoon September. The variations in the meteorological conditions at different levels and the influence of transport from SEA can account for the vertical distribution of ozone and CO. We conclude that the seasonal distribution of TCO results from the combined impact of meteorology and long-term transport.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-09-19
    Description: Atmosphere, Vol. 9, Pages 361: Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes Atmosphere doi: 10.3390/atmos9090361 Authors: Simon B. Vosper Andrew N. Ross Ian A. Renfrew Peter Sheridan Andrew D. Elvidge Vanda Grubišić This paper examines current understanding of the influence of orographic flow dynamics on the turbulent transport of momentum and scalar quantities above complex terrain. It highlights three key low-level orographic flow phenomena governed by gravity-wave dynamics: Foehn flow, atmospheric rotors and gravity-wave modulation of the stable boundary layer. Recent observations and numerical simulations are used to illustrate how these flows can cause significant departures from the turbulent fluxes, which occur over flat terrain. Orographically forced fluxes of heat, moisture and chemical constituents are currently unaccounted for in numerical models. Moreover, whilst turbulent orographic drag parameterisation schemes are available (in some models), these do not represent the large gravity-wave scales associated with foehn dynamics; nor do they account for the spatio-temporal heterogeneity and non-local turbulence advection observed in wave-rotor dynamics or the gravity waves, which modulate turbulence in the boundary layer. The implications for numerical models, which do not resolve these flows, and for the parametrisation schemes, which should account for the unresolved fluxes, are discussed. An overarching need is identified for improved understanding of the heterogeneity in sub-grid-scale processes, such as turbulent fluxes, associated with orographic flows, and to develop new physically-based approaches for parameterizing these processes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-09-19
    Description: Atmosphere, Vol. 9, Pages 359: Characteristics of Atmospheric Boundary Layer Structure during PM2.5 and Ozone Pollution Events in Wuhan, China Atmosphere doi: 10.3390/atmos9090359 Authors: Yassin Mbululo Jun Qin Jun Hong Zhengxuan Yuan In this study, we investigated six air pollutants from 21 monitoring stations scattered throughout Wuhan city by analyzing meteorological variables in the atmospheric boundary layer (ABL) and air mass backward trajectories from HYSPLIT during the pollution events. Together with this, ground meteorological variables were also used throughout the investigation period: 1 December 2015 to 30 November 2016. Analysis results during this period show that the city was polluted in winter by PM2.5 (particulate matter with aerodynamics of less than 2.5 microns) and in summer by ozone (O3). The most polluted day during the investigation period was 25 December 2015 with an air quality index (AQI) of 330 which indicates ‘severe pollution’, while the cleanest day was 26 August 2016 with an AQI of 27 indicating ‘excellent’ air quality. The average concentration of PM2.5 (O3) on the most polluted day was 265.04 (135.82) µg/m3 and 9.10 (86.40) µg/m3 on the cleanest day. Moreover, the percentage of days which exceeded the daily average limit of NO2, PM10, PM2.5, and O3 for the whole year was 2.46%, 14.48%, 23.50%, and 39.07%, respectively, while SO2 and CO were found to be below the set daily limit. The analysis of ABL during PM2.5 pollution events showed the existence of a strong inversion layer, low relative humidity, and calm wind. These observed conditions are not favorable for horizontal and vertical dispersion of air pollutants and therefore result in pollutant accumulation. Likewise, ozone pollution events were accompanied by extended sunshine hours, high temperature, a calm wind, a strongly suspended inversion layer, and zero recorded rainfall. These general characteristics are favorable for photochemical production of ozone and accumulation of pollutants. Apart from the conditions of ABL, the results from backward trajectories suggest trans-boundary movement of air masses to be one of the important factors which determines the air quality of Wuhan.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-09-20
    Description: Atmosphere, Vol. 9, Pages 365: Contributions of Atmospheric Transport and Rain–Vapor Exchange to Near-Surface Water Vapor in the Zhanjiang Mangrove Reserve, Southern China: An Isotopic Perspective Atmosphere doi: 10.3390/atmos9090365 Authors: Xiang Lai Jonathon S. Wright Wenyu Huang Jie Liang Guanghui Lin Shanxian Zhu Coastal mangroves are increasingly recognized as valuable natural resources and important sites of water and carbon exchange. In this study, we examine atmospheric water cycling in the boundary layer above a coastal mangrove forest in southern China. We collected site observations of isotopic ratios in water vapor and precipitation along with core meteorological variables during July 2017. Our evaluation of these data highlights the influences of large-scale atmospheric transport and rain–vapor exchange in the boundary layer water budget. Rain–vapor exchange takes different forms for different types of rainfall events. The evolution of isotopic ratios in water vapor suggests that substantial rain recycling occurs during the passage of large-scale organized convective systems, but that this process is much weaker during rainfall associated with less organized events of local origin. We further examine the influences of large-scale transport during the observation period using a Lagrangian trajectory-based moisture source analysis. More than half (63%) of the boundary layer moisture during the study period traced back to the South China Sea, consistent with prevailing southerly to southwesterly flow. Other important moisture sources included mainland Southeast Asia and the Indian Ocean, local land areas (e.g., Hainan Island and the Leizhou Peninsula), and the Pacific Ocean. Together, these five regions contributed more than 90% of the water vapor. The most pronounced changes in isotopic content due to large-scale transport during the study period were related to the passage of Tropical Storm Talas. The outer rain bands of this tropical cyclone passed over the measurement site on 15–17 July, causing a sharp reduction in the heavy isotopic content of boundary layer water vapor and a substantial increase in deuterium excess. These changes are consistent with extensive isotopic distillation and rain–vapor exchange in downdrafts associated with the intense convective systems produced by this storm.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-09-23
    Description: Atmosphere, Vol. 9, Pages 370: A Comprehensive Approach to Assess the Hydrological Drought of Inland River Basin in Northwest China Atmosphere doi: 10.3390/atmos9100370 Authors: Nina Zhu Jianhua Xu Weihong Li Kaiming Li Cheng Zhou How to measure and quantitatively assess hydrological drought (HD) in the inland river basins of Northwest China is a difficult problem because of the complicated geographical environment and climatic processes. To address this problem, we conducted a comprehensive approach and selected the Aksu River Basin (ARB) as a typical inland river basin to quantitatively assess the hydrological drought based on the observed data and reanalysis data during the period of 1980–2010. We used two mutual complementing indicators, i.e., the standardized runoff index (SRI) and standardized terrestrial water storage index (SWSI), to quantitatively measure the spatio-temporal pattern of HD, where the SRI calculated from the observed runoff data indicate the time trend of HD of the whole basin, while SWSI extracted from the reanalysis data indicate the spatial pattern of HD. We also used the auto-regressive distribution lag model (ARDL) to show the autocorrelation of HD and its dependence on precipitation, potential evapotranspiration (PET), and soil moisture. The main conclusions are as follows: (a) the western and eastern regions of the ARB were prone to drought, whereas the frequency of drought in the middle of the ARB is relatively lower; (b) HD presents significant autocorrelation with two months’ lag, and soil moisture is correlated with SWSI with two months’ lag, whereas PET and precipitation are correlated with SWSI with 1 month’ lag; (c) the thresholds of HD for annual PET, annual precipitation, and annual average soil moisture are greater than 844.05 mm, less than 134.52 mm, and less than 411.07 kg/m2, respectively. A drought early warning system that is based on the thresholds was designed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 311: Post-Monsoon Season Precipitation Reduction over South Asia: Impacts of Anthropogenic Aerosols and Irrigation Atmosphere doi: 10.3390/atmos9080311 Authors: Wei-Ting Chen Kung-Tzu Huang Min-Hui Lo L. H. LinHo A significant declining trend of post-monsoon season precipitation in South Asia is observed between 2000–2014. Two major anthropogenic climate change drivers, aerosols and irrigation, have been steadily increasing during this period. The impacts of their regional and seasonal forcings on the post-monsoon precipitation reduction is investigated in this study through using idealized global climate simulations. The increased post-monsoon aerosol loadings lead to surface cooling downwind of the source areas by reduced surface shortwave flux. The addition of post-monsoon irrigation induces a stronger temperature decrease mainly around the irrigation hotspots by enhanced evaporation. Precipitation over West and North India is reduced post-monsoon by either aerosol or irrigation, which is mainly contributed by the anomalous subsidence. With concurrent forcings, the surface cooling and precipitation decrease are stronger and more extended spatially than the response to the separate forcing, with nonlinear amplification in surface cooling, but nonlinear damping in precipitation reduction. The anomalous vertical motion accelerates the transition of the regional meridional circulation, and hence the earlier withdrawal of the summer monsoon, which is consistent with the observed signals. The current results highlight the importance of including anthropogenic aerosol and irrigation effects in present and future climate simulations over South Asia.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-08-11
    Description: Atmosphere, Vol. 9, Pages 312: Difference in PM2.5 Variations between Urban and Rural Areas over Eastern China from 2001 to 2015 Atmosphere doi: 10.3390/atmos9080312 Authors: Changqing Lin Alexis K. H. Lau Ying Li Jimmy C. H. Fung Chengcai Li Xingcheng Lu Zhiyuan Li To more effectively reduce population exposure to PM2.5, control efforts should target densely populated urban areas. In this study, we took advantage of satellite-derived PM2.5 data to assess the difference in PM2.5 variations between urban and rural areas over eastern China during the past three Five-Year Plan (FYP) periods (2001–2015). The results show that urban areas experienced less of a decline in PM2.5 concentration than rural areas did in more than half of the provinces during the 11th FYP period (2006–2010). In contrast, most provinces experienced a greater reduction of PM2.5 concentration in urban areas than in rural areas during the 10th and 12th FYP periods (2001–2005 and 2011–2015, respectively). During the recent 12th FYP period, the rates of decline in PM2.5 concentration in urban areas were more substantial than in rural areas by as much as 1.5 μg·m−3·year−1 in Beijing and 2.0 μg·m−3·year−1 in Tianjin. These results suggest that the spatial difference in PM2.5 change was conducive to a reduction in the population exposure to PM2.5 in most provinces during recent years.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-08-12
    Description: Atmosphere, Vol. 9, Pages 314: Variations of Haze Pollution in China Modulated by Thermal Forcing of the Western Pacific Warm Pool Atmosphere doi: 10.3390/atmos9080314 Authors: Yingchang You Xugeng Cheng Tianliang Zhao Xiangde Xu Sunling Gong Xiaoye Zhang Yu Zheng Huizheng Che Chao Yu Jiacheng Chang Guoxu Ma Ming Wu In addition to the impact of pollutant emissions, haze pollution is connected with meteorology and climate change. Based on the interannual change analyses of meteorological and environmental observation data from 1981 to 2010, we studied the relationship between the winter haze frequency in central-eastern China (CEC) and the interannual variations of sea surface temperature (SST) over Western Pacific Warm Pool (WPWP) and its underlying mechanism to explore the thermal effect of WPWP on haze pollution variation in China. The results show a significant positive correlation coefficient reaching up to 0.61 between the interannual variations of SST in WPWP and haze pollution frequency in the CEC region over 1981–2010, reflecting the WPWP’s thermal forcing exerting an important impact on haze variation in China. The anomalies of thermal forcing of WPWP could induce to the changes of East Asian winter monsoonal winds and the vertical thermal structures in the troposphere over the CEC region. In the winter with anomalously warm SST over the WPWP, the near-surface winds were declined, and vertical thermal structure in the lower troposphere tended to be stable over the CEC-region, which could be conducive to air pollutant accumulation leading to the more frequent haze occurrences especially the heavy haze regions of Yangtze River Delta (YRD) and Pearl River Delta (PRD); In the winter with the anomalously cold WPWP, it is only the reverse of warm WPWP with the stronger East Asian winter monsoonal winds and the unstable thermal structure in the lower troposphere, which could attribute to the less frequent haze pollution over the CEC region. Our study revealed that the thermal forcing of the WPWP could have a modulation on air environment change in China.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-08-14
    Description: Atmosphere, Vol. 9, Pages 316: Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay Atmosphere doi: 10.3390/atmos9080316 Authors: Domingo Rasilla Juan Carlos García-Codron Carolina Garmendia Sixto Herrera Victoria Rivas This paper examines the characteristics and long-term variability of storminess for the Spanish coast of the Bay of Biscay for the period 1948 to 2015, by coupling wave (observed and modelled) and atmospheric datasets. The diversity of atmospheric mechanisms that are responsible for wave storms are highlighted at different spatial and temporal scales: synoptic (cyclone) and low frequency (teleconnection patterns) time scales. Two types of storms, defined mostly by wave period and storm energy, are distinguished, resulting from the distance to the forcing cyclones, and the length of the fetch area. No statistically significant trends were found for storminess and the associated atmospheric indices over the period of interest. Storminess reached a maximum around the decade of the 1980s, while less activity occurred at the beginning and end of the period of study. In addition, the results reveal that only the WEPI (West Europe Pressure Anomaly Index), EA (Eastern Atlantic), and EA/WR (Eastern Atlantic/Western Russia) teleconnection patterns are able to explain a substantial percentage of the variability in storm climate, suggesting the importance of local factors (W-E exposition of the coast) in controlling storminess in this region.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-08-14
