ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (608)
  • BioMed Central  (608)
  • American Chemical Society
  • Copernicus
  • Public Library of Science (PLoS)
  • 2010-2014  (608)
  • 1980-1984
  • 1925-1929
  • 2013  (608)
  • BMC Microbiology  (304)
  • 9766
Collection
  • Articles  (608)
Publisher
  • BioMed Central  (608)
  • American Chemical Society
  • Copernicus
  • Public Library of Science (PLoS)
Years
  • 2010-2014  (608)
  • 1980-1984
  • 1925-1929
Year
Topic
  • 1
    Publication Date: 2013-09-12
    Description: Background: Multidrug-resistant (MDR) Salmonella isolates are associated with increased morbidity compared to antibiotic-sensitive strains and are an important health and safety concern in both humans and animals. Salmonella enterica serovar Typhimurium is a prevalent cause of foodborne disease, and a considerable number of S. Typhimurium isolates from humans and livestock are resistant to three or more antibiotics. The majority of these MDR S. Typhimurium isolates are resistant to tetracycline, a commonly used and clinically and agriculturally relevant antibiotic. Because exposure of drug-resistant bacteria to antibiotics can affect cellular processes associated with virulence, such as invasion, we investigated the effect tetracycline had on the invasiveness of tetracycline-resistant MDR S. Typhimurium isolates. Results: The isolates selected and tested were from two common definitive phage types of S. Typhimurium, DT104 and DT193, and were resistant to tetracycline and at least three other antibiotics. Although Salmonella invasiveness is temporally regulated and normally occurs during late-log growth phase, tetracycline exposure induced the full invasive phenotype in a cell culture assay during early-log growth in several DT193 isolates. No changes in invasiveness due to tetracycline exposure occurred in the DT104 isolates during early-log growth or in any of the isolates during late-log growth. Real-time PCR was used to test expression of the virulence genes hilA, prgH, and invF, and these genes were significantly up-regulated during early-log growth in most isolates due to tetracycline exposure; however, increased virulence gene expression did not always correspond with increased invasion, and therefore was not an accurate indicator of elevated invasiveness. This is the first report to assess DT193 isolates, as well as the early-log growth phase, in response to tetracycline exposure, and it was the combination of both parameters that was necessary to observe the induced invasion phenotype. Conclusions: In this report, we demonstrate that the invasiveness of MDR S. Typhimurium can be modulated in the presence of tetracycline, and this effect is dependent on growth phase, antibiotic concentration, and strain background. Identifying the conditions necessary to establish an invasive phenotype is important to elucidate the underlying factors associated with increased virulence of MDR Salmonella.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-12
    Description: Background: Magnetotactic bacteria produce membrane-enveloped magnetite crystals (magnetosomes) whose formation is controlled primarily by a gene island termed the magnetosome island (MAI). Characterization of single gene and operon function in MAI has elucidated in part the genetic basis of magnetosome formation. The mamX gene, located in the mamXY operon, is highly conserved in the MAI of all Magnetospirillum strains studied to date. Little is known regarding the function of mamX in the process of biomineralization. Results: A mamX deletion mutant ([increment]mamX) and its complemented strain (CmamX) by conjugation in M. gryphiswaldense strain MSR-1 were constructed. There were no striking differences in cell growth among [increment]mamX, CmamX, and wild-type strain (WT). [increment]mamX displayed a much weaker magnetic response than WT. Transmission electron microscopy revealed the presence of irregular, superparamagnetic magnetite particles in [increment]mamX, in contrast to regular, single-domain particles in WT and CmamX. The phenotype of [increment]mamX was similar to that of an ftsZ-like deleted mutant and mamXY operon deleted mutant reported previously. Quantitative real-time RT-PCR (qPCR) results indicated that the deletion of mamX had differential effects on the transcription levels of the other three genes in the operon. Conclusions: The MamX protein plays an important role in controlling magnetosome size, maturation, and crystal form. The four MamXY proteins appear to have redundant functions involved in magnetosome formation. Our findings provide new insights into the coordinated function of MAI genes and operons in magnetosome formation.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-12
    Description: Background: Host plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings. Results: Specific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots. Conclusions: Real-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-12
    Description: Background: Apoptosis is a highly controlled process of cell death that can be induced by periodontopathogens. The present study aimed to investigate the expression of Fas and Bcl-2 proteins by CD3+ T cells in vitro under stimulation by total Porphyromonas gingivalis antigens and purified recombinant P. gingivalis HmuY protein. Results: CD3+ T cells derived from CP patients and stimulated with HmuY expressed higher levels of Bcl-2 compared to identical cells stimulated with P. gingivalis crude extract or cells derived from NP control subjects (p = 0.043). Conclusion: The authors hypothesize that P. gingivalis HmuY plays a role in the pathogenesis of chronic periodontitis, possibly by reducing or delaying apoptosis in T cells through a pathway involving the Bcl-2 protein.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-12
    Description: Background: It is increasingly recognized that the bacteria that live in and on the human body (the microbiome) can play an important role in health and disease. The composition of the microbiome is potentially influenced by both internal factors (such as phylogeny and host physiology) and external factors (such as diet and local environment), and interspecific comparisons can aid in understanding the importance of these factors. Results: To gain insights into the relative importance of these factors on saliva microbiome diversity, we here analyze the saliva microbiomes of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) from two sanctuaries in Africa, and from human workers at each sanctuary. The saliva microbiomes of the two Pan species are more similar to one another, and the saliva microbiomes of the two human groups are more similar to one another, than are the saliva microbiomes of human workers and apes from the same sanctuary. We also looked for the existence of a core microbiome and find no evidence for a taxon-based core saliva microbiome for Homo or Pan. In addition, we studied the saliva microbiome from apes from the Leipzig Zoo, and found an extraordinary diversity in the zoo ape saliva microbiomes that is not found in the saliva microbiomes of the sanctuary animals. Conclusions: The greater similarity of the saliva microbiomes of the two Pan species to one another, and of the two human groups to one another, are in accordance with both the phylogenetic relationships of the hosts as well as with host physiology. Moreover, the results from the zoo animals suggest that novel environments can have a large impact on the microbiome, and that microbiome analyses based on captive animals should be viewed with caution as they may not reflect the microbiome of animals in the wild.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-18
