ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,085)
  • BioMed Central  (2,085)
  • American Chemical Society
  • Nature Publishing Group
  • 2020-2023
  • 2010-2014  (2,085)
  • 1990-1994
  • 1945-1949
  • BMC Plant Biology  (753)
  • 9771
Collection
  • Articles  (2,085)
Publisher
  • BioMed Central  (2,085)
  • American Chemical Society
  • Nature Publishing Group
Years
Year
Topic
  • 1
    Publication Date: 2013-09-11
    Description: Background: Ramie fiber extracted from stem bark is one of the most important natural fibers. Drought is a main environment stress which severely inhibits the stem growth of ramie and leads to a decrease of the fiber yield. The drought stress-regulatory mechanism of ramie is poorly understood.Result: Using Illumina sequencing, approximately 4.8 and 4.7 million (M) 21-nt cDNA tags were respectively sequenced in the cDNA libraries derived from the drought-stressed ramie (DS) and the control ramie under well water condition (CO). The tags generated from the two libraries were aligned with ramie transcriptome to annotate their function and a total of 23,912 and 22,826 ramie genes were matched by these tags of DS and CO library, respectively. Comparison of gene expression level between CO and DS ramie based on the differences of tag frequencies appearing in the two libraries revealed that there were 1516 potential drought stress-responsive genes, in which 24 genes function as transcription factor (TF). Among these 24 TFs, the unigene19721 encoding the DELLA protein which is a key negative regulator in gibberellins (GAs) signal pathway was probably markedly up-regulated under water stress for a increase of tag abundance in DS library, which is possibly responsible for the inhibition of the growth of drought-stressed ramie. In order to validate the change of expression of these potential stress-responsive TFs under water deficit condition, the unigene19721 and another eleven potential stress-responsive TFs were chosen for further expression analysis in well-watered and drought-stressed ramie by real-time quantitative PCR (qRT-PCR) and the result showed that all 12 TFs were authentically involved in the response of drought stress. Conclusion: In this study, twelve TFs involving in the response of drought stress were first found by Illumina tag-sequencing and qRT-PCR in ramie. The discovery of these drought stress-responsive TFs will be helpful for further understanding the drought stress-regulatory mechanism of ramie and improving the drought tolerance ability of ramie.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-24
    Description: Background: MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains. Results: Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks. Conclusions: We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-27
    Description: Background: Yellow mustard (Sinapis alba L.) is an important condiment crop for the spice trade in the world. It has lagged behind oilseed Brassica species in molecular marker development and application. Intron length polymorphism (ILP) markers are highly polymorphic, co-dominant and cost-effective. The cross-species applicability of ILP markers from Brassica species and Arabidopsis makes them possible to be used for genetic linkage mapping and further QTL analysis of agronomic traits in yellow mustard. Results: A total of 250 ILP and 14 SSR markers were mapped on 12 linkage groups and designated as Sal01-12 in yellow mustard. The constructed map covered a total genetic length of 890.4 cM with an average marker interval of 3.3 cM. The QTL for erucic content co-localized with the fatty acid elongase 1 (FAE1) gene on Sal03. The self-(in)compatibility gene was assigned to Sal08. The 4-hydroxybenzyl, 3-indolylmethyl and 4- hydroxy-3-indolylmethyl glucosinolate contents were each controlled by one major QTL, all of which were located on Sal02. Two QTLs, accounting for the respective 20.4% and 19.2% of the total variation of 2-hydroxy-3-butenyl glucosinolate content, were identified and mapped to Sal02 and Sal11. Comparative synteny analysis revealed that yellow mustard was phylogenetically related to Arabidopsis thaliana and had undergone extensive chromosomal rearrangements during speciation. Conclusion: The linkage map based on ILP and SSR markers was constructed and used for QTL analysis of seed quality traits in yellow mustard. The markers tightly linked with the genes for different glucosinolate components will be used for marker-assisted selection and map-based cloning. The ILP markers and linkage map provide useful molecular tools for yellow mustard breeding.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-01