    Description: Atmosphere, Vol. 9, Pages 315: Identification and Characterization of an Anomaly in Two-Dimensional Video Disdrometer Data Atmosphere doi: 10.3390/atmos9080315 Authors: Michael L. Larsen Michael Schönhuber The two-dimensional video distrometer (2DVD) is a well known ground based point-monitoring precipitation gauge, often used as a ground truth instrument to validate radar or satellite rainfall retrieval algorithms. This instrument records a number of variables for each detected hydrometeor, including the detected position within the sample area of the instrument. Careful analyses of real 2DVD data reveal an artifact—there are time periods where hydrometeor detections within parts of the sample area are artificially enhanced or diminished. Here, we (i) illustrate this anomaly with an exemplary 2DVD data set, (ii) describe the origin of this anomaly, (iii) develop and present an algorithm to help flag data potentially partially corrupted by this anomaly, and (iv) explore the prevalence and quantitative impact of this anomaly. Although the anomaly is seen in every major rain event studied and by every 2DVD the authors have examined, the anomaly artificially induces less than 3% of all detected drops and typically alters estimates of rain rates and accumulations by less than 2%.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-08-20
    Description: Atmosphere, Vol. 9, Pages 322: An Analysis of Precipitation Extremes in the Inner Mongolian Plateau: Spatial-Temporal Patterns, Causes, and Implications Atmosphere doi: 10.3390/atmos9080322 Authors: Chunlan Li Walter Leal Filho Jun Wang Hubert Fudjumdjum Mariia Fedoruk Richa Hu Shan Yin Yuhai Bao Shan Yu Julian Hunt To improve how extreme events and climate variations are managed, there is a need to foster a deeper understanding of their interconnections. Consistent with this objective, this paper describes how precipitation extremes change both temporally and spatially in the Inner Mongolian Plateau (IMP), China and explains their causal factors. The paper refers to data collected from 43 meteorological stations in IMP and describes how precipitation extremes formed and how they influence agriculture. Data gathered and presented in this paper may be useful in understanding the extent to which the IMP is being influenced by global environmental change. This study reveals that the eleven precipitation extremes indices, except the number of precipitation days with over 0.5 mm (R0.5), number of heavy precipitation days (R10), and total precipitation in wet days (PRCPTOT), decreased in the IMP between 1959 and 2014, and most of them were non-significant in temporal. But the dry index has a larger magnitude decreasing trend than that of the wet indices, which can indicate that the dry situation was alleviated in IMP during the study interval. This study also indicated that precipitation extremes have strong relationships with elevation, latitude, and longitude. Atmospheric circulation and topography may be further primary reasons which result in the spatial variation characteristics in precipitation extremes over the IMP. Decreases in precipitation extremes, together with human activities such as livestock improvement and ecological restoration programs, has a positive effect in gross output value of agriculture and animal husbandry in the IMP. The results contribute to a deeper insight on the possible impacts of precipitation extremes and support the development of appropriate adaptation and mitigation strategies to cope with climate extremes. This paper further proposes science-based policies for grassland protection, agriculture, and animal husbandry on the national or regional and herdsman scales.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-08-19
    Description: Atmosphere, Vol. 9, Pages 321: Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada Atmosphere doi: 10.3390/atmos9080321 Authors: Alexandria J. Herdt Robert D. Brown Ian Scott-Fleming Guofeng Cao Melissa MacDonald Dave Henderson Jennifer K. Vanos Mass sporting events in the summertime are influenced by underlying weather patterns, with high temperatures posing a risk for spectators and athletes alike. To better understand weather variations in the Greater Toronto Area (GTA) during the Pan American Games in 2015 (PA15 Games), Environment and Climate Change Canada deployed a mesoscale monitoring network system of 53 weather stations. Spatial maps across the GTA demonstrate large variations by heat metric (e.g., maximum temperature, humidex, and wet bulb globe temperature), identifying Hamilton, Ontario as an area of elevated heat and humidity, and hence risk for heat-related illness. A case study of the Hamilton Soccer Center examined on-site thermal comfort during a heat event and PA15 Soccer Games, demonstrating that athletes and spectators were faced with thermal discomfort and a heightened risk of heat-related illness. Results are corroborated by First Aid and emergency response data during the events, as well as insight from personal experiences and Twitter feed. Integrating these results provides new information on potential benefits to society from utilizing mesonet systems during large-scale sporting events. Results further improve our understanding of intra-urban heat variability and heat-health burden. The benefits of utilizing more comprehensive modeling approaches for human heat stress that coincide with fine-scale weather information are discussed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-08-19
    Description: Atmosphere, Vol. 9, Pages 320: Rate Constants for the Reaction of OH Radicals with Hydrocarbons in a Smog Chamber at Low Atmospheric Temperatures Atmosphere doi: 10.3390/atmos9080320 Authors: Lei Han Frank Siekmann Cornelius Zetzsch The photochemical reaction of OH radicals with the 17 hydrocarbons n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, cyclooctane, 2,2-dimethylbutane, 2,2-dimethylpentane, 2,2-dimethylhexane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, toluene, ethylbenzene, p-xylene, and o-xylene was investigated at 288 and 248 K in a temperature controlled smog chamber. The rate constants were determined from relative rate calculations with toluene and n-pentane as reference compounds, respectively. The results from this work at 288 K show good agreement with previous literature data for the straight-chain hydrocarbons, as well as for cyclooctane, 2,2-dimethylbutane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, and toluene, indicating a convenient method to study the reaction of OH radicals with many hydrocarbons simultaneously. The data at 248 K (k in units of 10−12 cm3 s−1) for 2,2-dimethylpentane (2.97 ± 0.08), 2,2-dimethylhexane (4.30 ± 0.12), 2,2,4-trimethylpentane (3.20 ± 0.11), and ethylbenzene (7.51 ± 0.53) extend the available data range of experiments. Results from this work are useful to evaluate the atmospheric lifetime of the hydrocarbons and are essential for modeling the photochemical reactions of hydrocarbons in the real troposphere.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-08-22
    Description: Atmosphere, Vol. 9, Pages 327: Evaluation of NESMv3 and CMIP5 Models’ Performance on Simulation of Asian-Australian Monsoon Atmosphere doi: 10.3390/atmos9090327 Authors: Juan Li Young-Min Yang Bin Wang The Asian-Australian monsoon (AAM) has far-reaching impacts on global and local climate. Accurate simulations of AAM precipitation and its variabilities are of scientific and social importance, yet remain a great challenge in climate modeling. The present study assesses the performance of the newly developed Nanjing University of Information Science and Technology Earth System Model version 3 (NESMv3), together with that of 20 Coupled Model Intercomparison Project phase 5 (CMIP5) models, in the simulation of AAM climatology, its major modes of variability, and their relationships with El Nino-Southern Oscillation (ENSO). It is concluded that NESMv3 (1) reproduces, well, the observed features of AAM annual mean precipitation; (2) captures the solstice mode (the first annual cycle mode) of AAM realistically, but has difficulty in simulating the equinox mode (the second annual cycle mode) of AAM; (3) underestimates the monsoon precipitation intensity over the East Asian subtropical frontal zone, but overestimates that over the tropical western North Pacific; (4) faithfully reproduces the first season-reliant empirical orthogonal function (SEOF) mode of AAM precipitation and the associated circulation anomalies, as well as its relationship with ENSO turnabout, although the correlation is underestimated. Precipitation anomaly patterns of the second SEOF mode and its relationship with El Nino are poorly simulated by NESMv3 and most of the CMIP5 models as well, indicating that the monsoon variability prior to the ENSO onset is difficult to reproduce. In general, NESMv3’s performance in simulating AAM precipitation ranks among the top or above-average compared with the 20 CMIP5 models. Better simulation of East Asian summer monsoon and western Pacific subtropical high remains a major target for future improvement, in order to provide a reliable tool to understand and predict AAM precipitation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-08-22
    Description: Atmosphere, Vol. 9, Pages 326: Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia Atmosphere doi: 10.3390/atmos9090326 Authors: Mohammed Gedefaw Denghua Yan Hao Wang Tianling Qin Abel Girma Asaminew Abiyu Dorjsuren Batsuren This study investigated the annual and seasonal rainfall variability at five selected stations of Amhara Regional State, by using the innovative trend analysis method (ITAM), Mann-Kendall (MK) and Sen’s slope estimator test. The result showed that the trend of annual rainfall was increasing in Gondar (Z = 1.69), Motta (Z = 0.93), and Bahir Dar (Z = 0.07) stations. However, the trends in Dangla (Z = −0.37) and Adet (Z = −0.32) stations showed a decreasing trend. As far as monthly and seasonal variability of rainfall are concerned, all the stations exhibited sensitivity of change. The trend of rainfall in May, June, July, August, and September was increasing. However, the trend on the rest of other months showed a decreasing trend. The increase in rainfall during Kiremt season, along with the decrease in number of rainy days, leads to an increase of extreme rainfall events over the region during 1980–2016. The consistency in rainfall trends over the study region confirms the robustness of the change in trends. Innovative trend analysis method is very crucial method for detecting the trends in rainfall time series data due to its potential to present the results in graphical format as well. The findings of this paper could help researchers to understand the annual and seasonal variability of rainfall over the study region and become a foundation for further studies.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-08-24
    Description: Atmosphere, Vol. 9, Pages 334: Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA) Atmosphere doi: 10.3390/atmos9090334 Authors: Hamid Reza Ghafarian Malamiri Iman Rousta Haraldur Olafsson Hadi Zare Hao Zhang Land surface temperature (LST) is a basic parameter in energy exchange between the land and the atmosphere, and is frequently used in many sciences such as climatology, hydrology, agriculture, ecology, etc. Time series of satellite LST data have usually deficient, missing, and unacceptable data caused by the presence of clouds in images, the presence of dust in the atmosphere, and sensor failure. In this study, the singular spectrum analysis (SSA) algorithm was used to resolve the problem of missing and outlier data caused by cloud cover. The region studied in the present research included an image frame of the Moderate Resolution Imaging Spectroradiometer (MODIS) with horizontal number 22 and vertical number 05 (h22v05). This image involved a large part of Iran, Turkmenistan, and the Caspian Sea. In this study, MODIS LST products (MOD11A1) were used during 2015 with approximately 1 km × 1 km spatial resolution and day/night LST data (daily temporal resolution). On average, the data have 36.37% gaps in each pixel profile with 730 day/night LST data. The results of the SSA algorithm in the reconstruction of LST images indicated a root mean square error (RMSE) of 2.95 Kelvin (K) between the original and reconstructed LST time series data in the study region. In general, the findings showed that the SSA algorithm using spatio-temporal interpolation can be effectively used to resolve the problem of missing data caused by cloud cover.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 332: The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China Atmosphere doi: 10.3390/atmos9090332 Authors: Ling Qiu Fang Liu Xiang Zhang Tian Gao With the acceleration of urbanisation and industrialisation, atmospheric particulate pollution has become one of the most serious environmental problems in China. In this study, green spaces in Baoji city were classified into different patterns on the basis of vegetation structural parameters, i.e., horizontal structure, vertical structure and vegetation type. Eleven types of green space with different structures were selected for investigating the relationships between atmospheric particulate matter (PM) concentration and green spaces with different vegetation structure, based on the “matrix effect” of environmental factors, i.e., location, time, wind velocity, temperature, humidity and area to the concentration of PM2.5 and PM10 in the green spaces. The results showed that: (1) Location, time, wind velocity, temperature and humidity had highly significant effects on the concentration of PM2.5 and PM10. In sunny and breeze weather conditions, PM2.5 and PM10 concentration increased with the wind velocity and humidity, and decreased with the temperature. The range of PM10 concentration was greater than the range of PM2.5 concentration. (2) Less than 2 hectares of the green space had no significant influence on the concentration of PM2.5 and PM10. (3) The concentration of PM2.5 and PM10 showed no significant difference between all the green spaces and the control group. There was no significant difference in the reduction of PM2.5 concentration between different structural green spaces, but there was a significant difference in the reduction of PM10 concentration. The above results will provide a theoretical basis and practical methods for the optimisation of urban green space structures for improving urban air quality effectively in the future.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 331: Effects of Northern Hemisphere Atmospheric Blocking on Arctic Sea Ice Decline in Winter at Weekly Time Scales Atmosphere doi: 10.3390/atmos9090331 Authors: Yao Yao Dehai Luo Linhao Zhong In this study, the effects of the Northern Hemisphere atmospheric blocking circulation on Arctic sea ice decline at weekly time scales are examined by defining four key regions based on observational data analysis. Given the regression analysis, the frequently occurring atmospheric patterns related to the sea ice decline in four key sea regions (Baffin Bay, Barents-Kara Seas, Okhotsk Sea and Bering Sea) are found to be Greenland blocking (GB), Ural blocking (UB), western Pacific blocking (PB-W) and eastern Pacific blocking (PB-E), respectively. The results show that the regional blocking frequency is higher (lower) in lower (higher) sea ice winters for each key region. Moreover, composite analysis indicates that blocking evolution is usually accompanied by significant sea ice decline at weekly time scales during the blocking life cycle for each key region. In addition, the intensified surface downward infrared radiation (IR) anomaly and the precipitable water for the entire atmosphere (PWA) in each key region are found to make significant contributions to the positive surface air temperature (SAT) anomaly, which is beneficial for the reduction in sea ice. The approximate quantitative analysis of different surface energy fluxes induced by blocking is also applied. Further analysis shows that the blocking event and the associated changes in SAT and radiation anomalies for each key region lead the sea ice decline by approximately 3~6 days. This result indicates that regional blocking can contribute to regional sea ice decline at weekly time scales through surface warming associated with enhanced water vapor and associated IR variations. Further quantitative estimates indicate that regional blocking can reduce regional sea ice cover (SIC) by 49.6%, 49.4%, 52.2% and 49.5% for Baffin Bay, Barents-Kara Seas, Okhotsk Sea and Bering Sea, respectively, during the blocking life cycle. Finally, a physical process diagrammatic sketch is given to illustrate how blocking affects SIC decline.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-08-31