    Description: Background: The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Results: Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. Conclusions: These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-27
    Description: Background: The emergence of bacterial drug resistance encourages the re-evaluation of the potential of existing antimicrobials. Lantibiotics are post-translationally modified, ribosomally synthesised antimicrobial peptides with a broad spectrum antimicrobial activity. Here, we focussed on expanding the potential of lacticin 3147, one of the most studied lantibiotics and one which possesses potent activity against a wide range of Gram positive species including many nosocomial pathogens. More specifically, our aim was to investigate if lacticin 3147 activity could be enhanced when combined with a range of different clinical antibiotics. Results: Initial screening revealed that polymyxin B and polymyxin E (colistin) exhibited synergistic activity with lacticin 3147. Checkerboard assays were performed against a number of strains, including both Gram positive and Gram negative species. The resultant fractional inhibitory concentration (FIC) index values established that, while partial synergy was detected against Gram positive targets, synergy was obvious against Gram negative species, including Cronobacter and E. coli. Conclusions: Combining lacticin 3147 with low levels of a polymyxin could provide a means of broadening target specificity of the lantibiotic, while also reducing polymyxin use due to the lower concentrations required as a result of synergy.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-01
    Description: Background: It is well known that brewer's yeast affects the taste and aroma of beer. However, the influence of brewer's yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer's yeast strains with different abilities to degrade fermentable sugars were investigated. Results: Beers were fermented from standard hopped wort (13[degree sign] Plato) using two ale brewer's yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-beta-1,3-glucanase), Bgl2 (an endo-beta-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Conclusion: Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-10-02
    Description: Background: Human enteric viruses are major agents of foodborne diseases. Because of the absence of a reliable cell culture method for most of the enteric viruses involved in outbreaks, real-time reverse transcriptase PCR is now widely used for the detection of RNA viruses in food samples. However this approach detects viral nucleic acids of both infectious and non infectious viruses, which limits the impact of conclusions with regard to public health concern. The aim of the study was to develop a method to discriminate between infectious and non-infectious particles of hepatitis A virus (HAV) and two strains of rotavirus (RV) following thermal inactivation by using intercalating dyes combined with RT-qPCR. Results: Once the binding of propidium monoazide (PMA) or ethidium monoazide (EMA) was shown to be effective on the viral ssRNA of HAV and dsRNA of two strains of RV (SA11 and Wa), their use in conjunction with three surfactants (IGEPAL CA-630, Tween 20, Triton X-100) prior to RT-qPCR assays was evaluated to quantify the infectious particles remaining following heat treatment. The most promising conditions were EMA (20 muM) and IGEPAL CA-630 (0.5%) for HAV, EMA (20 muM) for RV (WA) and PMA (50 muM) for RV (SA11). The effectiveness of the pre-treatment RT-qPCR developed for each virus was evaluated with three RT-qPCR assays (A, B, C) during thermal inactivation kinetics (at 37[degree sign]C, 68 C, 72[degree sign]C, 80[degree sign]C) through comparison with data obtained by RT-qPCR and by infectious titration in cell culture. At 37[degree sign]C, the quantity of virus (RV, HAV) remained constant regardless of the method used. The genomic titers following heat treatment at 68[degree sign]C to 80[degree sign]C became similar to the infectious titers only when a pre-treatment RT-qPCR was used. Moreover, the most effective decrease was obtained by RT-qPCR assay A or B for HAV and RT-qPCR assay B or C for RV. Conclusions: We concluded that effectiveness of the pre-treatment RT-qPCR is influenced by the viral target and by the choice of the RT-qPCR assay. Currently, it would be appropriate to further develop this approach under specific conditions of inactivation for the identification of infectious viruses in food and environmental samples.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-03
    Description: Background: Outbreaks in poultry involving influenza virus from H7 subtype have resulted in human infections, thus causing a major concern for public health, as well as for the poultry industry. Currently, no efficient rapid test is available for large-scale detection of either antigen or antibody of H7 avian influenza viruses. Results: In the present study, a dual function ELISA was developed for the effective detection of antigen and antibody against H7 AIVs. The test was established based on antigen-capture-ELISA and epitope blocking ELISA. The two Mabs 62 and 98 which were exploited in the assay were identified to recognize two conformational neutralizing epitopes on H7 HA1. Both of the epitopes exist in all of the human H7 strains, including the recent H7N9 strain from China and 〉 96.6% of avian H7 strains. The dual ELISA was able to detect all of the five H7 antigens tested without any cross reaction to other influenza subtypes. The antigen detection limit was less than 1 HA unit of H7. For antibody detection, the sensitivity and specificity of the dual ELISA was evaluated and compared to HI and microneutralization using immunized animal sera to different H7 strains and different subtypes of AIVs. Results indicated that antibodies to H7 were readily detected in immunized animal sera by the dual ELISA whereas specimens with antibodies to other AIVs yielded negative results. Conclusions: This is the first dual-function ELISA reported for either antigen or antibody detection against H7 AIVs. The assay was highly sensitive and 100% specific in both functions rendering it effective for H7 diagnosis.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-10-04
