ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-14
    Description: Acoustic localization is an essential technique in speech capturing, speech enhancement, video conferencing, and human–robot interaction. However, in practical situations, localization has to be performed in abominable environments, where the presence of reverberation and noise degrades the performance of available position estimates. Besides, the designed systems should be adaptive to locomotion of targets with low computational complexity. In the context, this paper introduces a robust hierarchical acoustic localization method via time-delay compensation (TDC) and interaural matching filter (IMF). Firstly, interaural time-delay (ITD) and interaural level difference (ILD), which are cues involved in first two layers, respectively, are yielded by TDC all at once. Then, a novel feature named IMF, which can eliminate the difference between binaural signals, is proposed in the third layer. The final decision making is based on a Bayesian rule. The relationships among the three layers are that the former layer provides candidate directions for later ones such that the searching space becomes gradually smaller to reduce matching time. Experiments using both a public database and a real scenario verify that TDC and IMF are robust for acoustic localization, and hierarchical system has less consumption time.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-14
    Description: Canonical correlation analysis (CCA) is a widely used data analysis tool that allows to assess the correlation between two distinct sets of signals. It computes optimal linear combinations of the signals in both sets such that the resulting signals are maximally correlated. The weight vectors defining these optimal linear combinations are referred to as “principal CCA directions”. In addition to this particular type of data analysis, CCA is also often used as a blind source separation (BSS) technique, i.e., under certain assumptions, the principal CCA directions have certain demixing properties. In this paper, we propose a distributed CCA (DCCA) algorithm that can operate in wireless sensor networks (WSNs) with a fully connected or a tree topology. The algorithm estimates the $Q$ principal CCA directions from the sensor signal observations collected by the different nodes in the WSN and extracts the corresponding sources. These network-wide principal CCA directions are estimated in a time-recursive fashion without explicitly constructing the corresponding network-wide correlation matrices, i.e., without the need for data centralization. Instead, each node locally computes smaller CCA problems and only transmits compressed sensor signal observations (of dimension $Q$ ), which significantly reduces the bit rate over the wireless links of the WSN. We prove convergence and optimality of the DCCA algorithm, and we demonstrate its performance by means of numerical simulations in a blind source separation scenario.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-07
    Description: There has been much research on shrinkage methods for real-valued covariance matrices and their inverses (precision matrices). In spectral analysis of $p$ -vector-valued time series, complex-valued spectral matrices and precision matrices arise, and good shrinkage methods are often required, most notably when the estimated complex-valued spectral matrix is singular. As an improvement on the Ledoit-Wolf (LW) type of spectral matrix estimator we use random matrix theory to derive a Rao-Blackwell estimator for a spectral matrix, its inverse being a Rao–Blackwellized estimator for the spectral precision matrix. A random matrix method has previously been proposed for complex-valued precision matrices. It was implemented by very costly simulations. We formulate a fast, completely analytic approach. Moreover, we derive a way of selecting an important parameter using predictive risk methodology. We show that both the Rao–Blackwell estimator and the random matrix estimator of the precision matrix can substantially outperform the inverse of the LW estimator in a time series setting. Our new methodology is applied to EEG-derived time series data where it is seen to work well and deliver substantial improvements for precision matrix estimation.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-07
    Description: In this paper, the state estimation problem for discrete-time linear systems influenced by multiplicative and time-correlated additive measurement noises is considered where the multiplicative noises are zero-mean white noise sequences, and the time-correlated additive noise is described by a linear system model with white noise. An optimal linear estimator for the system under consideration is proposed, which does not require computing the inverse of state transition matrix. The proposed estimator has a recursive structure, and has time-independent computation and storage load. Computer simulations are carried out to demonstrate the performance of the proposed estimator. The simulation results show the superiority of the proposed estimator.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-07
    Description: In this paper, we start with the standard support vector machine (SVM) formulation and extend it by considering a general SVM formulation with normalized margin. This results in a unified convex framework that allows many different variations in the formulation with very diverse numerical performance. The proposed unified framework can capture the existing methods, i.e., standard soft-margin SVM, $ell_{1}$ -SVM, and SVMs with standardization, feature selection, scaling, and many more SVMs, as special cases. Furthermore, our proposed framework can not only provide us with more insights on different SVMs from the “energy” and “penalty” point of views, which help us understand the connections and differences between them in a unified way, but also enable us to propose more SVMs that outperform the existing ones under some scenarios.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: We consider multiple-antenna signal detection of primary user transmission signals by a secondary user receiver in cognitive radio networks. The optimal detector is analyzed for the scenario where the number of primary user signals is no less than the number of receive antennas at the secondary user. We first derive exact expressions for the moments of the generalized likelihood ratio test (GLRT) statistic, yielding approximations for the false alarm and detection probabilities. We then show that the normalized GLRT statistic converges in distribution to a Gaussian random variable when the number of antennas and observations grow large at the same rate. Further, using results from large random matrix theory, we derive expressions to compute the detection probability without explicit knowledge of the channel, and then particularize these expressions for two scenarios of practical interest: 1) a single primary user sending spatially multiplexed signals, and 2) multiple spatially distributed primary users. Our analytical results are finally used to obtain simple design rules for the signal detection threshold.