    Description: Atmosphere, Vol. 9, Pages 341: Tracking Jianghuai Cyclones in China and Their Climate Characteristics Atmosphere doi: 10.3390/atmos9090341 Authors: Lan Xia Yue Zhou A Jianghuai cyclone is an extratropical cyclone, which influences the middle and lower reaches of the Yangtze River and Huai River basins in China. According to the definition of Jianghuai cyclones, statistics of their climate characteristics from 1979 to 2010 are obtained by an objective detection and tracking algorithm using ERA-Interim reanalysis data. The results show that the frequency of Jianghuai cyclones has a strong year-to-year variability but no obvious trend. Jianghuai cyclones are most frequent in May but fewest in December. As the cold air is active in spring, which interacts with the warm air from the southwest of the subtropical high at the Yangtze-Huai River region, it makes Jianghuai cyclones occur more frequently in this season. The main origins of Jianghuai cyclones are located in the Poyang Lake region, Dongting Lake region, and Dabie Mountain area. The maximum deepening rate of 0–2 hPa/6 h is featured in 66.4% of Jianghuai cyclones. Over 40% of Jianghuai cyclones have a mean deepening rate of 0–1 hPa/6 h. The lifetime of Jianghuai cyclones is short, mainly lasting for one to two days. In addition, background characteristics are compared between the formation, climax, and decaying periods of Jianghuai cyclones.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-09-02
    Description: Atmosphere, Vol. 9, Pages 342: Symmetry of Energy Divergence Anomalies Associated with the El Niño-Southern Oscillation Atmosphere doi: 10.3390/atmos9090342 Authors: Evan Kutta Jason A. Hubbart Timothy P. Eichler Anthony R. Lupo The El Niño-Southern Oscillation (ENSO) is a dominant source of global climate variability. The effects of this phenomenon alter the flow of heat from tropical to polar latitudes, resulting in weather and climate anomalies that are difficult to forecast. The current work quantified two components of the vertically integrated equation for the total energy content of an atmospheric column, to show the anomalous horizontal redistribution of surface heat flux anomalies. Symmetric and asymmetric components of the vertically integrated latent and sensible heat flux divergence were quantified using ERA-Interim atmospheric reanalysis output on 30 model layers between 1979 and 2016. Results indicate that asymmetry is a fundamental component of ENSO-induced weather and climate anomalies at the global scale, challenging the common assumption that each phase of ENSO is equal and opposite. In particular, a substantial asymmetric component was identified in the relationship between ENSO and patterns of extratropical climate variability that may be proportional to differences in sea surface temperature anomalies during each phase of ENSO. This work advances our understanding of the global distributions of source and sink regions, which may improve future predictions of ENSO-induced precipitation and surface temperature anomalies. Future studies should apply these methods to advance understanding and to validate predictions of ENSO-induced weather and climate anomalies.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-09-04
    Description: Atmosphere, Vol. 9, Pages 345: Numerical Study on the Effect of Urbanization and Coastal Change on Sea Breeze over Qingdao, China Atmosphere doi: 10.3390/atmos9090345 Authors: Shangfei Hai Yucong Miao Lifang Sheng Linbo Wei Qing Chen During the past few decades, rapid economic development occurred in Qingdao. Inevitably, human activities have caused great changes to the underlying surface, including urbanization and coastal change. Coastal change mainly refers to the expansion of the coastline to increase coastal land area. Sea-land breeze (SLB) is important for local weather and the transport of air pollutant. However, the impact of human activities on the SLB over Qingdao is not yet clear. Thus, the weather research and forecasting (WRF) model is applied to study the effect of urbanization and coastal change on SLB. The study shows that urbanization strengthens the urban heat island (UHI) effect. Due to the expansions of urban area during past decades, sea breeze is strengthened before it passes through the urban areas. When it penetrates into the city, the inland progress of sea breeze is slowed down due to the UHI effect and stronger frictional force. Besides, the expansions of coastline can delay the SLB conversion time, lead to the changes in the sea breeze penetration path and the weakening of SLB intensity.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-09-04
    Description: Atmosphere, Vol. 9, Pages 346: A Comparison between 3DVAR and EnKF for Data Assimilation Effects on the Yellow Sea Fog Forecast Atmosphere doi: 10.3390/atmos9090346 Authors: Xiaoyu Gao Shanhong Gao Yue Yang The data assimilation method to improve the sea fog forecast over the Yellow Sea is usually three-dimensional variational assimilation (3DVAR), whereas ensemble Kalman filter (EnKF) has not yet been applied to this weather phenomenon. In this paper, two sea fog cases over the Yellow sea, one spread widely and the other spread narrowly along the coastal area, are studied in detail by a series of numerical experiments with 3DVAR and EnKF based on the Grid-point Statistical Interpolation (GSI) system and the Weather Research and Forecasting (WRF) model. The results show that the assimilation effect of EnKF outperforms that of 3DVAR: for the widespread-fog case, the probability of detection and equitable threat scores of the forecasted sea fog area are improved respectively by ~57.9% and ~55.5%; the sea fog formation of the other case completely mis-forecasted by 3DVAR was produced successfully by EnKF. These improvements of EnKF relative to 3DVAR benefit from its flow-dependent background error covariances, resulting in more realistic depiction of sea surface wind for the widespread-fog case and better moisture distribution for the other case in the initial conditions. More importantly, the correlation between temperature and humidity in the background error covariances of EnKF plays a vital role in the response of moisture to the assimilation of temperature, which leads to a great improvement in the initial moisture conditions for sea fog forecast. Extra sensitivity experiments of EnKF indicate that the forecast result is sensitive to ensemble inflation and localization factors, in particular, highly sensitive to the latter.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-09-04
    Description: Atmosphere, Vol. 9, Pages 344: How Sea Fog Influences Inland Visibility on the Southern China Coast Atmosphere doi: 10.3390/atmos9090344 Authors: Jianxiang Sun Huijun Huang Suping Zhang Weikang Mao Sea fog can lead to inland fog on the southern China coast, affecting visibility on land. To better understand how such fog influences inland visibility, we observed two sea-fog cases at three sites (over sea, at coast, and inland) and analyzed the results here. Our analysis suggests four factors may be key: (1) The synoptic pattern is the decisive factor determining whether fog forms inland. First, sea fog and low clouds form when the synoptic pattern involves warm, moist air moving from a warmer sea-surface temperature (SST) region to a colder SST region near the coast. Then, inland fog tends to occur under this low-cloud background with relatively large horizontal-vapor transport. A greater horizontal-vapor transport results in denser fog with higher liquid-water content. Conversely, a strong horizontal advection of temperature with less horizontal-vapor transport can hinder inland-fog formation. (2) Local cooling (including ground radiative cooling) helps promote inland fog formation. (3) Fog formation requires low wind speed and small turbulent kinetic energy (TKE). The small TKE helps the vapor accumulate close to the surface and maintain the local cooling effect. (4) Fog formation is promoted by having the energy flux downward at night with the land surface cooling the atmosphere as well as having lower soil temperature and higher soil humidity.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-09-12
    Description: Atmosphere, Vol. 9, Pages 351: Exposure to Outdoor Particles (PM2.5) and Associated Child Morbidity and Mortality in Socially Deprived Neighborhoods of Nairobi, Kenya Atmosphere doi: 10.3390/atmos9090351 Authors: Thaddaeus Egondi Remare Ettarh Catherine Kyobutungi Nawi Ng Joacim Rocklöv Exposure to air pollution is associated with adverse health outcomes. However, the health burden related to ambient outdoor air pollution in sub-Saharan Africa remains unclear. This study examined the relationship between exposure to outdoor air pollution and child health in urban slums of Nairobi, Kenya. We conducted a semi-ecological study among children under 5 years of age from two slum areas and exposure measurements of particulate matter (PM2.5) at the village level were aligned to data from a retrospective cohort study design. We used logistic and Poisson regression models to ascertain the associations between PM2.5 exposure level and child morbidity and mortality. Compared to those in low-pollution areas (PM2.5 < 25 µg/m3), children in high-pollution areas (PM2.5 ≥ 25 µg/m3) were at significantly higher risk for morbidity in general (odds ratio (OR) = 1.25, 95% confidence interval (CI): 1.11–1.41) and, specifically, cough (OR = 1.38, 95% CI: 1.20–1.48). Exposure to high levels of pollution was associated with a high child mortality rate from all causes (IRR = 1.22, 95% CI: 1.08–1.39) and respiratory causes (IRR = 1.12, 95% CI: 0.88–1.42). The findings indicate that there are associated adverse health outcomes with air pollution in urban slums. Further research on air pollution health impact assessments in similar urban areas is required.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-09-10
    Description: Atmosphere, Vol. 9, Pages 350: Abrupt Climate Shift in the Mature Rainy Season of the Philippines in the Mid-1990s Atmosphere doi: 10.3390/atmos9090350 Authors: Olaguera Matsumoto Kubota Inoue Cayanan Hilario A robust climate shift around 1993/1994 from early August to early September, which corresponds to the mature rainy season of the Philippines, was identified in stations located over the western coast of the country. The convection in the mature rainy season during 1994–2008 (E2) was suppressed compared with 1979–1993 (E1). The possible role of the changes in the large-scale conditions and tropical cyclone (TC) activity were analyzed. The results show that the western North Pacific Subtropical High has extended further westward in E2 leading to an enhanced lower-level divergence and less moisture transport over the Philippines. The changes in the large-scale conditions, which featured a mid-tropospheric descent, a decrease in low-level relative humidity, an enhanced vertical zonal wind shear, and a decrease in the perturbation kinetic energy, also inhibited the synoptic-scale disturbances in the vicinity of the Philippines. In particular, fewer TCs developed and made landfall over the Philippines in E2. We also found inconsistent climate shifts in May, June, July, and September between the rainfall data from the stations and the Climate Prediction Center Merged Analysis of Precipitation, which highlights the importance of sub-seasonal analysis in decadal-to-interdecadal climate change studies.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-09-15
    Description: Atmosphere, Vol. 9, Pages 354: Future-Year Ozone Isopleths for South Coast, San Joaquin Valley, and Maryland Atmosphere doi: 10.3390/atmos9090354 Authors: Susan Collet Toru Kidokoro Prakash Karamchandani Tejas Shah Many areas of the United States are working toward achieving the 2015 ozone National Ambient Air Quality Standard (NAAQS) attainment level. The objective of this study was to develop future-year (2030) volatile organic compounds and nitrogen oxides (VOC-NOx) isopleth diagrams of the 4th highest maximum daily 8-h average ozone design value concentrations at monitors of interest in the South Coast Air Basin (SoCAB) and San Joaquin Valley (SJV) in California, and in Maryland. The simulation results showed there would be attainment of the 2015 ozone NAAQS in 2030 without further controls at the selected monitors: 27% in SoCAB, 57% in SJV, and 100% in Maryland. The SoCAB ozone isopleths developed in this study were compared with those reported in the South Coast Air Quality Management District 2016 Air Quality Management Plan. There are several differences between the two modeling studies, the results are qualitatively similar for most of the monitors in the relative amounts of additional emission reductions needed to achieve the ozone NAAQS. The results of this study provide insight into designing potential control strategies for ozone attainment in future years for areas currently in non-attainment. Additional photochemical modeling using these strategies can then provide confirmation of the effectiveness of the controls.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-09-16
    Description: Atmosphere, Vol. 9, Pages 356: Comparison of Closed Chamber and Eddy Covariance Methods to Improve the Understanding of Methane Fluxes from Rice Paddy Fields in Japan Atmosphere doi: 10.3390/atmos9090356 Authors: Nongpat Chaichana Sonoko Dorothea Bellingrath-Kimura Shujiro Komiya Yoshiharu Fujii Kosuke Noborio Ottfried Dietrich Tiwa Pakoktom Greenhouse gas flux monitoring in ecosystems is mostly conducted by closed chamber and eddy covariance techniques. To determine the relevance of the two methods in rice paddy fields at different growing stages, closed chamber (CC) and eddy covariance (EC) methods were used to measure the methane (CH4) fluxes in a flooded rice paddy field. Intensive monitoring using the CC method was conducted at 30, 60 and 90 days after transplanting (DAT) and after harvest (AHV). An EC tower was installed at the centre of the experimental site to provide continuous measurements during the rice cropping season. The CC method resulted in CH4 flux averages that were 58%, 81%, 94% and 57% higher than those measured by the EC method at 30, 60 and 90 DAT and after harvest (AHV), respectively. A footprint analysis showed that the area covered by the EC method in this study included non-homogeneous land use types. The different strengths and weaknesses of the CC and EC methods can complement each other, and the use of both methods together leads to a better understanding of CH4 emissions from paddy fields.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-09-18
    Description: Atmosphere, Vol. 9, Pages 357: Development, Characterization, and Validation of a Cold Stage-Based Ice Nucleation Array (PKU-INA) Atmosphere doi: 10.3390/atmos9090357 Authors: Jie Chen Xiangyu Pei Hong Wang Jingchuan Chen Yishu Zhu Mingjin Tang Zhijun Wu A drop-freeze array (PeKing University Ice Nucleation Array, PKU-INA) was developed based on the cold-stage method to investigate heterogeneous ice nucleation properties of atmospheric particles in the immersion freezing mode from −30 to 0 °C. The instrumental details as well as characterization and performance evaluation are described in this paper. A careful temperature calibration protocol was developed in our work. The uncertainties in the reported temperatures were found to be less than 0.4 °C at various cooling rates after calibration. We also measured the ice nucleation activities of droplets containing different mass concentrations of illite NX, and the results obtained in our work show good agreement with those reported previously using other instruments with similar principles. Overall, we show that our newly developed PKU-INA is a robust and reliable instrument for investigation of heterogeneous ice nucleation in the immersion freezing mode.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-09-18