    Description: Background: Bacteria belonging to the Arcobacter genus are emergent enteropathogens and potential zoonotic agents. Their taxonomy has evolved very rapidly, and there are presently 18 recorded species. The prevalence of species belonging to Arcobacter is underestimated because of the limitations of currently available methods for species identification.The aim of this study was to compare the performance of five PCR based methods that target regions of 16S rRNA, 23S rRNA or gyrA genes to identify Arcobacter species, and to review previous results reported in the literature using these methods. Results: The five tested methods were found not to be reliable. They misidentified between 16.8% and 67.4% of the studied strains; this was dependent upon the target regions of the tested genes. The worst results obtained were for the identification of Arcobacter cryaerophilus and Arcobacter butzleri when the 23S rRNA gene was used as the target. These species were confused with many non-targeted species. Conclusion: Our results suggest that the known diversity of Arcobacter spp. in different environments could be expanded if reliable identification methods are applied in future studies.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-13
    Description: Background: The white rhinoceros is on the verge of extinction with less than 20,200 animals remaining in the wild. In order to better protect these endangered animals, it is necessary to better understand their digestive physiology and nutritional requirements. The gut microbiota is nutritionally important for herbivorous animals. However, little is known about the microbial diversity in the gastrointestinal tract (GIT) of the white rhinoceros. Methanogen diversity in the GIT may be host species-specific and, or, function-dependent. To assess methanogen diversity in the hindgut of white rhinoceroses, an archaeal 16S rRNA gene clone library was constructed from pooled PCR products obtained from the feces of seven adult animals. Results: Sequence analysis of 153 archaeal 16S rRNA sequences revealed 47 unique phylotypes, which were assigned to seven operational taxonomic units (OTUs 1 to 7). Sequences assigned to OTU-7 (64 out of 153 total sequencs -- 42%) and OTU-5 (18%, 27/153) had 96.2% and 95.5% identity to Methanocorpusculum labreanum, respectively, making Methanocorpusculum labreanum the predominant phylotype in these white rhynoceroses. Sequences belonging to OTU-6 (27%, 42/153) were related (97.6%) to Methanobrevibacter smithii. Only 4% of the total sequences (6/153) were assigned to Methanosphaera stadtmanae (OTU-1). Sequences belonging to OTU-2 (4%, 6/153), OTU-3 (3%, 5/153) and OTU-4 (2%, 3/153) were distantly related (87.5 to 88,4%) to Methanomassiliicoccus luminyensis and were considered to be novel species or strains that have yet-to-be cultivated and characterized. Conclusion: Phylogenetic analysis indicated that the methanogen species in the hindgut of white rhinoceroses were more similar to those in the hindgut of horses. Our findings may help develop studies on improving the digestibility of forage for sustainable management and better health of these endangered animals.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-20
    Description: Background: Helicobacter pylori has diverged in parallel to its human host, leading to distinct phylogeographic populations. Recent evidence suggests that in the current human mixing in Latin America, European H. pylori (hpEurope) are increasingly dominant at the expense of Amerindian haplotypes (hspAmerind). This phenomenon might occur via DNA recombination, modulated by restriction-modification systems (RMS), in which differences in cognate recognition sites (CRS) and in active methylases will determine direction and frequency of gene flow. We hypothesized that genomes from hspAmerind strains that evolved from a small founder population have lost CRS for RMS and active methylases, promoting hpEurope's DNA invasion. We determined the observed and expected frequencies of CRS for RMS in DNA from 7 H. pylori whole genomes and 110 multilocus sequences. We also measured the number of active methylases by resistance to in vitro digestion by 16 restriction enzymes of genomic DNA from 9 hpEurope and 9 hspAmerind strains, and determined the direction of DNA uptake in co-culture experiments of hspAmerind and hpEurope strains. Results: Most of the CRS were underrepresented with consistency between whole genomes and multilocus sequences. Although neither the frequency of CRS nor the number of active methylases differ among the bacterial populations (average 8.6 +/- 2.6), hspAmerind strains had a restriction profile distinct from that in hpEurope strains, with 15 recognition sites accounting for the differences. Amerindians strains also exhibited higher transformation rates than European strains, and were more susceptible to be subverted by larger DNA hpEurope-fragments than vice versa. Conclusions: The geographical variation in the pattern of CRS provides evidence for ancestral differences in RMS representation and function, and the transformation findings support the hypothesis of Europeanization of the Amerindian strains in Latin America via DNA recombination.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-10-01
    Description: Background: The emergence, resurgence and spread of human food-borne pathogenic Vibrios are one of the major contributors to disease burden and mortality particularly in developing countries with disputable sanitary conditions. Previous research on pathogenic Vibrio cholerae and Vibrio parahaemolitycus derived from clinical samples has proposed links between acquisition of virulence and multiple drug resistance traits and intercellular transmissibility of mobile genetic elements in the environment. To date, very few information is available on environmental Vibrio isolates. In this study, we characterized eleven Vibrio strains bearing the SXT/R391-like integrative and conjugative elements (ICEs) derived from aquatic products and environment in the Yangtze River Estuary, China. Results: The eleven Vibrio strains were isolated in 2010 to 2011, and taxonomically identified, which included six Vibrio cholerae, three Vibrio parahaemolyticus, one Vibrio alginolyticus and one Vibrio natriegens. Most of the strains displayed strong resistance phenotypes to ampicillin, mercury and chromium. The majority of their ICEs, which belong to S and R exclusion system groups, contain ICEs-chromosome junction sequences and highly conserved core-genes required for ICE transfer. However, comparative sequence analysis uncovered interesting diversity in their mosaic accessory gene structures, which carry many novel genes that have not been described in any known ICEs to date. In addition, antibiotic resistance was transmitted by ICEVchChn6 and ICEVpaChn1 from V. cholerae, V. parahaemolyticus to E. coli MG1655 via conjugation, respectively. Our data also revealed that the ICEs characterized in this study are phylogenetically distant from most of the SXT/R391 ICEs reported previously, which may represent a novel cluster likely shaped by the ecological environment in the Yangtze River Estuary, China. Conclusions: This study constitutes the first investigation of ICEs-positive Vibrio spp. in the Yangze River Estuary, China. The newly identified ICEs were characterized with mosaic accessory gene structures and many novel genes. The results demonstrated self-transmissibility of antibiotic resistance mediated by two of the ICEs from V. cholerae, V. parahaemolyticus to E. coli via conjugation, respectively. Our results also revealed that the ICEs examined in this study may represent a novel cluster in the SXT/R391 family.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-29
