ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-26
    Description: Generally running with frequent braking over short distances, the urban rail transit train generates great quantities of regenerative braking energy (RBE). The RBE feedback system can effectively recycle RBE and give it back to the AC grid. However, the lack of damp and inertia of generators makes conventional PWM RBE feedback system more sensitive to power fluctuations. To address this issue, a synchronverter-based RBE feedback system of urban rail transit is designed in this paper. First, the structure of the feedback system is presented. Then, the synchronverter-based control strategy with greater flexibility and higher stability is fully discussed. Furthermore, the parameter design of the system is analyzed in detail. Finally, simulation results and experimental results are provided to show the good dynamic performance of the system. Using this synchronverter-based approach, the system supplies traction power to the traction network when the train accelerates and gives the RBE back to the AC grid when the train brakes, in light of the variation of the DC bus voltage. Moreover, the system can be self-synchronized with the AC grid and make corresponding power management on the basis of changes in the voltage amplitude as well as the frequency of the grid. In this sense, the RBE feedback system becomes more flexible, effective and robust.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-27
    Description: Increasing wind power generation has been introduced into power systems to meet the renewable energy targets in power generation. The output efficiency and output power stability are of great importance for wind turbines to be integrated into power systems. The wake effect influences the power generation efficiency and stability of wind turbines. However, few studies consider comprehensive corrections in an aerodynamic model and a turbulence model, which challenges the calculation accuracy of the velocity field and turbulence field in the wind turbine wake model, thus affecting wind power integration into power systems. To tackle this challenge, this paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine wake model to simulate the wake effects. Our main aim is to add correction modules in a 3D aerodynamic model and a shear-stress transport (SST) k-ω turbulence model, which are converted into a volume source term and a Reynolds stress term for the MRANS-based wake model, respectively. A correction module including blade tip loss, hub loss, and attack angle deviation is considered in the 3D aerodynamic model, which is established by blade element momentum aerodynamic theory and an improved Cauchy fuzzy distribution. Meanwhile, another correction module, including a hold source term, regulating parameters and reducing the dissipation term, is added into the SST k-ω turbulence model. Furthermore, a structured hexahedron mesh with variable size is developed to significantly improve computational efficiency and make results smoother. Simulation results of the velocity field and turbulent field with the proposed approach are consistent with the data of real wind turbines, which verifies the effectiveness of the proposed approach. The variation law of the expansion effect and the double-hump effect are also given.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: The performances of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) anode-supported planar cells with a 10 cm2 active surface were studied versus the combination of cathode thickness and the presence of an Anode Functional Layer (AFL). The temperature range was 500 to 650 °C, and Gd0.1Ce0.9O2−x (GDC) was used as the electrolyte material, Ni-GDC as the anode material, and La0.6Sr0.4Co0.2Fe0.8O3−d (LSCF48) as the cathode material. The power density, conductivity, and activation energy of different samples were determined in order to investigate the influence of the cathode thickness and AFL on the performance. These results showed an improvement in the performances when the AFL was not present. The maximum power density reached 370 mW·cm−2 at 650 °C for a sample with a cathode thickness of 50 µm and an electrolyte layer that was 20 µm thick. Moreover, it was highlighted that a thinner cathode layer reduced the power density of the cell.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: With high sensitivity and strong tolerance capability for the fault resistance, the fault component-based directional relay (FCBDR) has drawn considerable attention from industry and academia. However, the best application environment for FCBDR no longer exists when considering the large-scale connection of the doubly fed induction generator (DFIG)-based wind farms. Through a detailed analysis of the superimposed impedance of DFIG, this paper reveals that the performances of FCBDRs may be shown negatively impacted by the fault behaviors of DFIG when the crowbar protection inputs. In addition, this paper proposes a mitigation countermeasure to deal with those issues. The proposed countermeasure takes advantage of the different superimposed impedance features of DFIG compared with that of the synchronous generator (SG) to enhance the adaptability of the conventional FCBDRs. Extensive simulation results show that the proposed countermeasure can differentiate the fault direction clearly under different fault conditions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-26
    Description: In this paper, the lattice Boltzmann pseudo-potential model coupled the Carnahan–Starling (C-S) equation of state and Li’s force scheme are used to study the collapse process of cavitation bubbles near the concave wall. It mainly includes the collapse process of the single and double cavitation bubbles in the near-wall region. Studies have shown that the collapse velocity of a single cavitation bubble becomes slower as the additional pressure reduces, and the velocity of the micro-jet also decreases accordingly. Moreover, the second collapse of the cavitation bubble cannot be found if the additional pressure reduces further. When the cavitation bubble is located in different angles with vertical direction, its collapse direction is always perpendicular to the wall. If the double cavitation bubbles are arranged vertically, the collapse process of the upper bubble will be quicker, as the relative distance increases. When the relative distance between the bubbles is large enough, no second collapse can be found for the upper bubble. On the other hand, when two cavitation bubbles are in the horizontal arrangement, the suppression effect between cavitation bubbles decreases as the relative distance between the bubbles increases and the collapse position of cavitation bubbles moves from the lower part to the upper part.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-26