    Description: Atmosphere, Vol. 9, Pages 358: Environmentally-Related Cherry Root Cambial Plasticity Atmosphere doi: 10.3390/atmos9090358 Authors: Mirjana Ljubojević Ivana Maksimović Branislava Lalić Ljiljana Dekić Tijana Narandžić Nenad Magazin Jovana Dulić Maja Miodragović Goran Barać Vladislav Ognjanov The general aim of this research was to determine whether the cherry root cambium possesses similar water-stress adaptation abilities as the scion. Specifically, this study aimed to determine whether there is a shift in root xylem structure due to precipitation fluctuations and temperature increase during the growing season in two cherry species. Oblačinska sour cherry and European ground cherry roots with secondary structure were anatomically surveyed in detail, and correlated with meteorological conditions occurring during the vegetation when the roots were formed. Under environmental signals, both investigated species altered their radial root growth imprinting stops and starts in a cambial activity that resulted in the occurrence of intra-annual false growth rings. Changing environmental conditions triggered the shifts of large and small vessels throughout the false growth rings, but their size seemed to be mainly genetically controlled. Taking into consideration all the above, genotypes with moderate vessel lumen area—lesser or around 1200 μm2 in the inner zone, as well as no greater than 1500 μm2 in the outer zone—are presumed to be both size-controlling and stable upon the drought events. Thus, further field trials will be focused on the SV2 European ground cherry genotype, and OV13, OV32, and OV34 Oblačinska sour cherry genotypes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-04-19
    Description: Atmosphere, Vol. 9, Pages 153: Cloud Longwave Scattering Effect and Its Impact on Climate Simulation Atmosphere doi: 10.3390/atmos9040153 Authors: Wenjie Zhao Yiran Peng Bin Wang Jiangnan Li The cloud longwave (LW) scattering effect has been ignored in most current climate models. To investigate its climate impact, we apply an eight-stream DIScrete Ordinates Radiative Transfer (DISORT) scheme to include the cloud LW scattering in the General circulation model version of the LongWave Rapid Radiative Transfer Model (RRTMG_LW) and the Community Atmospheric Model Version 5 (CAM5). Results from the standalone RRTMG_LW and from diagnostic runs of CAM5 (no climate feedback) show that the cloud LW scattering reduces the upward flux at the top of the atmosphere and leads to an extra warming effect in the atmosphere. In the interactive runs with climate feedback included in CAM5, the cloud LW scattering effect is amplified by the water vapor-temperature feedback in a warmer atmosphere and has substantial influences on cloud fraction and specific humidity. The thermodynamic feedbacks are more significant in the northern hemisphere and the resulting meridional temperature gradient is different between the two hemispheres, which strengthens the southern branch of Hadley circulation, and modulates the westerly jet near 50° S and the upper part of Walker circulation. Our study concludes that the cloud LW scattering effect could have complex impacts on the global energy budget and shall be properly treated in future climate models.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-04-19
    Description: Atmosphere, Vol. 9, Pages 151: An Uncertainty Investigation of RCM Downscaling Ratios in Nonstationary Extreme Rainfall IDF Curves Atmosphere doi: 10.3390/atmos9040151 Authors: Qiqi Yang Qiang Dai Dawei Han Xuehong Zhu Shuliang Zhang Designed for rainstorms and flooding, hydrosystems are largely based on local rainfall Intensity–Duration–Frequency (IDF) curves which include nonstationary components accounting for climate variability. IDF curves are commonly calculated using downscaling outputs from General Circulation Models (GCMs) or Regional Circulation Models (RCMs). However, the downscaling procedures used in most studies are based on one specific time scale (e.g., 1 h) and generally ignore scale-driven uncertainty. This study analyzes the uncertainties in IDF curves stemming from RCM downscaling ratios for four representative weather stations in the United Kingdom. We constructed a series of IDF curves using distribution-based scaling bias-correction technology and a statistical downscaling method to explore the scale-driven uncertainty of IDF curves. The results revealed considerable scale-induced uncertainty of IDF curves for short durations and long return periods; however, there was no clear correlation with the mean storm intensity of the IDF curves of different RCM ensemble members for each duration and return period. The scale-driven uncertainty of IDF curves, which may be propagated or enhanced through hydrometeorological applications, is critical and cannot be ignored in the hydrosystem design process; therefore, a multi-scale method to derive IDF curves must be developed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-04-19
    Description: Atmosphere, Vol. 9, Pages 152: Atmospheric Emissions from Oil and Gas Extraction and Production in Greece Atmosphere doi: 10.3390/atmos9040152 Authors: Georgios Papailias Ilias Mavroidis This paper addresses the atmospheric emissions of CO2, SO2, H2S, NOx, and volatile organic compounds (VOCs) from oil and gas extraction and production in the Gulf of Kavala. This is currently the only location of oil and gas production in Greece. Facilities are located both offshore (Kappa and Delta platforms) and onshore (Sigma plant), producing sweet gas, sour gas, and sour crude oil. This study presents the characteristics of atmospheric emissions, including emission measurements, emission inventories, and concentration measurements, from a central monitoring station and twelve total sulfation stations, the latter aiming to assess the effects of atmospheric emissions to air quality. During the development of the monitoring system, special attention was placed to sulfur compounds, since the existence of sour gas and sour crude oil was expected to lead to increased amounts of H2S and SO2. One of the main findings of the present study is that if the prevailing wind direction is considered (i.e., from N–NE), then the central monitoring station is not located downwind of the onshore and offshore facilities; therefore, its position should be re-examined. The emission inventories showed that flaring at the offshore facilities is the main source of SO2 emissions, while SO2 emissions and ambient concentrations were well below the relevant standards. Furthermore, CO2 emissions were lower by 67.73% as compared to 2008, when emissions reached a maximum. This was attributed to more energy demanding activities during that period, and mainly to the operation of turbines between 2007 and 2009. Since it is expected that the exploitation of hydrocarbons as well as oil and gas extraction and production will increase in the future in Greece, appropriate measures should be taken to ensure environmental protection, such as the use of up-to-date emission control technologies and a flare gas recovery system.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-04-25
    Description: Atmosphere, Vol. 9, Pages 160: Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin Atmosphere doi: 10.3390/atmos9050160 Authors: Rashid Mahmood Shaofeng Jia Nitin Kumar Tripathi Sangam Shrestha In this study, a linear scaling method, precipitation extended linear scaling (PELS), is proposed to correct precipitation simulated by GCMs. In this method, monthly scaling factors were extended to daily scaling factors (DSFs) to improve the daily variation in precipitation. In addition, DSFs were also checked for outliers and smoothed with a smoothing filter to reduce the effect of noisy DSFs before correcting the GCM’s precipitation. This method was evaluated using the observed precipitation of 21 climate stations and five GCMs in the Jhelum River basin, Pakistan and India, for the period of 1986–2000 and also compared with the original linear scaling (OLS) method. The evaluation results showed substantial improvement in the corrected GCM precipitation, especially in case of mean and standard deviation values. Although PELS and OLS showed comparable results, the overall performance of PELS was better than OLS. After Evaluation, PELS was applied to the future precipitation from five GCMs for the period of 2041–2070 under RCP8.5 and RCP2.6 in the Jhelum basin, and the future changes in precipitation were calculated with respect to 1971–2000. According to average all GCMs, annual precipitation was projected to decrease by 4% and 6% in the basin under RCP8.5 and RCP2.6, respectively. Although two seasons, spring and fall, showed some increasing precipitation, the monsoon season showed severe decrease in precipitation, with 22% (RCP8.5) and 29% (RCP2.6), and even more reduction in July and August, up to 34% (RCP8.5) and 36% (RCP2.6). This means if the climate of the world follows the RCP8.5 and RCP2.6, then there will be a severe reduction in precipitation in the Jhelum basin during peak months. It was also observed that decline in precipitation was higher under RCP2.6 than RCP8.5.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-04-26
    Description: Atmosphere, Vol. 9, Pages 161: On Street-Canyon Flow Dynamics: Advanced Validation of LES by Time-Resolved PIV Atmosphere doi: 10.3390/atmos9050161 Authors: Radka Kellnerová Vladimír Fuka Václav Uruba Klára Jurčáková Štěpán Nosek Hana Chaloupecká Zbyněk Jaňour The advanced statistical techniques for qualitative and quantitative validation of Large Eddy Simulation (LES) of turbulent flow within and above a two-dimensional street canyon are presented. Time-resolved data from 3D LES are compared with those obtained from time-resolved 2D Particle Image Velocimetry (PIV) measurements. We have extended a standard validation approach based solely on time-mean statistics by a novel approach based on analyses of the intermittent flow dynamics. While the standard Hit rate validation metric indicates not so good agreement between compared values of both the streamwise and vertical velocity within the canyon canopy, the Fourier, quadrant and Proper Orthogonal Decomposition (POD) analyses demonstrate very good LES prediction of highly energetic and characteristic features in the flow. Using the quadrant analysis, we demonstrated similarity between the model and the experiment with respect to the typical shape of intensive sweep and ejection events and their frequency of appearance. These findings indicate that although the mean values predicted by the LES do not meet the criteria of all the standard validation metrics, the dominant coherent structures are simulated well.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-05-03
    Description: Atmosphere, Vol. 9, Pages 168: Clouds over East Asia Observed with Collocated CloudSat and CALIPSO Measurements: Occurrence and Macrophysical Properties Atmosphere doi: 10.3390/atmos9050168 Authors: Xuebin Li Xianming Zheng Damao Zhang Wenzhong Zhang Feifei Wang Ye Deng Wenyue Zhu Cloud occurrences, vertical structures, and along-track horizontal scales over East Asia are studied using four years (2007–2010) of CloudSat 2B-CLDCLASS-LIDAR data. The CloudSat 2B-CLDCLASS-LIDAR data employs combined CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to provide by far the most accurate detections of cloud boundaries and their vertical structures. The mean cloud occurrence frequency over East Asia is 66.3%, which is 13.8% and 21.6% higher than that from the Cloud–Aerosol LIdar with Orthogonal Polarization (CALIOP) level 2 5-km cloud layer product and the CloudSat 2B-GEOPROF product, respectively. Cloud-top heights over East Asia show three local peaks at approximately 1.5 km, 10 km, and 15 km above ground level (AGL), indicating different mid-altitude cloud formation mechanisms from those over the tropics. Significant fractions of low-level cloud, mid-level cloud, and high-level cloud have thicknesses smaller than 0.5 km, indicating that models with vertical resolutions lower than 0.5 km have difficulties resolving those clouds. The average cloud along-track horizontal scale over East Asia is 82.0 km. Probability distribution functions (PDFs) of cloud along-track horizontal scales suggest that approximately 81.2% of the clouds over East Asia cannot be resolved by climate models with a grid resolution of 1°. The results from this study can be used to improve cloud parameterizations in climate models and validate model simulations of clouds over East Asia.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-05-03
    Description: Atmosphere, Vol. 9, Pages 169: Evaluation of Fog and Low Stratus Cloud Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC Algorithm Atmosphere doi: 10.3390/atmos9050169 Authors: Jean-Charles Dupont Martial Haeffelin Eivind Wærsted Julien Delanoe Jean-Baptiste Renard Jana Preissler Colin O’Dowd The microphysical properties of low stratus and fog are analyzed here based on simultaneous measurement of an in situ sensor installed on board a tethered balloon and active remote-sensing instruments deployed at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) observatory (south of Paris, France). The study focuses on the analysis of 3 case studies where the tethered balloon is deployed for several hours in order to derive the relationship between liquid water content (LWC), effective radius (Re) and cloud droplet number concentration (CDNC) measured by a light optical aerosol counter (LOAC) in situ granulometer and Bistatic Radar System for Atmospheric Studies (BASTA) cloud radar reflectivity. The well-known relationship Z = α × (LWC)β has been optimized with α ϵ [0.02, 0.097] and β ϵ [1.91, 2.51]. Similar analysis is done to optimize the relationship Re = f(Z) and CDNC = f(Z). Two methodologies have been applied to normalize the particle-size distribution measured by the LOAC granulometer with a visible extinction closure (R² ϵ [0.73, 0.93]) and to validate the LWC profile with a liquid water closure using the Humidity and Temperature Profiler (HATPRO) microwave radiometer (R² ϵ [0.83, 0.91]). In a second step, these relationships are used to derive spatial and temporal variability of the vertical profile of LWC, Re and CDNC starting from BASTA measurement. Finally, the synergistic remote sensing of clouds (SYRSOC) algorithm has been tested on three tethered balloon flights. Generally, SYRSOC CDNC and Re profiles agreed well with LOAC in situ and BASTA profiles for the studied fog layers. A systematic overestimation of LWC by SYRSOC in the top half of the fog layer was found due to fog processes that are not accounted for in the cloud algorithm SYRSOC.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-05-04
    Description: Atmosphere, Vol. 9, Pages 171: Mesospheric Inversion Layers at Mid-Latitudes and Coincident Changes of Ozone, Water Vapour and Horizontal Wind in the Middle Atmosphere Atmosphere doi: 10.3390/atmos9050171 Authors: Klemens Hocke Martin Lainer Leonie Bernet Niklaus Kämpfer We analyse middle atmospheric profiles of temperature, geopotential height, water vapour volume mixing ratio, and ozone volume mixing ratio above Bern (46.95 ∘ N, 7.44 ∘ E). These profiles were observed by the satellite experiment Aura/MLS and the ground-based microwave radiometers MIAWARA and GROMOS at Bern. The data series of Aura/MLS and GROMOS extend from the winter 2004/2005 to the winter 2017/2018 while the MIAWARA series starts in winter 2007/2008. Mesospheric inversion layers (MILs) above Bern, Switzerland are often present during the winter season, and the temperature peak of the MIL is located at an altitude of about 81 km in winter. The occurrence rate of the MIL during the winter season above Bern is about 42%. The MILs are possibly associated with planetary wave breaking processes in the mesospheric surf zone at mid-latitudes during winter. The study only evaluates daily averages in order to reduce tidal influences. Composite atmospheric profiles are computed for times when the MIL is present and for times when the MIL is absent. The difference of the composites indicates that middle and upper stratospheric ozone are reduced by up to 7% when the MIL is present while lower mesospheric water vapour is enhanced by up to 20% during the MIL occurrence. Using wind data of ECMWF operational analysis, we find that eastward and northward winds are decelerated by about 5–15 m/s in the lower mesosphere during the occurrence of an MIL. We also find that the occurrence of an MIL above Bern is not a regional process, but it depends on the movements and deformations of the polar mesospheric vortex. During an MIL, the location of Bern is outside of the lower mesospheric vortex. These new findings of atmospheric composition and circulation changes support the assumption that winter MILs at mid-latitudes are connected to planetary wave breaking in the middle atmosphere.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-05-16