    Description: Background: Dietzia natronolimnaea is one of the most important bacterial bioresources for high efficiency canthaxanthin production. It produces the robust and stable pigment canthaxanthin, which is of special interest for the development of integrated biorefineries. Mutagenesis employing 12C6+ irradiation is a novel technique commonly used to improve microorganism productivity. This study presents a promising route to obtaining the highest feasible levels of biomass dry weight (BDW), and total canthaxanthin by using a microdosimetric model of 12C6+ irradiation mutation in combination with the optimization of nutrient medium components. Results: This work characterized the rate of both lethal and non-lethal dose mutations for 12C6+ irradiation and the microdosimetric kinetic model using the model organism, D. natronolimnaea svgcc1.2736. Irradiation with 12C6+ ions resulted in enhanced production of canthaxanthin, and is therefore an effective method for strain improvement of D. natronolimnaea svgcc1.2736. Based on these results an optimal dose of 0.5--4.5 Gy, Linear energy transfer (LET) of 80 keV mum-1and energy of 60 MeV u-1 for 12C6+ irradiation are ideal for optimum and specific production of canthaxanthin in the bacterium. Second-order empirical calculations displaying high R-squared (0.996) values between the responses and independent variables were derived from validation experiments using response surface methodology. The highest canthaxanthin yield (8.14 mg) was obtained with an optimized growth medium containing 21.5 g L-1 D-glucose, 23.5 g L-1 mannose and 25 ppm Mg2+ in 1 L with an irradiation dose of 4.5 Gy. Conclusions: The microdosimetric 12C6+ irradiation model was an effective mutagenic technique for the strain improvement of D. natronolimnaea svgcc1.2736 specifically for enhanced canthaxanthin production. At the very least, random mutagenesis methods using 12C6+ions can be used as a first step in a combined approach with long-term continuous fermentation processes. Central composite design-response surface methodologies (CCD-RSM) were carried out to optimize the conditions for canthaxanthin yield. It was discovered D-glucose, Mg2+ and mannose have significant influence on canthaxanthin biosynthesis and growth of the mutant strain.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-10-02
    Description: Background: Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella. Results: We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone. Conclusions: G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-10-02
    Description: Background: The resurgence of multi-drug resistant tuberculosis (MDR-TB) and HIV associated tuberculosis (TB) are of serious global concern. To contain this situation, new anti-tuberculosis drugs and reduced treatment regimens are imperative. Recently, a nitroimidazole, PA-824, has been shown to be active against both replicating and non-replicating bacteria. It is activated by the enzyme Deazaflavin-dependent nitroreductase (Ddn) present in Mycobacterium tuberculosis which catalyzes the reduction of PA-824, resulting in the release of lethal reactive nitrogen species (RNS) within the bacteria. In this context, PA-824 was analyzed for its activity against latent tuberculosis under anaerobic conditions and compared with rifampicin (RIF) and pyrazinamide (PZA). Recent mutagenesis studies have identified A76E mutation which affects the above mentioned catalysis and leads to PA-824 resistance. Hence, novel analogues which could cope up with their binding to mutant Ddn receptor were also identified through this study. Results: PA-824 at an optimum concentration of 12.5 mug/ml showed enhanced bactericidal activity, resulting in 0 CFU/ml growth when compared to RIF and PZA at normal pH and anaerobic condition. Further docking studies revealed that a combinatorial structure of PA-824 conjugated with moxifloxacin (ligand 8) has the highest binding affinity with the wild type and mutant Ddn receptor. Conclusions: PA-824 has been demonstrated to have better activity under anaerobic condition at 12.5 mug/ml, indicating an optimized dose that is required for overcoming the detoxifying mechanisms of M. tuberculosis and inducing its death. Further, the development of resistance through A76E mutation could be overcome through the in silico evolved ligand 8.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-10-05
    Description: Background: Salmonella enterica is a causative agent of foodborne gastroenteritis and the systemic disease known as typhoid fever. This bacterium uses two type three secretion systems (T3SSs) to translocate protein effectors into host cells to manipulate cellular function. Salmonella pathogenicity island (SPI)-2 encodes a T3SS required for intracellular survival of the pathogen. Genes in SPI-2 include apparatus components, secreted effectors and chaperones that bind to secreted cargo to coordinate their release from the bacterial cell. Although the effector repertoire secreted by the SPI-2 T3SS is large, only three virulence-associated chaperones have been characterized. Results: Here we report that SscA is the chaperone for the SseC translocon component. We show that SscA and SseC interact in bacterial cells and that deletion of sscA results in a loss of SseC secretion, which compromises intracellular replication and leads to a loss of competitive fitness in mice. Conclusions: This work completes the characterization of the chaperone complement within SPI-2 and identifies SscA as the chaperone for the SseC translocon.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-06-09
    Description: Background: Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens. Results: The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1beta, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1beta, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed. Conclusions: Altogether, these data revealed that the degree of environmental microbial exposure of the hen moderately stimulated the egg innate defence, by reinforcing some specific antimicrobial activities to protect the embryo and to insure hygienic quality of table eggs.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-06-06