    Description: Background: Maize rough dwarf disease (MRDD) is a devastating viral disease that results in considerable yield losses worldwide. Three major strains of virus cause MRDD, including maize rough dwarf virus in Europe, Mal de Rio Cuarto virus in South America, and rice black-streaked dwarf virus in East Asia. These viral pathogens belong to the genus fijivirus in the family Reoviridae. Resistance against MRDD is a complex trait that involves a number of quantitative trait loci (QTL). The primary approach used to minimize yield losses from these viruses is to breed and deploy resistant maize hybrids. Results: Of the 50 heterogeneous inbred families (HIFs), 24 showed consistent responses to MRDD across different years and locations, in which 9 were resistant and 15 were susceptible. We performed trait-marker association analysis on the 24 HIFs and found six chromosomal regions which were putatively associated with MRDD resistance. We then conducted QTL analysis and detected a major resistance QTL, qMrdd1, on chromosome 8. By applying recombinant-derived progeny testing to self-pollinated backcrossed families, we fine-mapped the qMrdd1 locus into a 1.2-Mb region flanked by markers M103-4 and M105-3. The qMrdd1 locus acted in a recessive manner to reduce the disease-severity index (DSI) by 24.2--39.3%. The genetic effect of qMrdd1 was validated using another F6 recombinant inbred line (RIL) population in which MRDD resistance was segregating and two genotypes at the qMrdd1 locus differed significantly in DSI values. Conclusions: The qMrdd1 locus is a major resistance QTL, acting in a recessive manner to increase maize resistance to MRDD. We mapped qMrdd1 to a 1.2-Mb region, which will enable the introgression of qMrdd1-based resistance into elite maize hybrids and reduce MRDD-related crop losses.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-03
    Description: Background: Grafting is widely used in the agriculture of fruit-bearing crops; rootstocks are known to confer differences in scion biomass in addition to improving other traits of agricultural interest. However, little is known about the effect of rootstocks on scion gene expression. The objective of this study was to determine whether hetero-grafting the grapevine variety Vitis vinifera cv. 'Cabernet Sauvignon N' with two different rootstocks alters gene expression in the shoot apex in comparison to the auto-grafted control. Cabernet Sauvignon was hetero-grafted with two commercial rootstock genotypes and auto-grafted with itself. Vigor was quantified by measurements of root, stem, leaf and trunk biomass. Gene expression profiling was done using a whole genome grapevine microarray; four pools of five shoot apex samples were harvested 4 months after grafting for each scion/rootstock combination. Results: The rootstocks increased stem biomass or conferred increased vigor by the end of the first growth cycle. Globally hetero-grafting two different genotypes together triggered an increase in shoot apex gene expression; however no genes were differentially expressed between the two hetero-grafts. The functional categories related to DNA, chromatin structure, histones, flavonoids and leucine rich repeat containing receptor kinases were the most enriched in the up-regulated genes in the shoot apex of hetero-grafted plants. Conclusions: The choice of rootstock genotype had little effect on the gene expression in the shoot apex; this could suggest that auto- and hetero-grafting was the major factor regulating gene expression.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-04
    Description: Background: WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. Results: We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. Conclusions: In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-09
    Description: Background: Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. Results: A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. Conclusions: Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele possessed relatively high SKCS hardness index. This study can provide useful information for the improvement of wheat quality, as well as give a deeper understanding of the molecular and genetic processes controlling grain texture in bread wheat.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-09
    Description: Background: AGO (Argonaute) protein participates in plant developmental processes and virus defense as a core element of transcriptional regulator or/and post-transcriptional regulator in RNA induced silencing complex (RISC), which is guided by small RNAs to repress target genes expression. Previously, it was revealed that 15 putative AGO genes in tomato genome. Results: In present study, out of 15 detected SlAGO genes, only SlAGO4C and SlAGO15 couldn't be detected in roots, stems, leaves, buds, flowers and fruit of tomato by 30 cycles of PCR. SlAGO7 could be detected in early stage of fruit (-2 dpa, 0 dpa and 4 dpa), but it was significantly down-regulated in fruit collected on the 6 days post anthesis. Moreover, SlAGO5 could only be detected in reproductive tissues and SlAGO4D was specifically detected in fruit. According to blast result with miRNA database, three SlAGO genes harbored complementary sequences to miR168 (SlAGO1A and SlAGO1B) or miR403 (SlAGO2A). 