    Description: Atmosphere, Vol. 9, Pages 187: Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios Atmosphere doi: 10.3390/atmos9050187 Authors: David Newth Don Gunasekera The increased levels of Greenhouse Gasses (GHGs) in the atmosphere will result in increased near-surface air temperature and absolute humidity. These two factors increasingly pose a risk of heat stress to humans. The Wet-Bulb Globe Temperature (WBGT) is a widely used and validated index for assessing the environmental heat stress. Using the output from the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations of the four Representative Concentration Pathways (RCPs), we calculated the global and regional changes in WBGT. Globally, the WBGT is projected to increase by 0.6–1.7 °C for RCP 2.6 and 2.37–4.4 °C for RCP 8.5. At the regional scale, our analysis suggests a disproportionate increase in the WBGT over northern India, China, northern Australia, Africa, Central America and Southeast Asia. An increase in WBGT has consequences not only on human health but also on social and economic factors. These consequences may be exacerbated in developing economies, which are less able to adapt to the changing environmental conditions.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-05-17
    Description: Atmosphere, Vol. 9, Pages 190: Estimating the Influence of Housing Energy Efficiency and Overheating Adaptations on Heat-Related Mortality in the West Midlands, UK Atmosphere doi: 10.3390/atmos9050190 Authors: Jonathon Taylor Phil Symonds Paul Wilkinson Clare Heaviside Helen Macintyre Michael Davies Anna Mavrogianni Emma Hutchinson Mortality rates rise during hot weather in England, and projected future increases in heatwave frequency and intensity require the development of heat protection measures such as the adaptation of housing to reduce indoor overheating. We apply a combined building physics and health model to dwellings in the West Midlands, UK, using an English Housing Survey (EHS)-derived stock model. Regional temperature exposures, heat-related mortality risk, and space heating energy consumption were estimated for 2030s, 2050s, and 2080s medium emissions climates prior to and following heat mitigating, energy-efficiency, and occupant behaviour adaptations. Risk variation across adaptations, dwellings, and occupant types were assessed. Indoor temperatures were greatest in converted flats, while heat mortality rates were highest in bungalows due to the occupant age profiles. Full energy efficiency retrofit reduced regional domestic space heating energy use by 26% but increased summertime heat mortality 3–4%, while reduced façade absorptance decreased heat mortality 12–15% but increased energy consumption by 4%. External shutters provided the largest reduction in heat mortality (37–43%), while closed windows caused a large increase in risk (29–64%). Ensuring adequate post-retrofit ventilation, targeted installation of shutters, and ensuring operable windows in dwellings with heat-vulnerable occupants may save energy and significantly reduce heat-related mortality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-05-17
    Description: Atmosphere, Vol. 9, Pages 189: FY-3A Microwave Data Assimilation Based on the POD-4DEnVar Method Atmosphere doi: 10.3390/atmos9050189 Authors: Mingyang Zhang Lifeng Zhang Bin Zhang A four-dimensional ensemble variational assimilation system for FY-3A satellite data is constructed using the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar Satellite Assimilation System). Using the community radiative transfer model (CRTM) as the observation operator for satellite data, ensemble samples are mapped to the observation space and observation perturbations are generated. The observation perturbations matrix of satellite data is then decomposed to obtain the orthogonal eigenvectors and the eigenvalues for the observation perturbations matrix. The observation perturbations matrix and model perturbations matrix are transformed using orthogonal eigenvectors as basis functions and an explicit expression for the analysis increment is obtained. The expression includes the flow-dependent background error covariance and avoids the difficulty of solving the adjoint model for four-dimensional variational assimilation. In order to evaluate the capability of POD-4DEnVar Satellite Assimilation System, single observation experiments and observation system simulation experiments (OSSEs) for FY-3A MWHS and MWTS sensor data were designed to simulate a large-scale precipitation event occurring over the middle and lower reaches of the Yangtze River. The results of single observation experiments show that POD-4DEnVar Satellite Assimilation System can assimilate satellite data correctly, and the background error covariance of POD-4DEnVar Satellite Assimilation System has obvious flow-dependent characteristics. The results of the OSSEs show that the root-mean-square errors (RMSEs) of the assimilation analysis field with respect to the “true” field are lower than those of the background field, which indicates that the POD-4DEnVar Satellite Assimilation System can assimilate satellite data effectively. The sensitivity of the POD-4DEnVar Satellite Assimilation System to the percentage of truncated eigenvalues, the number of ensemble members, assimilation time window length, and the horizontal localization scale (which are key parameters for POD-4DEnVar Satellite Assimilation System) was tested in sensitivity experiments. These experiments show that if the percentage of truncated eigenvalues for POD decomposition is more than 80%, POD-4DEnVar Satellite Assimilation System has strong assimilation skill. Increasing the number of initial ensemble members has little influence on the assimilation ability of POD-4DEnVar Satellite Assimilation System. But, increasing the number of the physical ensemble members can clearly increase the assimilation ability. The assimilation skill of POD-4DEnVar Satellite Assimilation System is optimal when the length of the assimilation time window is 5 h or 3 h and the horizontal localization scale is 500 km or above. The assimilation ability of POD-4DEnVar Satellite Assimilation System is preliminarily tested by single observation experiments and OSSEs. The results show that it is feasible to assimilate satellite data using the POD-4DEnVar method. In the future, a variety of real satellite data and a variety of mesoscale weather cases will be used to further verify the stability of POD-4DEnVar Satellite Assimilation System.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-05-19
    Description: Atmosphere, Vol. 9, Pages 196: Accuracy of Simulated Diurnal Valley Winds in the Swiss Alps: Influence of Grid Resolution, Topography Filtering, and Land Surface Datasets Atmosphere doi: 10.3390/atmos9050196 Authors: Juerg Schmidli Steven Böing Oliver Fuhrer We evaluate the near-surface representation of thermally driven winds in the Swiss Alps in a numerical weather prediction model at km-scale resolution. In addition, the influence of grid resolution (2.2 km and 1.1 km), topography filtering, and land surface datasets on the accuracy of the simulated valley winds is investigated. The simulations are evaluated against a comprehensive set of surface observations for an 18-day fair-weather summer period in July 2006. The episode is characterized by strong diurnal wind systems and the formation of shallow convection over the mountains, which transitions to precipitating convection in some areas. The near-surface winds (10 m above ground level) follow a typical diurnal pattern with strong daytime up-valley flow and weaker nighttime down-valley flow. At a 2.2 km resolution the valley winds are poorly simulated for most stations, while at a 1.1 km resolution the diurnal cycle of the valley winds is well represented in most large (e.g., Rhein valley at Chur and Rhone valley at Visp) and medium-sized valleys (e.g., Linth valley at Glarus). In the smaller valleys (e.g., Maggia valley at Cevio), the amplitude of the valley wind is still significantly underestimated, even at a 1.1 km resolution. Detailed sensitivity experiments show that the use of high-resolution land surface datasets, for both the soil characteristics as well as for the land cover, and reduced filtering of the topography are essential to achieve good performance at a 1.1 km resolution.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-05-22
    Description: Atmosphere, Vol. 9, Pages 198: Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area Atmosphere doi: 10.3390/atmos9050198 Authors: Zhixin Liu Senlin Zheng Lihua Zhao Urban trees can significantly improve the outdoor thermal environment, especially in subtropical zones. However, due to the lack of fundamental evaluations of numerical simulation models, design and modification strategies for optimizing the thermal environment in subtropical hot-humid climate zones cannot be proposed accurately. To resolve this issue, this study investigated the physiological parameters (leaf surface temperature and vapor flux) and thermal effects (solar radiation, air temperature, and humidity) of four common tree species (Michelia alba, Mangifera indica, Ficus microcarpa, and Bauhinia blakeana) in both spring and summer in Guangzhou, China. A comprehensive comparison of the observed and modeled data from ENVI-met (v4.2 Science, a three-dimensional microclimate model) was performed. The results show that the most fundamental weakness of ENVI-met is the limitation of input solar radiation, which cannot be input hourly in the current version and may impact the thermal environment in simulation. For the tree model, the discrepancy between modeled and observed microclimate parameters was acceptable. However, for the physiological parameters, ENVI-met tended to overestimate the leaf surface temperature and underestimate the vapor flux, especially at midday in summer. The simplified calculation of the tree model may be one of the main reasons. Furthermore, the thermal effect of trees, meaning the differences between nearby treeless sites and shaded areas, were all underestimated in ENVI-met for each microclimate variable. This study shows that the tree model is suitable in subtropical hot-humid climates, but also needs some improvement.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-05-22
    Description: Atmosphere, Vol. 9, Pages 199: Effects of Urban Greenspace Patterns on Particulate Matter Pollution in Metropolitan Zhengzhou in Henan, China Atmosphere doi: 10.3390/atmos9050199 Authors: Yakai Lei Yanbo Duan Dan He Xiwen Zhang Lanqi Chen Yonghua Li Yu Gary Gao Guohang Tian Jingbiao Zheng This case study was conducted to quantify the effects of urban greenspace patterns on particle matter (PM) concentration in Zhengzhou, China by using redundancy and variation partitioning analysis. Nine air-quality monitoring stations (AQMS) were selected as the central points. Six distances of 1 km, 2 km, 3 km, 4 km, 5 km, and 6 km were selected as the side lengths of the squares with each AQMS serving as the central point, respectively. We found: (1) the fine size of PM (PM2.5) and coarse size of PM (PM10) among four seasons showed significant differences; during winter, the concentration of PM2.5 and PM10 were both highest, and PM2.5 and PM10 concentration in summer were lowest. (2) To effectively reduce the PM2.5 pollution, the percentage of greenspace, the differences in areas among greenspace patches, and the edge complexity of greenspace patches should be increased at distances of 2 km and 3 km. To effectively reduce PM10, the percentage of greenspace at a distance of 4 km, the edge density at distances of 2 km and 4 km, and the average area of greenspace patches at a distance of 1 km should be increased. (3) Greenspace pattern significantly affected PM2.5 at a distance of 3 km, and PM10 at a distance of 4 km. From shorter distance to longer distance, the proportion of variance explained by greenspace showed a decline–increase–decline–increase trend for PM2.5, and a decline–increase–decline trend for PM10. At shorter distances, the composition of greenspace was more effective in reducing the PM pollution, and the configuration of greenspace played a more important role at longer distances. The results should lead to specific guidelines for more cost-effective and environmentally sound greenspace planning.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-05-24
    Description: Atmosphere, Vol. 9, Pages 203: Application of Artificial Neural Networks in the Prediction of PM10 Levels in the Winter Months: A Case Study in the Tricity Agglomeration, Poland Atmosphere doi: 10.3390/atmos9060203 Authors: Jadwiga Nidzgorska-Lencewicz Poor urban air quality due to high concentrations of particulate matter (PM) remains a major public health problem worldwide. Therefore, research efforts are being made to forecast ambient PM concentrations. In this study, artificial neural networks (ANNs) were employed to generate models forecasting hourly PM10 concentrations 1–6 h ahead, involving 3 measurement locations in the Tricity Agglomeration, Poland. In Poland, the majority of high PM concentration cases occurs in winter due to coal combustion being the main energy carrier. For this reason, the present study covers only the periods of the winter calendar (December, January, February) in the period 2002/2003–2016/2017. Inputs to the models were the values of hourly PM10 concentrations and meteorological factors such as air temperature, relative humidity, air pressure, and wind speed. The results of the neural network models were satisfactory and the values of the coefficient of determination (R2) for the independent test set for three sites ranged from 0.452 to 0.848. The values of the index of agreement (IA) were from 0.693 to 0.957, the fractional mean bias (FB) values were 0 or close to 0 and the root mean square error (RMSE) values varied from 8.80 to 23.56. It is concluded that ANNs have been proven to be effective in the prediction of air pollution levels based on the measured air monitoring data.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-05-26
    Description: Atmosphere, Vol. 9, Pages 207: Contemporary Pyrogeography and Wildfire-Climate Relationships of South Dakota, USA Atmosphere doi: 10.3390/atmos9060207 Authors: Darren R. Clabo A recent wildland fire history and climate database was compiled for South Dakota, USA (SD). Wildfires are generally a warm season phenomenon across central and western SD while eastern SD exhibits a spring peak in annual wildfire activity. It is hypothesized that regional climate and land use are the two primary drivers of the spatiotemporal wildfire distribution across the state. To assess the relative impacts of climate to wildfire activity, Spearman’s rank order correlation coefficients were calculated for monthly values of temperature, precipitation, and the Palmer Drought Modified Index (PMDI) as compared to both monthly area burned and numbers of fire starts data for each of the nine climate divisions in South Dakota. Results show statewide variations in significant correlations but positive temperature anomalies, negative precipitation anomalies, and negative values of the PMDI were most frequently associated with months showing substantial area burned and large numbers of wildfire starts. Time-lagged significant correlations were also seen implying month(s)-ahead predictive capabilities. Positive PMDI values were most significantly correlated to warm season wildfire activity suggesting that the influence of drought on wildfires within SD may be limited to the summer months.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-01