    Description: Background: Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker in tomato. Cmm is present nearly in all European countries. During the last three years several local outbreaks were detected in Belgium. The lack of a convenient high-resolution strain-typing method has hampered the study of the routes of transmission of Cmm and epidemiology in tomato cultivation. In this study the genetic relatedness among a worldwide collection of Cmm strains and their relatives was approached by gyrB and dnaA gene sequencing. Further, we developed and applied a multilocus variable number of tandem repeats analysis (MLVA) scheme to discriminate among Cmm strains. Results: A phylogenetic analysis of gyrB and dnaA gene sequences of 56 Cmm strains demonstrated that Belgian Cmm strains from recent outbreaks of 2010--2012 form a genetically uniform group within the Cmm clade, and Cmm is phylogenetically distinct from other Clavibacter subspecies and from non-pathogenic Clavibacter-like strains. MLVA conducted with eight minisatellite loci detected 25 haplotypes within Cmm. All strains from Belgian outbreaks, isolated between 2010 and 2012, together with two French strains from 2010 seem to form one monomorphic group. Regardless of the isolation year, location or tomato cultivar, Belgian strains from recent outbreaks belonged to the same haplotype. On the contrary, strains from diverse geographical locations or isolated over longer periods of time formed mostly singletons. Conclusions: We hypothesise that the introduction might have originated from one lot of seeds or contaminated tomato seedlings that was the source of the outbreak in 2010 and that these Cmm strains persisted and induced infection in 2011 and 2012. Our results demonstrate that MLVA is a promising typing technique for a local surveillance and outbreaks investigation in epidemiological studies of Cmm.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-06-07
    Description: After the publication of our study [1], we became aware that the mutations in the quinolone resistance-determining region (QRDR) of the gene grlA were incorrectly described for some of the Staphylococcus aureus clinical isolates studied in this work. In particular, isolates SM1, SM10, SM14, SM17, SM25, SM27, SM43, SM46, SM47 and SM48 carry the GrlA double mutation S80Y/E84G; isolate SM52 carries the GrlA mutation S80Y; isolates SM3 and SM5 carry the GrlA double mutation S80F/E84G. The correct data can be found in Table 1.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-06-11
    Description: Background: Cansiliella servadeii (Coleoptera) is an endemic troglobite living in deep carbonate caves in North-Eastern Italy. The beetle constantly moves and browses in its preferred habitat (consisting in flowing water and moonmilk, a soft speleothem colonized by microorganisms) self-preens to convey material from elytra, legs, and antennae towards the mouth. We investigated its inner and outer microbiota using microscopy and DNA-based approaches. Results: Abundant microbial cell masses were observed on the external appendages. Cansiliella's midgut is fully colonized by live microbes and culture-independent analyses yielded nearly 30 different 16S phylotypes that have no overlap with the community composition of the moonmilk. Many of the lineages, dominated by Gram positive groups, share very low similarity to database sequences. However for most cases, notwithstanding their very limited relatedness with existing records, phylotypes could be assigned to bacterial clades that had been retrieved from insect or other animals' digestive traits. Conclusions: Results suggest a history of remote separation from a common ancestor that harboured a set of gut-specific bacteria whose functions are supposedly critical for host physiology. The phylogenetic and coevolutionary implications of the parallel occurrences of these prokaryotic guilds appear to apply throughout a broad spectrum of animal diversity. Their persistence and conservation underlies a possibly critical role of precise bacterial assemblages in animal-bacteria interactions.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-06-13
    Description: Background: The global spread of bacterial resistance has given rise to a growing interest in new anti-bacterial agents with a new strategy of action. Pilicides are derivatives of ring-fused 2-pyridones which block the formation of the pili/fimbriae crucial to bacterial pathogenesis. They impair by means of a chaperone-usher pathway conserved in the Gram-negative bacteria of adhesive structures biogenesis. Pili/fimbriae of this type belong to two subfamilies, FGS and FGL, which differ in the details of their assembly mechanism. The data published to date have shown that pilicides inhibit biogenesis of type 1 and P pili of the FGS type which are encoded by uropathogenic E. coli strains. Results: We evaluated the anti-bacterial activity of literature pilicides as blockers of the assembly of a model example of FGL-type adhesive structures, -- the Dr fimbriae encoded by a dra gene cluster of uropathogenic Escherichia coli strains. In comparison to the strain grown without pilicide, the Dr+ bacteria cultivated in the presence of the 3.5 mM concentration of pilicides resulted in a reduction of 75 to 87% in the adherence properties to CHO cells expressing Dr fimbrial DAF receptor protein. Using quantitative assays, we determined the amount of Dr fimbriae in the bacteria cultivated in the presence of 3.5 mM of pilicides to be reduced by 75 to 81%. The inhibition effect of pilicides is concentration dependent, which is a crucial property for their use as potential anti-bacterial agents. The data presented in this article indicate that pilicides in mM concentration effectively inhibit the adherence of Dr+ bacteria to the host cells, -- the crucial, initial step in bacterial pathogenesis. Conclusions: Structural analysis of the DraB chaperone clearly showed it to be a model of the FGL subfamily of chaperones. This permits us to conclude that analyzed pilicides in mM concentration are effective inhibitors of the assembly of adhesins belonging to the Dr family, and more speculatively, of other FGL-type adhesive organelles. The presented data and those published so far permit to speculate that based on the conservation of chaperone-usher pathway in Gram-negative bacteria , the pilicides are potential anti-bacterial agents with activity against numerous pathogens, the virulence of which is dependent on the adhesive structures of the chaperone-usher type.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-03-31