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: This paper presents an optimized low-complexity and high-throughput MIMO signal detector core for detecting spatially multiplexed data streams. The core architecture supports various layer configurations up to 4, while achieving near-optimal performance, and configurable modulation constellations up to 256-QAM on each layer. The core is capable of operating as a soft-input soft-output log-likelihood ratio (LLR) MIMO detector which can be used in the context of iterative detection and decoding. High area-efficiency is achieved via algorithmic and architectural optimizations performed at two levels. First, distance computations and slicing operations for an optimal 2-layer maximum a posteriori MIMO detector are optimized to eliminate use of multipliers and reduce the overhead of slicing in the presence of soft-input LLRs. We show that distances can be easily computed using elementary addition operations, while optimal slicing is done via efficient comparisons with soft decision boundaries, resulting in a simple feed-forward pipelined architecture. Second, to support more layers, an efficient channel decomposition scheme is presented that reduces the detection of multiple layers into multiple 2-layer detection subproblems, which map onto the 2-layer core with a slight modification using a distance accumulation stage and a post-LLR processing stage. Various architectures are accordingly developed to achieve a desired detection throughput and run-time reconfigurability by time-multiplexing of one or more component cores. The proposed core is applied also to design an optimal multiuser MIMO detector for LTE. The core occupies an area of 1.58 MGE and achieves a throughput of 733 Mbps for 256-QAM when synthesized in 90-nm CMOS.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-25
    Description: We study a tandem of agents who make decisions about an underlying binary hypothesis, where the distribution of the agent observations under each hypothesis comes from an uncertainty class defined by a 2-alternating capacity. We investigate both decentralized detection rules, where agents collaborate to minimize the error probability of the final agent, and social learning rules, where each agent minimizes its own local minimax error probability. We then extend our results to the infinite tandem network, and derive necessary and sufficient conditions on the uncertainty classes for the minimax error probability to converge to zero when agents know their positions in the tandem. On the other hand, when agents do not know their positions in the network, we study the cases where agents collaborate to minimize the asymptotic minimax error probability, and where agents seek to minimize their worst-case minimax error probability (over all possible positions in the tandem). We show that asymptotic learning of the true hypothesis is no longer possible in these cases, and derive characterizations for the minimax error performance.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-25
    Description: Various blind synchronization methods built on the maximum likelihood (ML) principle have been proposed, where the addressed scenarios include additive white Gaussian noise (AWGN), single-path fading, and multipath fading channels. We consider ML blind synchronization over wide-sense stationary uncorrelated scattering (WSSUS) channels. Different from existing studies, we exploit a more complete signal correlation function and find the carrier frequency offset estimate to be the solution of a quartic equation, rather than the phase angle of a complex number. As the truly ML synchronizer (dubbed MLE) is very complicated, we also derive a reduced-complexity alternative (dubbed RCE). It is found that the RCE yields indistinguishable performance from the MLE, at a somewhat lower complexity than an existing rival. We also present an in-depth theoretical analysis and comparison of the performance of various methods. Simulations show that the proposed methods yield rather robust performance in modeling errors of the fading rate and the channel power-delay profile (PDP).
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-14
    Description: In this paper, the performance of cloud radio access networks (CRANs) where spatially distributed remote radio heads (RRHs) aid the macro base station (MBS) in transmission is analysed. In order to reflect a realistic scenario, the MBS and the RRHs are assumed to be equipped with multiple antennas and distributed according to a Poisson point process. Both, the MBS and the RRHs, are assumed to employ maximal ratio transmission (MRT) or transmit antenna selection (TAS). Considering downlink transmission, the outage performance of three schemes is studied; first is the selection transmission (ST) scheme, in which the MBS or the RRH with the best channel is selected for transmission. In the second scheme, all the RRHs participate (ARP) and transmit the signal to the user, whereas in the third scheme, a minimal number of RRHs, to attain a desired data-rate, participate in transmission (MRP). Exact closed-form expression for the outage probability is derived for the ST scheme. For the ARP and MRP schemes, analytical approximations of the outage probability are derived which are tight at high signal-to-noise ratios. In addition, for the MRP scheme, the minimal number of RRHs required to meet a target data rate is also calculated which can be useful in characterizing the system complexity. Furthermore, the derived expressions are validated through numerical simulation. It is shown that the average diversity gains of these schemes are independent of the intensity/number of RRHs and only depend on the number of antennas on the MBS. Furthermore, the ARP scheme outperforms the ST scheme when the MBS/RRHs transmit with maximum power. However, in case of a sum power constraint and equal power allocation, the ST scheme outperforms the ARP scheme.
    Print ISSN: 1053-587X
    Electronic ISSN: 1941-0476
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...