    Description: Atmosphere, Vol. 9, Pages 213: Cluster Sampling Filters for Non-Gaussian Data Assimilation Atmosphere doi: 10.3390/atmos9060213 Authors: Ahmed Attia Azam Moosavi Adrian Sandu This paper presents a fully non-Gaussian filter for sequential data assimilation. The filter is named the “cluster sampling filter”, and works by directly sampling the posterior distribution following a Markov Chain Monte-Carlo (MCMC) approach, while the prior distribution is approximated using a Gaussian Mixture Model (GMM). Specifically, a clustering step is introduced after the forecast phase of the filter, and the prior density function is estimated by fitting a GMM to the prior ensemble. Using the data likelihood function, the posterior density is then formulated as a mixture density, and is sampled following an MCMC approach. Four versions of the proposed filter, namely C ℓ MCMC , C ℓ HMC , MC- C ℓ HMC , and MC- C ℓ HMC are presented. C ℓ MCMC uses a Gaussian proposal density to sample the posterior, and C ℓ HMC is an extension to the Hamiltonian Monte-Carlo (HMC) sampling filter. MC- C ℓ MCMC and MC- C ℓ HMC are multi-chain versions of the cluster sampling filters C ℓ MCMC and C ℓ HMC respectively. The multi-chain versions are proposed to guarantee that samples are taken from the vicinities of all probability modes of the formulated posterior. The new methodologies are tested using a simple one-dimensional example, and a quasi-geostrophic (QG) model with double-gyre wind forcing and bi-harmonic friction. Numerical results demonstrate the usefulness of using GMMs to relax the Gaussian prior assumption especially in the HMC filtering paradigm.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-07-02
    Description: Atmosphere, Vol. 9, Pages 247: An Approach to Estimate Atmospheric Greenhouse Gas Total Columns Mole Fraction from Partial Column Sampling Atmosphere doi: 10.3390/atmos9070247 Authors: Jovan Tadić Sébastien Biraud This study presents a new conceptual approach to estimate total column mole fractions of CO2 and CH4 using partial column data. It provides a link between airborne in situ and remote sensing observations of greenhouse gases. The method relies on in situ observations, external ancillary sources of information (e.g., atmospheric transport models), and a regression kriging framework. We evaluate our new approach using National Oceanic and Atmospheric Administration’s (NOAA’s) AirCore program—in situ vertical profiles of CO2 and CH4 collected from weather balloons. Our paper shows that under the specific conditions of this study and assumption of unbiasedness, airborne observations up to 6500–9500 m altitude are required to achieve comparable total column CO2 mole fraction uncertainty as the Total Carbon Column Observing Network (TCCON) network provides, given as a precision of the ratio between observed and true total column-integrated mole fraction, assuming 400 ppm XCO2 (2σ, e.g., 0.8 ppm). If properly calibrated, our approach could be applied to vertical profiles of CO2 collected from aircraft using a few flask samples, while retaining similar uncertainty level. Our total column CH4 estimates, by contrast, are less accurate than TCCON’s. Aircrafts are not as spatially constrained as TCCON ground stations, so our approach adds value to aircraft-based vertical profiles for evaluating remote sensing platforms.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-07-07
    Description: Atmosphere, Vol. 9, Pages 254: Efficient Formulation and Implementation of Data Assimilation Methods Atmosphere doi: 10.3390/atmos9070254 Authors: Elias D. Nino-Ruiz Adrian Sandu Haiyan Cheng This Special Issue presents efficient formulations and implementations of sequential and variational data assimilation methods. The methods address three important issues in the context of operational data assimilation: efficient implementation of localization methods, sampling methods for approaching posterior ensembles under non-linear model errors, and adjoint-free formulations of four dimensional variational methods.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-07-06
    Description: Atmosphere, Vol. 9, Pages 253: Reconstruction of Atmospheric Lead Pollution During the Roman Period Recorded in Belgian Ombrotrophic Peatlands Cores Atmosphere doi: 10.3390/atmos9070253 Authors: Mohammed Allan Daniele L. Pinti Bassam Ghaleb Sophie Verheyden Nadine Mattielli Nathalie Fagel Two peat cores from two bogs were used to record changes in the atmospheric Pb accumulation rate (Pb AR) in Belgium during the Roman period. The two records were compared to assess the reliability of peat cores as archives of atmospheric Pb deposition and to establish histories of atmospheric emissions from anthropogenic sources. To address these issues we analyzed Pb concentration and its isotopes, using ICP-MS, LA-ICP-MS and MC-ICP-MS in two peat sections, spanning 1000 years each. Lead concentrations in the two cores range from 0.1 to 60 μg g−1, with the maxima between 15 and 60 μg g−1. The average natural background of Pb AR varies between 0.003 and 0.07 mg m−2 yr−1 and the maximum ranges from 0.7 to 1.2 mg m−2 yr−1 between 50 BC and AD 215. The highest Pb AR exceed the pre-Roman period values by a factor of 17–80. Pb isotopic composition indicates that mining and metallurgical activities were the predominant sources of pollution during the Roman period. The Pb AR and chronologies in the Belgian peat cores are consistent with those reported for other continental archives such as lake sediments, peat and ice cores.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-07-06
    Description: Atmosphere, Vol. 9, Pages 251: Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff Atmosphere doi: 10.3390/atmos9070251 Authors: Youngmin Seo Sungwon Kim Vijay P. Singh Accurate modeling for nonlinear and nonstationary rainfall-runoff processes is essential for performing hydrologic practices effectively. This paper proposes two hybrid machine learning models (MLMs) coupled with variational mode decomposition (VMD) to enhance the accuracy for daily rainfall-runoff modeling. These hybrid MLMs consist of VMD-based extreme learning machine (VMD-ELM) and VMD-based least squares support vector regression (VMD-LSSVR). The VMD is employed to decompose original input and target time series into sub-time series called intrinsic mode functions (IMFs). The ELM and LSSVR models are selected for developing daily rainfall-runoff models utilizing the IMFs as inputs. The performances of VMD-ELM and VMD-LSSVR models are evaluated utilizing efficiency and effectiveness indices. Their performances are also compared with those of VMD-based artificial neural network (VMD-ANN), discrete wavelet transform (DWT)-based MLMs (DWT-ELM, DWT-LSSVR, and DWT-ANN) and single MLMs (ELM, LSSVR, and ANN). As a result, the VMD-based MLMs provide better accuracy compared with the single MLMs and yield slightly better performance than the DWT-based MLMs. Among all models, the VMD-ELM and VMD-LSSVR models achieve the best performance in daily rainfall-runoff modeling with respect to efficiency and effectiveness. Therefore, the VMD-ELM and VMD-LSSVR models can be an alternative tool for reliable and accurate daily rainfall-runoff modeling.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-07-11
    Description: Atmosphere, Vol. 9, Pages 256: Top-of-Atmosphere Shortwave Anisotropy over Liquid Clouds: Sensitivity to Clouds’ Microphysical Structure and Cloud-Topped Moisture Atmosphere doi: 10.3390/atmos9070256 Authors: Florian Tornow René Preusker Carlos Domenech Cintia K. Carbajal Henken Sören Testorp Jürgen Fischer We investigated whether Top-of-Atmosphere Shortwave (TOA SW) anisotropy—essential to convert satellite-based instantaneous TOA SW radiance measurements into TOA SW fluxes—is sensitive to cloud-top effective radii and cloud-topped water vapor. Using several years of CERES SSF Edition 4 data—filtered for overcast, horizontally homogeneous, low-level and single-layer clouds of cloud optical thickness 10—as well as broadband radiative transfer simulations, we built refined empirical Angular Distribution Models (ADMs). The ADMs showed that anisotropy fluctuated particularly around the cloud bow and cloud glory (up to 2.9–8.0%) for various effective radii and at highest and lowest viewing zenith angles under varying amounts of cloud-topped moisture (up to 1.3–6.4%). As a result, flux estimates from refined ADMs differed from CERES estimates by up to 20 W m−2 at particular combinations of viewing and illumination geometry. Applied to CERES cross-track observation of January and July 2007—utilized to generate global radiation budget climatologies for benchmark comparisons with global climate models—we found that such differences between refined and CERES ADMs introduced large-scale biases of 1–2 W m−2 and on regional levels of up to 10 W m−2. Such biases could be attributed in part to low cloud-top effective radii (about 8 μm) and low cloud-topped water vapor (1.7 kg m−2) and in part to an inopportune correlation of viewing and illumination conditions with temporally varying effective radii and cloud-topped moisture, which failed to compensate towards vanishing flux bias. This work may help avoid sampling biases due to discrepancies between individual samples and the median cloud-top effective radii and cloud-top moisture conditions represented in current ADMs.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-07-13
    Description: Atmosphere, Vol. 9, Pages 258: Cloud Area Distributions of Shallow Cumuli: A New Method for Ground-Based Images Atmosphere doi: 10.3390/atmos9070258 Authors: Jessica M. Kleiss Erin A. Riley Charles N. Long Laura D. Riihimaki Larry K. Berg Victor R. Morris Evgueni Kassianov We develop a new approach that resolves cloud area distributions of single-layer shallow cumuli from ground-based observations. Our simple and computationally inexpensive approach uses images obtained from a Total Sky Imager (TSI) and complementary information on cloud base height provided by lidar measurements to estimate cloud equivalent diameter (CED) over a wide range of cloud sizes (about 0.01–3.5 km) with high temporal resolution (30 s). We illustrate the feasibility of our approach by comparing the estimated CEDs with those derived from collocated and coincident high-resolution (0.03 km) Landsat cloud masks with different spatial and temporal patterns of cloud cover collected over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. We demonstrate that (1) good (~7%) agreement between TSI and Landsat characteristic cloud size can be obtained for clouds that fall within the region of the sky observable by the TSI and (2) large clouds that extend beyond this region are responsible for noticeable (~16%) underestimation of the TSI characteristic cloud size. Our approach provides a previously unavailable dataset for process studies in the convective boundary layer and evaluation of shallow cumuli in cloud-resolving models.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-07-16
    Description: Atmosphere, Vol. 9, Pages 266: A Comparative Analysis of the Impacts of Two Types of El Niño on the Central and Eastern Pacific ITCZ Atmosphere doi: 10.3390/atmos9070266 Authors: Jinshuang Zhu Yudi Liu Ruiqing Xie Haijie Chang The precipitation data from the Global Precipitation Climatology Project (GPCP) and CPC Merged Analysis of Precipitation (CMAP) were used to investigate the discrepancy of Centre and Eastern Pacific ITCZ (CEP-ITCZ) during two types of El Niño years. Two models of the heat source distribution during two types of El Niño events were constructed, and the causes of different CEP-ITCZ anomalies for two types of El Niño events were analyzed through the Gill model. The results show that the CEP-ITCZ precipitation is approximately 4.0° southward, and the intensity is enhanced by 3.6 mm/day during the mature period of Eastern Pacific El Niño (EP-El Niño), while during the mature period of Central Pacific El Niño (CP-El Niño), it is only 0.8° southward, and the intensity is enhanced by 3.2 mm/day. The meridional mode of the SST anomaly by means of EOF (Empirical Orthogonal Function) can indirectly affect the CEP-ITCZ by influencing the atmospheric Rossby wave response. In CP-El Niño years, the meridional mode of the SST anomaly is weak, and the atmospheric Rossby wave response enhances the northern and southern trade-wind zones at the same time. The anomaly of cross-equatorial flow is weak and the CEP-ITCZ moves southward a little. At the same time, the wind convergence zone is enhanced, and it is more conducive to the vertical transport of water vapor. In EP-El Niño years, the meridional mode of the SST anomaly is strong, and the atmospheric Rossby wave response strengthens the meridional wind on the northern side of the equator, leading to the southward shift of the CEP-ITCZ. At the same time, the wind convergence zone is weakened and widened, and to a certain extent, it suppresses the vertical transport increase of water vapor caused by the sea surface evaporation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-07-16
    Description: Atmosphere, Vol. 9, Pages 265: Analysis of Wave Distribution Simulated by WAVEWATCH-III Model in Typhoons Passing Beibu Gulf, China Atmosphere doi: 10.3390/atmos9070265 Authors: Shao Sheng Li Shi Ji Tan Zuo The Beibu Gulf is an important offshore region in the South China Sea for the fishing industry and other human activities. In 2017, typhoons Doksuri and Khanun passed the Beibu Gulf in two paths, at maximum wind speeds of up to 50 m/s. Typhoon Doksuri passed the Beibu Gulf through the open waters of the South China Sea and Typhoon Khanun moved towards the Beibu Gulf through the narrow Qiongzhou Strait. The aim of this study is to analyze the typhoon-induced wave distribution in the Beibu Gulf. WAVEWATCH-III (WW3) is a third-generation numeric wave model developed by the National Oceanic and Atmospheric Administration (NOAA), which has been widely used for sea wave research. The latest version of the WW3 (5.16) model provides three packages of nonlinear term for four wave components (quadruplets) wave–wave interactions, including Discrete Interaction Approximation (DIA), Full Boltzmann Integral (WRT), and Generalized Multiple DIA (GMD) with two kinds of coefficients, herein called GMD1 and GMD2. These four packages have been conveniently implemented for simulating wave fields in two typhoons after taking winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) at 0.125° grids as the forcing fields. It was found that the GMD2 package was the recommended option of the nonlinear term for quadruplets wave–wave interactions due to the minimum error when comparing a number of simulated results from the WW3 model with significant wave height (SWH) from ECMWF and altimeter Jason-2. Then the wave distribution simulated by the WW3 model employing the GMD2 package was analyzed. In the case of Typhoon Doksuri, wind-sea dominated in the early and middle stages while swell dominated at the later stage. However, during Typhoon Khanun, wind-sea dominated throughout and swell distributed outside the bay around the east of Hainan Island, because the typhoon-induced swell at mesoscale was difficult to propagate into the Beibu Gulf through the narrow Qiongzhou Strait.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-07-16