    Description: Background: Porphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly associated with chronic periodontitis which is the primary cause of tooth loss in adults. It exhibits remarkable heterogeneity containing tetra-(LPS1435/1449) and penta-(LPS1690) acylated lipid A structures. Human gingival fibroblasts (HGFs) as the main resident cells of human gingiva play a key role in regulating matrix metalloproteinases (MMPs) and contribute to periodontal homeostasis. This study investigated the expression and regulation of MMPs1-3 and tissue inhibitors of MMP-1 (TIMP-1) in HGFs in response to P. gingivalis LPS1435/1449 and LPS1690 and hexa-acylated E. coli LPS as a reference. The expression of MMPs 1--3 and TIMP-1 was evaluated by real-time PCR and ELISA. Results: The MMP-3 mRNA and protein were highly upregulated in P. gingivalis LPS1690- and E. coli LPS-treated cells, whereas no induction was observed in P. gingivalis LPS1435/1449-treated cells. On the contrary, the expression of MMP-1 and -2 was not significantly affected by P. gingivalis LPS lipid A heterogeneity. The TIMP-1 mRNA was upregulated in P. gingivalis LPS1435/1449- and E. coli LPS-treated cells. Next, signal transduction pathways involved in P. gingivalis LPS-induced expression of MMP-3 were examined by blocking assays. Blockage of p38 MAPK and ERK significantly inhibited P. gingivalis LPS1690-induced MMP-3 expression in HGFs. Conclusion: The present findings suggest that the heterogeneous lipid A structures of P. gingivalis LPS differentially modulate the expression of MMP-3 in HGFs, which may play a role in periodontal pathogenesis.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-07
    Description: Background: Antibiotic therapy can select for small colony variants of Staphylococcus aureus that are more resistant to antibiotics and can result in persistent infections, necessitating the development of more effective antimicrobial strategies to combat small colony variant infections. Photodynamic therapy is an alternative treatment approach which utilises light in combination with a light-activated antimicrobial agent to kill bacteria via a non-specific mechanism of action. In this study, we investigated whether the combination of 665 nm laser light and the light-activated antimicrobial agent methylene blue was able to successfully kill S. aureus small colony variants. S. aureus and isogenic stable small colony variant were exposed to varying doses (1.93 to 9.65 J/cm2) of 665 nm laser light in the presence of varying concentrations (1 to 20 muM) of methylene blue. Results: The combination of 665 nm laser light and methylene blue was found to be an effective strategy for the killing of small colony variants. At the highest light dose (9.65 J/cm2) and methylene blue concentration (20 muM) tested, the number of viable bacteria decreased by approximately 6.9 log10 for the wild type and approximately 5 log10 for the small colony variant. Conclusions: These results suggest that photodynamic therapy has potential for use in the treatment of superficial infections caused by small colony variants of S. aureus and supports further research in this field.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-15
    Description: Background: Deep sequencing of the variable region of 16S rRNA genes has become the predominant tool for studying microbial ecology. As sequencing datasets have accumulated, meta-analysis of sequences obtained with different variable 16S rRNA gene targets and by different sequencing methods has become an intriguing prospect that remains to be evaluated experimentally. Results: We amplified a group of fecal samples using both V4F-V6R and V6F-V6R primer sets, excised the same V6 fragment from the two sets of Illumina sequencing data, and compared the resulting data in terms of the alpha-diversity, beta-diversity, and community structure. Principal component analysis (PCA) comparing the microbial community structures of different datasets, including those with simulated sequencing errors, was very reliable. Procrustes analysis showed a high degree of concordance between the different datasets for both abundance-weighted and binary Jaccard distances (P 〈 0.05), and a meta-analysis of individual datasets resulted in similar conclusions. The Shannon's diversity index was consistent as well, with comparable values obtained for the different datasets and for the meta-analysis of different datasets. In contrast, richness estimators (OTU and Chao) varied significantly, and the meta-analysis of richness estimators was also biased. The community structures of the two datasets were obviously different and led to significant changes in the biomarkers identified by the LEfSe statistical tool. Conclusions: Our results suggest that beta-diversity analysis and Shannon's diversity are relatively reliable for meta-analysis, while community structures and biomarkers are less consistent. These results should be useful for future meta-analyses of microbiomes from different data sources.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-18
    Description: Background: Microorganisms use two-component signal transduction (TCST) systems to regulate the response of the organism to changes of environmental conditions. Such systems are absent from mammalian cells and are thus of interest as drug targets. Fungal TCST systems are usually composed of a hybrid histidine kinase, comprising the histidine kinase (HisKA) domain and a receiver domain, a histidine phosphotransfer protein and a response regulator. Among the 11 groups of fungal histidine kinases, group III histidine kinases are of particular relevance as they are essential for the activity of different groups of fungicides. A characteristic feature is the N-terminal amino acid repeat domain comprising multiple HAMP domains, of which the function is still largely unknown. In Candida albicans, a fungal human pathogen, three histidine kinases were identified, of which CaNik1p is a group III histidine kinase. Heterologous expression of this protein in Sacchromyces cerevisiae conferred susceptibility to different fungicides. Fungicide activity was associated with phosphorylation of the mitogen activated protein kinase Hog1p. Results: We have constructed mutated versions of CaNik1p, from which either all HAMP domains were deleted (CaNik1pDeltaHAMP) or in which the histidine kinase or the receiver domains were not-functional. Expression of CaNIK1DeltaHAMP in S. cerevisiae led to severe growth inhibition. Normal growth could be restored by either replacing the phosphate-accepting histidine residue in CaNik1pDeltaHAMP or by expressing CaNIK1DeltaHAMP in S. cerevisiae mutants, in which single genes encoding several components of the HOG pathway were deleted. Expression of proteins with non-functional histidine kinase or receiver domains resulted in complete loss of susceptibility to antifungals, such as fludioxonil. Conditions leading to growth inhibition of transformants also led to phosphorylation of the MAP kinase Hog1p. Conclusion: Our results show that functional histidine kinase and receiver domains of CaNik1p were essential for antifungal susceptibility and for activation of the Hog1p. Moreover, for the first time we show that deletion of all HAMP domains from CaNik1p led to activation of Hog1p without an external stimulus. This phenotype was similar to the effects obtained upon treatment with fungicides, as in both cases growth inhibition correlated with Hog1p activation and was dependent on the functionality of the conserved phosphate-accepting histidine residue.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-01-17