    Description: The main purpose of the article was to identify and present the current situation and changes in higher education in the field of electricity and energy studies in the European Union countries. The specific objectives include determining the degree of concentration of education in the fields of electricity and energy in the EU countries, showing the directions of their changes, types of dominant education in this field, establishing the correlation between education in the fields of electricity and energy and the parameters assessing the achievement of circular economy assumptions in the energy sector. All Member States of the European Union were deliberately selected for research. The research period covered the years 2013–2018. The source of the materials is a literature review on the subject and Eurostat data. For the analysis and presentation of materials, methods such as descriptive, tabular, graphical, dynamics indicators with a constant basis, Gini concentration coefficient, concentration analysis using the Lorenz curve, coefficient of variation, Pearson’s linear correlation coefficient were used. A high concentration of education in the fields of electricity and energy was found in several EU countries, the largest in countries with the highest energy consumption, i.e., in France and Poland. Changes in the level of concentration practically did not take place, only in the case of master’s studies, there was an increase in concentration. However, the EU countries did not differ significantly in terms of the structure of the number of students studying electricity and energy.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-26
    Description: Combinatorial analysis of key petrophysical parameters can provide valuable information about subsurface hydrocarbon reservoirs. This is particularly important for reservoirs with unconventional rock formations that, due to the low permeability, need to be stimulated by fracturing treatment to provide fluid flow to the exploitation wellbore. In this article, based on data from unconventional shale formations (N Poland), we outline how independent sets of elastic and petrophysical parameters and other reservoir features can be co-analyzed to estimate the fracture susceptibility of shale intervals, which are characterized by a high total organic carbon (TOC) content and high porosity. These features were determined by analysis of each horizon’s elastic and mineralogical brittleness index (BI). These two variants were calculated first in 1D; integrated with the seismic data and finally compared with other parameters such as acoustic impedance, ratio of compressional and shear wave velocities, porosity, and density; and then presented and analyzed using cross plots that highlighted the key relationships between them. The overall BI trends were similar in both horizontal and vertical directions. The highest BI values were observed in the southeast of the analyzed area (Source I) and in the southeast and northwest of the area (Source II). These results can form the basis for predictive modeling of reservoir properties aiding effective reservoir exploration.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-26
    Description: Reliability is an important index which determines the power service and quality provided to customers. As the demand increases continuously and the system changes in accordance with the environmental regulation, the reliability assessment in the distribution system becomes crucial. In this paper, we propose methods for improving the reliability of the distribution system using electric vehicles (EVs) in the system. In this paper, EVs are used as power supplying devices, such as a transportable energy storage system (ESS) which supplies power when fault occurs in the system, and by using a time–space network (TSN) in particular, EV capacity in accordance with the load arrival time was calculated. Unlike other existing reliability assessments, we did not use the average load of customers. Instead, by taking into account the load pattern by times, we considered the priority for load supply in accordance with the failure scenarios and failure times. Based on the priority calculated for each time of failure and failure scenario, plans for EV operation to minimize expected customer interruption cost (ECOST), the reliability index in the distribution system, were established. Finally, a case study was performed using the IEEE RBTS (Roy Billinton Test System) 2 Bus and the performance of the model proposed in this paper was verified based on the result.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: Natural and synthetic esters are liquids characterized by insulating properties, high flash point, and biodegradability. For this reason, they are more and more often used as an alternative to conventional mineral oils. Esters are used to fill new or operating transformers previously filled with mineral oil (retrofilling). It is technically unfeasible to completely remove mineral oil from a transformer. Its small residues create with esters a mixture with features significantly different from those of the base liquids. This article presents electrostatic charging tendency (ECT) tests for mixtures of fresh and aged Trafo EN mineral oil with Envirotemp FR3 natural ester from the retrofilling point of view. Under unfavorable conditions, the flow electrification phenomenon can damage the solid insulation in transformers with forced oil circulation. The ECT of the insulating liquids has been specified using the volume density of the qw charge. This parameter has been determined using the Abedian–Sonin model on the basis of the electrification current measured in the flow system, as well as selected physicochemical properties of the liquids. It was shown that ECT is strongly dependent on the type of insulating liquid and pipe material, as well as the composition of the mixtures. The most important finding from the research is that a small amount (up to 10%) of fresh and aged mineral oil is effective in reducing the ECT of Envirotemp FR3 natural ester.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-27
    Description: Greenhouse gases such as carbon dioxide and methane cause global warming and consequently climate change. Great efforts are being made to reduce greenhouse gas emissions with the objective of addressing this problem, hence the popularity of technologies conductive to reducing greenhouse gas emissions. CO2 emissions can be reduced by improving the thermal efficiency of combustion engines, for example, by using cogeneration systems. Coal mine methane (CMM) emerges due to mining activities as methane released from the coal and surrounding rock strata. The amount of methane produced is primarily influenced by the productivity of the coal mine and the gassiness of the coal seam. The gassiness of the formation around the coal seam and geological conditions are also important. Methane can be extracted to the surface using methane drainage installations and along with ventilation air. The large amounts of methane captured by methane drainage installations can be used for energy production. This article presents a quarterly summary of the hourly values of methane capture, its concentration in the methane–air mixture, and electricity production in the cogeneration system for electricity and heat production. On this basis, neural network models have been proposed in order to predict electricity production based on known values of methane capture, its concentration, pressure, and parameters determining the time and day of the week. A prediction model has been established on the basis of a multilayer perceptron network (MLP).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...