    Description: Atmosphere, Vol. 9, Pages 264: Irradiance Variability Quantification and Small-Scale Averaging in Space and Time: A Short Review Atmosphere doi: 10.3390/atmos9070264 Authors: Gerald M. Lohmann The ongoing world-wide increase of installed photovoltaic (PV) power attracts notice to weather-induced PV power output variability. Understanding the underlying spatiotemporal volatility of solar radiation is essential to the successful outlining and stable operation of future power grids. This paper concisely reviews recent advances in the characterization of irradiance variability, with an emphasis on small spatial and temporal scales (respectively less than about 10 km and 1 min), for which comprehensive data sets have recently become available. Special attention is given to studies dealing with the quantification of variability using such unique data, the analysis and modeling of spatial smoothing, and the evaluation of temporal averaging.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-07-18
    Description: Atmosphere, Vol. 9, Pages 274: Composition, Sources, and Distribution of PM2.5 Saccharides in a Coastal Urban Site of China Atmosphere doi: 10.3390/atmos9070274 Authors: Mengxin Xiao Qiongzhen Wang Xiaofei Qin Guangyuan Yu Congrui Deng The characteristics of biogenic aerosols in an urban area were explored by determining the composition and temporal distribution of saccharides in PM2.5 in Shanghai. The total saccharides showed a wide range of 9.4 ng/m3 to 1652.9 ng/m3, with the averaged concentrations of 133.1 ng/m3, 267.5 ng/m3, 265.1 ng/m3, and 674.4 ng/m3 in spring, summer, autumn, and winter, respectively. The saccharides include anhydrosaccharides (levoglucosan and mannosan), which were higher in cold seasons due to the increased biomass burning; saccharide alcohols (mannitol, arabitol, sorbitol); and monosaccharides (fructose, glucose), which were more abundant in warm seasons and attributed to the biological emissions. Through positive matrix factorization (PMF) analysis, four emission sources of saccharides were resolved, including biomass burning, fungal spores, plant decomposition, and pollen. Moreover, the process analysis of high concentrations of leveglucosan was conducted by backward trajectory and fire points. We found that concentrations of anhydrosaccharides were relatively stable under different pollution levels, while saccharide alcohols exhibited an obvious decrease with the concentration of PM2.5, indicating that biomass burning was not the core reason for heavy haze pollution. However, high level PM2.5 pollution might inhibit the effects of biological activities.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-07-18
    Description: Atmosphere, Vol. 9, Pages 272: Performance Analysis of Planetary Boundary Layer Parameterization Schemes in WRF Modeling Set Up over Southern Italy Atmosphere doi: 10.3390/atmos9070272 Authors: Bhishma Tyagi Vincenzo Magliulo Sandro Finardi Daniele Gasbarra Pantaleone Carlucci Piero Toscano Alessandro Zaldei Angelo Riccio Giuseppe Calori Alessio D’Allura Beniamino Gioli Predictions of boundary layer meteorological parameters with accuracy are essential for achieving good weather and air quality regional forecast. In the present work, we have analyzed seven planetary boundary layer (PBL) parameterization schemes in a Weather Research and Forecasting (WRF) model over the Naples-Caserta region of Southern Italy. WRF model simulations were performed with 1-km horizontal resolution, and the results were compared against data collected by the small aircraft Sky Arrow Environmental Research Aircraft (ERA) during 7–9 October 2014. The selected PBL schemes include three first-order closure PBL schemes (ACM2, MRF, YSU) and four turbulent kinetic energy (TKE) closure schemes (MYJ, UW, MYNN2, and BouLac). A performance analysis of these PBL schemes has been investigated by validating them with aircraft measurements of meteorological parameters profiles (air temperature, specific humidity, wind speed, wind direction) and PBL height to assess their efficiency in terms of the reproduction of observed weather conditions. Results suggested that the TKE closure schemes perform better than first-order closure schemes, and the MYNN2 closure scheme is close to observed values most of the time. It is observed that the inland locations are better simulated than sea locations, and the morning periods are better simulated than those in the afternoon. The results are emphasizing that meteorology-induced variability is larger than the variability in PBL schemes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-07-20
    Description: Atmosphere, Vol. 9, Pages 281: The Impacts of Taklimakan Dust Events on Chinese Urban Air Quality in 2015 Atmosphere doi: 10.3390/atmos9070281 Authors: Xiaoyu Li Xiaodong Liu Zhi-Yong Yin Aerosols are an important factor affecting air quality. As the largest source of dust aerosol of East Asia, the Taklimakan Desert in Northwest China witnesses frequent dust storm events, which bring about significant impacts on the downstream air quality. However, the scope and timing of the impacts of Taklimakan dust events on Chinese urban air quality have not yet been fully investigated. In this paper, based on multi-source dust data including ground observations, satellite monitoring, and reanalysis products, as well as air quality index (AQI) and the mass concentrations of PM10 and PM2.5 at 367 urban stations in China for 2015, we examined the temporal and spatial characteristics of the impacts of the Taklimakan dust events on downstream urban air quality in China. The results show that the Taklimakan dust events severely affected the air quality of most cities in Northwest China including eastern Xinjiang, Hexi Corridor and Guanzhong Basin, and even northern Southwest China, leading to significant increases in mass concentrations of PM10 and PM2.5 in these cities correlating with the occurrence of dust events. The mass concentrations of PM10 on dust days increased by 11–173% compared with the non-dust days, while the mass concentration of PM2.5 increased by 21–172%. The increments of the mass concentrations of PM10 and PM2.5 on dust days decreased as the distances increased between the cities and the Taklimakan Desert. The influence of the Taklimakan dust events on the air quality in the downstream cities usually persisted for up to four days. The mass concentrations of PM10 and PM2.5 increased successively and the impact duration shortened gradually with increasing distances to the source area as a strong dust storm progressed toward the southeast from the Taklimakan Desert. The peaks of the PM10 concentrations in the downstream cities of eastern Xinjiang, the Hexi Corridor and the Guanzhong Basin occurred on the second, third and fourth days, respectively, after the initiation of the Taklimakan dust storm.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-07-19
    Description: Atmosphere, Vol. 9, Pages 275: Origin of Warm SST Bias over the Atlantic Cold Tongue in the Coupled Climate Model FGOALS-g2 Atmosphere doi: 10.3390/atmos9070275 Authors: Yanyan Shi Wenyu Huang Bin Wang Zifan Yang Xinsheng He Tianpei Qiu Most of the coupled models contain a strong warm bias in sea surface temperature (SST) over the Atlantic Cold Tongue (ACT) region (10° S–3° N, 20° W–10° E) during June–August (JJA) and September–November (SON). In this study, the origins of the ACT SST bias and their relative contributions to the bias are explored by conducting a set of sensitivity experiments, which are based on an ocean-ice model, and by ignoring the nonlinear effects of each origin. The origins for the warm bias over the ACT in the coupled climate model during JJA are estimated as follows: westerly wind bias along the equator (5° S–5° N) during March–May (MAM; contributes approximately 32.6% of the warm bias), northerly bias over the southern tropical Atlantic (25° S–3° N, 40° W–20° E) during MAM and JJA (21.4%), bias in the surface specific humidity and surface air temperature (11.9%), and downward shortwave radiation bias (6.5%). The origins of the ACT bias during SON are as follows: northerly bias over the southern tropical Atlantic during SON (31.2%), bias in the surface specific humidity and surface air temperature (27.9%), downward shortwave radiation bias (17.4%), and zonal wind bias (13.4%). Note that these contribution ratios of these origins may be model-dependent. In addition, the local and non-local effects of the zonal wind bias are explored explicitly, while those of all the other biases are examined implicitly. Therefore, a better-performing atmospheric component is crucial when simulating zonal winds during MAM along the equator (5° S–5° N) and meridional winds during MAM, JJA, and SON over the southern tropical Atlantic, which will alleviate the warm bias over the ACT region in the coupled climate model.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-07-19
    Description: Atmosphere, Vol. 9, Pages 276: Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain Atmosphere doi: 10.3390/atmos9070276 Authors: Manuela Lehner Mathias W. Rotach Coupling of the earth’s surface with the atmosphere is achieved through an exchange of momentum, energy, and mass in the atmospheric boundary layer. In mountainous terrain, this exchange results from a combination of multiple transport processes, which act and interact on different spatial and temporal scales, including, for example, orographic gravity waves, thermally driven circulations, moist convection, and turbulent motions. Incorporating these exchange processes and previous studies, a new definition of the atmospheric boundary layer in mountainous terrain, a mountain boundary layer (MBL), is defined. This paper summarizes some of the major current challenges in measuring, understanding, and eventually parameterizing the relevant transport processes and the overall exchange between the MBL and the free atmosphere. Further details on many aspects of the exchange in the MBL are discussed in several other papers in this issue.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-07-23
    Description: Atmosphere, Vol. 9, Pages 286: Modelling Productivity Loss from Heat Stress Atmosphere doi: 10.3390/atmos9070286 Authors: Keith Dear Workers exposed to high ambient temperatures, either indoors or out, work slower. The few studies that have measured this loss of productivity show a degree of consistency across widely varying settings. I develop a class of 5-parameter probability models that express productivity as a function of environmental heat and show how the method of fitting can be adapted according to the completeness of the data available. As well as modelling the mean output, it is important to also consider variation between workers, and the model presented here achieves this. The method is illustrated using three previously published datasets from different industries and work environments.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-05-29
    Description: Atmosphere, Vol. 9, Pages 208: Cold Waves in Poznań (Poland) and Thermal Conditions in the City during Selected Cold Waves Atmosphere doi: 10.3390/atmos9060208 Authors: Arkadiusz M. Tomczyk Marek Półrolniczak Leszek Kolendowicz The objective of the paper was to characterize the occurrence of cold days and cold waves in Poznań in the years 1966/67–2015/16, as well as to characterize thermal conditions in the city during selected cold waves in the years 2008/09–2015/16. The study was based on daily data on maximum and minimum air temperature for station Poznań-Ławica from the years 1966/67–2015/16 and daily air temperature values from eight measurement points located in the territory of the city in different types of land use from the years 2008/08–2015/16. In addition, to characterize thermal conditions during selected days forming cold waves, satellite images were used, on the basis of which the land surface temperature (LST) was calculated. A cold day was defined as a day with daily maximum temperature (Tmax) below the value of 5th annual percentile of Tmax, and a cold wave was defined as at least five consecutive cold days. The study showed an increase in Tmax in winter, which translated to a decrease in the number of cold days over the last 50 years, although the changes were not statistically significant. Thermal conditions in the city showed high variability in the winter season and during the analyzed cold waves.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-12
    Description: Atmosphere, Vol. 9, Pages 225: The Similarity of the Action of Franklin and ESE Lightning Rods under Natural Conditions Atmosphere doi: 10.3390/atmos9060225 Authors: Vernon Cooray In the lightning rods categorized as Early Streamer Emission (ESE) types, an intermittent voltage impulse is applied to the lightning rod to modulate the electric field at its tip in an attempt to speed up the initiation of a connecting leader from the lightning rod when it is under the influence of a stepped leader moving down from the cloud. In this paper, it is shown that, due to the stepping nature of the stepped leader, there is a natural modulation of the electric field at the tip of any lightning rod exposed to the lightning stepped leaders and this modulation is much more intense than any artificial modulation that is possible under practical conditions. Based on the results, it is concluded that artificial modulation of the electric field at the tip of lightning rods by applying voltage pulses is an unnecessary endeavor because the nature itself has endowed the tip of the lightning rod with a modulating electric field. Therefore, as far as the effectiveness of artificial modulation of the tip electric field is concerned, there could be no difference in the lightning attachment efficiency between ESE and Franklin lightning rods.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-12
    Description: Atmosphere, Vol. 9, Pages 223: Estimation of the Impact of Ozone on Four Economically Important Crops in the City Belt of Central Mexico Atmosphere doi: 10.3390/atmos9060223 Authors: Luis Gerardo Ruiz-Suárez Bertha Eugenia Mar-Morales José Agustín García-Reynoso Gema Luz Andraca-Ayala Ricardo Torres-Jardón José Santos García-Yee Hugo Alberto Barrera-Huertas Arturo Gavilán-García Roberto Basaldud Cruz In this work, we report the economic impact of exposure to high ozone concentrations on four important crops in the area of influence of the Mexico City Megalopolis. Estimated yield losses were as follows: maize: 3%; oats: 26%; beans: 14%; sorghum: 15%. The information needed to estimate the impact of air pollution in Mexico is decidedly deficient. Regarding ozone, the coverage provided by the monitoring networks is strongly focused on urban monitoring and its consistency over time is highly irregular. Apart from the Mexico City Metropolitan Area (MCMA) and less than a handful of other cities, the quality of the data is poor. Ozone in rural areas can be estimated with air quality models. However, these models depend on a high-resolution emissions inventory, which has only been done through validation processes in the MCMA. With these limitations, we set out to estimate the economic impact of exposure to ozone in these crops with a varying degree of sensitivity to ozone in the city belt of Central Mexico. To this end, we developed a procedure that makes optimal use of the sparse information available for construction of AOT40 (accumulated exposure over the threshold of 40 ppb) exceedance maps for the 2011 growing season. We believe that, due to the way in which we dealt with the sparse information and the uncertainty regarding the available data, our findings lie on the safe side of having little knowledge such that they may be useful to decision-makers. We believe that this procedure can be extended to the rest of the country, and that it may be useful to developing countries with similar monitoring and modeling capacities. In addition, these impacts are not evenly distributed in the region and sometimes they were greater in municipalities that have a higher index of poverty. Air pollution arriving from urban areas increases the social inequalities to which these already vulnerable populations are exposed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-15