    Description: Bacterial cultivation requires consideration of three things: The bacterial strain, cultivation medium, and cultivation conditions. Most microbiologists dutifully report their choice of strains and cultivation media in manuscripts; however, these same microbiologists often overlook reporting cultivation conditions. Without this information, it is difficult to determine if cultures were grown aerobically, microaerobically, or anaerobically. To cultivate bacteria aerobically, it is necessary to understand that oxygen does not readily diffuse into culture media; it needs help to get in. Microbiologists can do this by altering the flask-to-medium ratio, rpm of agitation, and/or the concentration of atmospheric oxygen, or by using baffled flasks.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-01-17
    Description: Background: MAP is a suspected zoonotic pathogen and the causative agent of Johne's Disease in cattle and other ruminant animals. With over $1 billion dollars in loss to the dairy industry due to Johne's Disease, efforts to eliminate or reduce MAP from cattle are of importance. The purpose of this study was to determine if daily intake of probiotics could eliminate or reduce Johne's Disease associated symptoms and pathogenesis by MAP. Post infection, animals are often asymptomatic carriers with limited shedding of the pathogen, proving early detection to be difficult. Disease and symptoms often appear 3--4 years after infection with antibiotic treatment proving ineffective. Symptoms include chronic gastrointestinal inflammation leading to severe weight-loss from poor feed and water intake cause a wasting disease. These symptoms are similar to those found in individuals with Crohn's Disease (CD); MAP has been implicated by not proven to be the causative agent of CD. Probiotics administered to livestock animals, including dairy and beef cattle have demonstrated improvements in cattle performance and health. Our objectives included determining the benefits of Lactobacillus animalis (strain name: NP-51) in MAP infected BALB/c mice by evaluating systemic and gastrointestinal response by the host and gut microbiota. Male and female animals were fed 1x106CFU/g probiotics in sterile, powdered mouse chow daily and infected with 1 x 107 CFU/ml MAP and compared to controls. Animals were evaluated for 180 days to assess acute and chronic stages of disease, with sample collection from animals every 45 days. MAP concentrations from liver and intestinal tissues were examined using real time-PCR methods and the expression of key inflammatory markers were measured during MAP infection (interferon-gamma [IFN-Upsilon], Interleukin-1alpha, IL-12, IL-10, IL-6, and Tumor necrosis factor alpha [TNF-alpha]) Results: Our results demonstrate administration of probiotics reduces production of IFN-Upsilon and IL-6 while increasing TNF-alpha and IL-17 in chronic disease; healthful immune responses that reduce chronic inflammation associated to MAP infection. Conclusions: We observed that the immune system's response in the presence of probiotics to MAP contributes towards host health by influencing the activity of the immune system and gut microbial populations.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-01-17
    Description: Background: Bacterial protein biosynthesis usually depends on a formylated methionyl start tRNA but Staphylococcus aureus is viable in the absence of Fmt, the tRNAMet formyl transferase. fmt mutants exhibit reduced growth rates indicating that the function of certain proteins depends on formylated N-termini but it has remained unclear, which cellular processes are abrogated by the lack of formylation. Results: In order to elucidate how global metabolic processes are affected by the absence of formylated proteins the exometabolome of an S. aureus fmt mutant was compared with that of the parental strain and the transcription of corresponding enzymes was analyzed to identify possible regulatory changes. The mutant consumed glucose and other carbon sources slower than the wild type. While the turnover of several metabolites remained unaltered fmt inactivation led to increases pyruvate release and, concomitantly, reduced pyruvate dehydrogenase activity. In parallel, the release of the pyruvate-derived metabolites lactate, acetoin, and alanine was reduced. The anaerobic degradation of arginine was also reduced in the fmt mutant compared to the wild-type strain. Moreover, the lack of formylated proteins caused increased susceptibility to the antibiotics trimethoprim and sulamethoxazole suggesting that folic acid-dependant pathways were perturbed in the mutant. Conclusions: These data indicate that formylated proteins are crucial for specific bacterial metabolic processes and they may help to understand why it has remained important during bacterial evolution to initiate protein biosynthesis with a formylated tRNAMet.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-01-18
    Description: Background: Amastins are surface glycoproteins (approximately 180 residues long) initially described in Trypanosoma cruzi as particularly abundant during the amastigote stage of this protozoan parasite. Subsequently, they have been found to be encoded by large gene families also present in the genomes of several species of Leishmania and in other Trypanosomatids. Although most amastin genes are organized in clusters associated with tuzin genes and are up-regulated in the intracellular stage of T. cruzi and Leishmania spp, distinct genomic organizations and mRNA expression patterns have also been reported. Results: Based on the analysis of the complete genome sequences of two T. cruzi strains, we identified a total of 14 copies of amastin genes in T. cruzi and showed that they belong to two of the four previously described amastin subfamilies. Whereas delta-amastin genes are organized in two or more clusters with alternating copies of tuzin genes, the two copies of beta-amastins are linked together in a distinct chromosome. Most T. cruzi amastins have similar surface localization as determined by confocal microscopy and western blot analyses. Transcript levels for delta-amastins were found to be up-regulated in amastigotes from several T. cruzi strains, except in the G strain, which is known to have low infection capacity. In contrast, in all strains analysed, beta-amastin transcripts are more abundant in epimastigotes, the stage found in the insect vector. Conclusions: Here we showed that not only the number and diversity of T. cruzi amastin genes is larger than what has been predicted, but also their mode of expression during the parasite life cycle is more complex. Although most T. cruzi amastins have a similar surface localization, only delta-amastin genes have their expression up-regulated in amastigotes. The results showing that a sub-group of this family is up-regulated in epimastigotes, suggest that, in addition of their role in intracellular amastigotes, T. cruzi amastins may also serve important functions during the insect stage of the parasite life cycle. Most importantly, evidence for their role as virulence factors was also unveiled from the data showing that delta-amastin expression is down regulated in a strain presenting low infection capacity.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-02-22