5[prime] RACE (Rapid amplification of cDNA ends) mapping was used to detect the 3[prime] cleavage products of SlAGO mRNAs. In addition, subcellular localization of SlAGO proteins was detected. Our results showed that most SlAGO proteins localized to nucleus and cytoplasm. Importantly, nuclear membrane localization of AGO proteins was observed. Furthermore, mutated miR168 complementary site of SlAGO1A resulted in expanded localization of SlAGO1A, indicating that miR168 regulated localization of SlAGO1A. Conclusions: Our results contribute to demonstration of potential roles of these newly isolated AGO family in tomato developmental processes and proved the conserved relationships between AGO genes and miRNAs in tomato, which might play important roles in tomato development and virus defense.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-10
    Description: Background: The endophytic fungus, Neotyphodium coenophialum, can enhance drought tolerance of its host grass, tall fescue. To investigate endophyte effects on plant responses to acute water deficit stress, we did comprehensive profiling of plant metabolite levels in both shoot and root tissues of genetically identical clone pairs of tall fescue with endophyte (E+) and without endophyte (E-) in response to direct water deficit stress. The E- clones were generated by treating E+ plants with fungicide and selectively propagating single tillers. In time course studies on the E+ and E- clones, water was withheld from 0 to 5 days, during which levels of free sugars, sugar alcohols, and amino acids were determined, as were levels of some major fungal metabolites. Results: After 2--3 days of withholding water, survival and tillering of re-watered plants was significantly greater for E+ than E- clones. Within two to three days of withholding water, significant endophyte effects on metabolites manifested as higher levels of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic acid in shoots and roots. The fungal metabolites, mannitol and loline alkaloids, also significantly increased with water deficit. Conclusions: Our results suggest that symbiotic N. coenophialum aids in survival and recovery of tall fescue plants from water deficit, and acts in part by inducing rapid accumulation of these compatible solutes soon after imposition of stress.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-11
    Description: Background: Molecular markers allow rapid identification of biologically important germplasm/s having desired character. Previously we have reported a genotype specific molecular marker, Balco1128 [GenBank ID EU258678] of Bambusa balcooa containing an ORF (375 bp) having high similarity with receptor like cytoplasmic kinase of Arabidopsis and Oryza. Balco1128 was found to be associated only with bamboo genotypes endowed with high cellulose and low lignin contents of fibers. Under the above backdrop, it was necessitated to characterize this genetic marker for better understanding of its biological significance in context of superior quality fiber development. Results: The full length cDNA (3342 bp) of BbKst, a serine-threonine protein kinase was isolated from B. balcooa comprising of six LRR domains at the N-terminal end and a kinase domain at the C-terminal end. Bacteria-expressed BbKst-kinase domain (3339 bp long) showed Mg2+ dependent kinase activity at pH 7.0, 28[degree sign]C. Bioinformatics study followed by phospho-amino analysis further confirmed that BbKst-kinase belongs to the serine/threonine protein kinase family. Transcript analysis of the BbKst gene following RNA slot blot hybridization and qPCR revealed higher expression of BbKst during initiation and elongation stages of fiber development. Tissue specific expression studies showed much higher expression of BbKst transcript in stems and internodes of B. balcooa than in leaves and rhizomes. Southern analysis revealed single copy insertion of BbKst in most of the Agrobacterium mediated transgenic tobacco plants. Real-time PCR detected 150-200 fold enhanced expression of BbKst in different T1 tobacco lines than that of the vector transformed plants. Heterologous expression of BbKst under control of 35S promoter in transgenic tobacco showed high cellulose deposition in the xylem fibers. Number of xylary fibers was higher in transgenic T0 and T1 plants than that of empty-vector transformed tobacco plants offering enhanced mechanical strength to the transgenic plants, which was also substantiated by their strong upright phenotypes, significantly higher cellulose contents, flexibility coefficient, slenderness ratio, and lower Runkel ratio of the fibers. Conclusions: This finding clearly demonstrated that BbKst gene (GenBank ID JQ432560) encodes a serine/threonine protein kinase. BbKst induced higher cellulose deposition/synthesis in transgenic tobacco plants, an important attribute of fiber quality bestowing additional strength to the plant.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...