    Description: Atmosphere, Vol. 9, Pages 230: Thermochemical Properties of PM2.5 as Indicator of Combustion Phase of Fires Atmosphere doi: 10.3390/atmos9060230 Authors: Yuch-Ping Hsieh Glynnis Bugna Kevin Robertson Past studies suggest that certain properties of fire emitted particulate matter (PM) relate to the combustion phase (flaming, smoldering) of biomass burning, but to date there has been little consideration of such properties for use as combustion phase indicators. We studied the thermochemical properties of PM2.5 emitted from experimental and prescribed fires using multi-element scanning thermal analysis (MESTA). Resulting thermograms show that the carbon from PM2.5 generally can be grouped into three temperature categories: low (peak ~180 °C), medium (peak between 180–420 °C), and high (peak > 420 °C) temperature carbons. PM2.5 from smoldering phase combustion is composed of much more low-temperature carbon (fraction of total carbon = 0.342 ± 0.067, n = 9) than PM2.5 from the flaming phase (fraction of total carbon = 0.065 ± 0.018, n = 9). The fraction of low-temperature carbon of the PM2.5 correlates well with modified combustion efficiency (MCE; r2 = 0.76). Therefore, this MESTA thermogram method can potentially be used as a combustion phase indicator solely based on the property of PM2.5. Since the MESTA thermogram of PM2.5 can be determined independently of MCE, we have a second parameter to describe the combustion condition of a fire, which may refine our understanding of fire behavior and improve the accuracy of emission factor determinations. This PM2.5 indicator should be useful for discerning differential diffusion between PM2.5 and gases and providing insight into the impact of PM emission on atmospheric environment and the public health.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-16
    Description: Atmosphere, Vol. 9, Pages 234: A Velocity Dealiasing Algorithm on Frequency Diversity Pulse-Pair for Future Geostationary Spaceborne Doppler Weather Radar Atmosphere doi: 10.3390/atmos9060234 Authors: Xuehua Li Chuanzhi Wang Zhengxia Qin Jianxin He Fang Liu Qing Sun Velocity ambiguity is one of the main challenges in accurately measuring velocity for the future Geostationary Spaceborne Doppler Weather Radar (GSDWR) due to its short wavelength. The aim of this work was to provide a novel velocity dealiasing method for frequency diversity for the future implementation of GSDWR. Two different carrier frequencies were transmitted on the adjacent pulse-pair and the order of the pulse-pair was exchanged during the transmission of the next pulse-pair. The Doppler phase shift between these two adjacent pulses was estimated based on the technique of the frequency diversity pulse-pair (FDPP), and Doppler velocity was estimated on the sum of the Doppler phase within the adjacent pulse repetition time (PRT). From the theoretical result, the maximum unambiguous velocity estimated by FDPP is only decided by the interval time of the two adjacent pulses and radar wavelength. An echo signal model on frequency diversity was established to simulate echo signals of the GSDWR to verify the extension of the maximum unambiguous velocity and the accuracy of the velocity estimation for FDPP used on GSDWR. The study demonstrates that the FDPP algorithm can extend the maximum unambiguous velocity greater than the Stagger PRT method and the unambiguous range and velocity are no longer limited by the chosen value of pulse repetition frequency (PRF). In the Ka band, the maximum unambiguous velocity can be extended to 105 m/s when the interval time is 10 μs and most velocity estimation biases are less than 0.5 m/s.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-16
    Description: Atmosphere, Vol. 9, Pages 231: Climate Change and Human Health—The Links to the UN Landmark Agreement on Disaster Risk Reduction Atmosphere doi: 10.3390/atmos9060231 Authors: Virginia Murray Thomas David Waite n/a
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-16
    Description: Atmosphere, Vol. 9, Pages 232: PM1 Chemical Characterization during the ACU15 Campaign, South of Mexico City Atmosphere doi: 10.3390/atmos9060232 Authors: Dara Salcedo Harry Alvarez-Ospina Oscar Peralta Telma Castro The “Aerosoles en Ciudad Universitaria 2015” (ACU15) campaign was an intensive experiment measuring chemical and optical properties of aerosols in the winter of 2015, from 19 January to 19 March on a site in the south of Mexico City. The mass concentration and chemical composition of the non-refractory submicron particulate matter (NR-PM1) was determined using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). The total NR-PM1 mass concentration measured was lower than reported in previous campaigns that took place north and east of the city. This difference might be explained by the natural variability of the atmospheric conditions, as well as the different sources impacting each site. However, the composition of the aerosol indicates that the aerosol is more aged (a larger fraction of the mass corresponds to sulfate and to low-volatility organic aerosol (LV-OOA)) in the south than the north and east areas; this is consistent with the location of the sources of PM and their precursors in the city, as well as the meteorological patterns usually observed in the metropolitan area.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-17
    Description: Atmosphere, Vol. 9, Pages 235: East Asian Summer Monsoon Representation in Re-Analysis Datasets Atmosphere doi: 10.3390/atmos9060235 Authors: Bo Huang Ulrich Cubasch Yan Li Eight current re-analyses—NCEP/NCAR Re-analysis (NCEPI), NCEP/DOE Re-analysis (NCEPII), NCEP Climate Forecast System Re-analysis (CFSR), ECMWF Interim Re-analysis (ERA-Interim), Japanese 55-year Re-analysis (JRA-55), NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA), NOAA Twentieth Century Re-analysis (20CR), and ECMWF’s first atmospheric re-analysis of the 20th century (ERA-20C)—are assessed to clarify their quality in capturing the East Asian summer monsoon (EASM) rainfall structure and its associated general circulation. They are found to present similar rainfall structures in East Asia, whereas they illustrate some differences in rainfall intensity, especially at lower latitudes. The third generation of re-analysis shows a better estimate of rainfall structure than that in the first and extended generation of re-analysis. Given the fact that the rainfall is ingested by the data assimilation system, the re-analysis cannot improve its production of rainfall quality. The mean sea level pressure is generated by re-analysis, showing a significant uncertainty over the Tibetan Plateau and its surrounding area. In that region, the JRA-55 and MERRA have a negative bias (BIAS), while the other six re-analyses present a positive BIAS to the observed mean sea level pressure. The 20CR and the ERA-20C are ancillary datasets to analyse the EASM due to the fact that they only apply limit observations into the data assimilation system. These two re-analyses demonstrate a prominent difference from the observed winds in the upper-air. Although the upper level winds exhibit difference, the EASM index is consistent in the eight re-analyses, which are based upon the zonal wind over 850 hPa.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-25
    Description: Atmosphere, Vol. 9, Pages 240: From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete Atmosphere doi: 10.3390/atmos9070240 Authors: Stavros Solomos Nikos Kalivitis Nikos Mihalopoulos Vassilis Amiridis Giorgos Kouvarakis Antonis Gkikas Ioannis Binietoglou Alexandra Tsekeri Stelios Kazadzis Michael Kottas Yaswant Pradhan Emmanouil Proestakis Panagiotis T. Nastos Franco Marenco A record-breaking dust episode took place in Crete on 22 March 2018. The event was characterized by surface concentrations exceeding 1 mg m−3 for a period of 4–7 h, reaching record values higher than 6 mg m−3 at the background station of Finokalia. We present here a detailed analysis of the atmospheric dynamical processes during this period, to identify the main reasons for such extreme dust advection over Crete. At the synoptic scale, the weakening of the polar vortex and the meridional transport of polar air masses at upper tropospheric layers resulted in a strong jet streak over north Africa and Central Mediterranean and corresponding tropospheric folding that brought cold stratospheric air in mid and upper troposphere. Cyclogenesis occurred at the Gulf of Sirte in Libya, resulting in strong winds over the north-east parts of Libya, enhancing particle emissions. The dust plume traveled at low altitude (0.5–3 km) along the warm conveyor belt preceding the depression cold front. This type of dusty southerly wind is commonly known as “Khamsin”. As the flow approached Crete, Foehn winds at the lee side of the island favored the downward mixing of dust towards the surface, resulting in local maxima of PM10 in Heraklion and Finokalia. The analysis is based on the combination of high-resolution WRF-Chem simulations reaching up to 1 × 1 km grid space over Crete, ground-based and satellite remote sensing of the dust plumes (PollyXT LiDAR, MSG-SEVIRI, MODIS) and detailed surface aerosol in situ measurements at urban (Heraklion, Chania, Greece) and background (Finokalia) stations in Crete.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-26
    Description: Atmosphere, Vol. 9, Pages 242: Reply to “Comments on `Spatial and Temporal Trends in the Location of the Lifetime Maximum Intensity of Tropical Cyclones’” Atmosphere doi: 10.3390/atmos9070242 Authors: Kelsey N. Ellis Sarah A. Tennille n/a
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-27
    Description: Atmosphere, Vol. 9, Pages 243: Atmospheric Pollution by PM10 and O3 in the Guadalajara Metropolitan Area, Mexico Atmosphere doi: 10.3390/atmos9070243 Authors: Mariam Fonseca-Hernández Iryna Tereshchenko Yandy G. Mayor Arturo Figueroa-Montaño Osvaldo Cuesta-Santos Cesar Monzón To study the air quality in the Guadalajara Metropolitan Area (GMA), concentrations of suspended particles (PM10) and ozone (O3) reported by eight monitoring stations were analyzed. Also, six commonly found types of synoptic situations (TSS) during 1996–2016 were identified using an atmospheric pattern correlation method on the mean sea level pressure and geopotential heights (850 hPa, 500 hPa, and 200 hPa) of fields given by the North American Regional Reanalysis (NARR) database. Overall, 75% of the period of study was classified as one of the six TSS. Afterward, statistical significance tests (confidence level 95%) were applied to determine whether the TSS affected PM10 and O3 concentrations locally in the GMA. PM10 maximum hourly concentrations (~76.7 μg/m3) occurred around 8 am local time, while that of ozone (~0.054 ppm) occurred between 1–4 pm local time. Meanwhile, PM10 monthly levels were higher between December and May, and the highest O3 concentrations occurred between April and June. Average annual levels of PM10 have decreased through the years, while the annual trend of mean O3 concentrations seemed to respond to the 11-year solar cycle. It was also found that during “convective-allowing situations” (TSS VI) and “thermal low over California” (TSS I), PM10 concentrations remained low in the GMA, and O3 concentrations rose under the influence of a “low-pressure system over the United States (USA)” (TSS II). Further research is suggested to address the effect of the local circulation in the GMA linked to the TSS on O3 and PM10 concentrations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-08-04
    Description: Atmosphere, Vol. 9, Pages 305: Phytoplankton and Bacterial Response to Desert Dust Deposition in the Coastal Waters of the Southeastern Mediterranean Sea: A Four-Year In Situ Survey Atmosphere doi: 10.3390/atmos9080305 Authors: Eyal Rahav Natalia Belkin Adina Paytan Barak Herut Atmospheric dust/aerosol deposition is an important source of external nutrients for the surface of the ocean. This study shows high-resolution observational data gathered in situ over a period of four years on bacterial and phytoplankton abundance and activity during typical background atmospheric conditions and during intense dust storm events in the low-nutrient, low-chlorophyll (LNLC) coastal waters of the southeastern Mediterranean Sea (SEMS). Chlorophyll a (an estimate for phytoplankton biomass) and bacterial abundance show moderate changes in response to dust deposition/events (−10% and +20%, respectively), while primary production, bacterial production, and N2 fixation rates were all significantly and positively affected by deposition (+25 to +40%; p < 0.05). The rapid changes in bacterial and/or phytoplankton rate parameters suggest that the released micro-/macronutrients from atmospheric deposition are tunneled directly in metabolic processes and, to a lesser extent, for biomass accumulation. The predicted expansion of LNLC areas in oceans in the future, and the projected increase in dust emission due to desertification, may affect the production of marine microbial communities in the surface of the ocean, yet only moderately affect their biomass or standing stock. Such alterations may impact carbon sequestration to the deep ocean.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-08-08
    Description: Atmosphere, Vol. 9, Pages 307: Abundance of Biological Ice Nucleating Particles in the Mississippi and Its Major Tributaries Atmosphere doi: 10.3390/atmos9080307 Authors: Bruce F. Moffett Tom C. J. Hill Paul J. DeMott Ice nucleating particles (INPs) are rare among atmospheric aerosols. However, through their ability to induce freezing of cloud droplets in cold clouds, they affect cloud lifetime, cloud albedo, and the efficiency and distribution of precipitation. While terrestrial sources of INPs are the focus of much research, the potential of rivers and lakes to be significant INP reservoirs has been neglected. In the first survey of a major river system, surface waters from the Mississippi, Missouri, Platte, and Sweetwater Rivers, all draining east and south from the Great Divide in the United States of America (USA), were tested for their INP concentrations. The survey comprised 49 samples, taken approximately every 150–250 km along 90% of the Mississippi (from Natchez, MS to the source at Bemidji, MN), the full length of the Missouri, 90% of the North Platte, and all of the Sweetwater. Samples were analysed using the immersion freezing method. The highest freezing temperature varied between −4 and −6 °C, and the concentration of INPs active at −10 °C or warmer ranged from 87 to 47,000 mL−1. The average INP concentration at −10 °C was 4950 mL−1, almost four orders of magnitude greater than the numbers of INPs typically found active at this temperature in seawater. The majority of INPs (69 to >99%) were heat labile (deactivated by heating to 95 °C) and therefore likely to be biological. Although the surface area of rivers is limited, their significant concentrations of INPs suggest that freshwater emissions should be investigated for their potential impact on regional cloud processes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-04-17
    Description: Atmosphere, Vol. 9, Pages 147: Announcing the Atmosphere 2018 Travel Award for Young Investigators Atmosphere doi: 10.3390/atmos9040147 Authors: Atmosphere Editorial Office Atmosphere Editorial Office n/a
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-04-17
    Description: Atmosphere, Vol. 9, Pages 148: Correction: Koutsouris et al. Utilization of Global Precipitation Datasets in Data Limited Regions: A Case Study of Kilombero Valley, Tanzania. Atmosphere, 2017, 8, 246 Atmosphere doi: 10.3390/atmos9040148 Authors: Alexander Koutsouris Jan Seibert Steve Lyon The authors would like to correct the published article [1], following the detection of editorial mistakes by the main author, as explained below[...]
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...