    Description: Background: Bacterial toxin-antitoxin (TA) systems are formed by potent regulatory or suicide factors (toxins) and their short-lived inhibitors (antitoxins). Antitoxins are DNA-binding proteins and auto-repress transcription of TA operons. Transcription of multiple TA operons is activated in temporarily non-growing persister cells that can resist killing by antibiotics. Consequently, the antitoxin levels of persisters must have been dropped and toxins are released of inhibition. Results: Here, we describe transcriptional cross-activation between different TA systems of Escherichia coli. We find that the chromosomal relBEF operon is activated in response to production of the toxins MazF, MqsR, HicA, and HipA. Expression of the RelE toxin in turn induces transcription of several TA operons. We show that induction of mazEF during amino acid starvation depends on relBE and does not occur in a relBEF deletion mutant. Induction of TA operons has been previously shown to depend on Lon protease which is activated by polyphospate accumulation. We show that transcriptional cross-activation occurs also in strains deficient for Lon, ClpP, and HslV proteases and polyphosphate kinase. Furthermore, we find that toxins cleave the TA mRNA in vivo, which is followed by degradation of the antitoxin-encoding fragments and selective accumulation of the toxin-encoding regions. We show that these accumulating fragments can be translated to produce more toxin. Conclusion: Transcriptional activation followed by cleavage of the mRNA and disproportionate production of the toxin constitutes a possible positive feedback loop, which can fire other TA systems and cause bistable growth heterogeneity. Cross-interacting TA systems have a potential to form a complex network of mutually activating regulators in bacteria.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-02-22
    Description: Background: A growing body of evidence suggests that Mycobacterium tuberculosis (Mtb) uses the host's cholesterol as a source of carbon and energy during infection. Strains defective in cholesterol transport or degradation exhibit attenuated growth in activated macrophages and diminished infectivity in animal models. The aim of this study was to evaluate intracellular replication of a cholesterol degradation-deficient Mtb mutant in human macrophages (M[latin capital letter o with stroke]) in vitro and assess the functional responses of Mtb mutant-infected M[latin capital letter o with stroke]. Results: A mutant Mtb H37Rv strain containing an inactivated kstD gene ([increment]kstD), which encodes 3-ketosteroid 1(2)-dehydrogenase (KstD), was previously prepared using the homologous recombination-based gene-replacement technique. A control strain carrying the kstD gene complemented with an intact kstD was also previously constructed. In this study, human resting M[latin capital letter o with stroke] were obtained after overnight differentiation of the human monocyte-macrophage cell line THP-1. Resting M[latin capital letter o with stroke] were further activated with interferon-gamma (IFN-gamma). The ability of the kstD-defective Mtb mutant strain to replicate intracellularly in human M[latin capital letter o with stroke] was evaluated using a colony-forming assay. Nitric oxide (NO) and reactive oxygen species (ROS) production by M[latin capital letter o with stroke] infected with wild-type or [increment]kstD strains was detected using Griess reagent and chemiluminescence methods, respectively. The production of tumor necrosis factor-alpha and interleukin-10 by M[latin capital letter o with stroke] after infection with wild-type or mutant Mtb was examined using enzyme-linked immunosorbent assays.We found that replication of mutant Mtb was attenuated in resting M[latin capital letter o with stroke] compared to the wild-type or complemented strains. Moreover, the mutant was unable to inhibit the NO and ROS production induced through Toll-like receptor 2 (TLR2) signaling in infected resting M[latin capital letter o with stroke]. In contrast, mutant and wild-type Mtb behaved similarly in M[latin capital letter o with stroke] activated with IFN-gamma before and during infection. Conclusions: The Mtb mutant DeltakstD strain, which is unable to use cholesterol as a source of carbon and energy, has a limited ability to multiply in resting M[latin capital letter o with stroke] following infection, reflecting a failure of the DeltakstD strain to inhibit the TLR2-dependent bactericidal activity of resting M[latin capital letter o with stroke].
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-02-22
    Description: Background: Bacterial signal transduction systems like two component system (TCS) and Serine/Threonine kinase (STK) and Serine/Threonine phosphatase (STP) play important roles in the virulence and pathogenesis of bacterial pathogens. Mycoplasma genitalium, a mollicute that causes the urogenital diseases urethritis and cervicitis in men and women, respectively, is a pathogen which lacks TCS but possesses STK/STP. In this study, we investigated the biochemical and virulence properties of an STP protein encoded by the gene MG_207 of this species. Results: We overexpressed MG207 in Escherichia coli overexpression system as a recombinant His10MG207 protein and purified it with affinity chromatography. This recombinant protein readily hydrolyzed the substrate p-nitrophenyl phosphate (pNPP) in a dose-dependent manner. Additional studies using synthetic peptides as substrates revealed that the recombinant protein was able to hydrolyze the threonine phosphate. Further, a transposon insertion mutant strain of M. genitalium (TIM207) that lacks the protein MG207 showed differentially phosphorylated proteins when compared to the wild type G37 strain. Mass spectrometry revealed that some of the key proteins differentially phosphorylated in TIM207 strain were putative cytoskeletal protein encoded by the gene MG_328 and pyruvate dehydrogenase E1 alpha chain encoded by the gene MG_274. In addition, TIM207 was noticed to be less cytotoxic to HeLa cells and this correlated with the production of less hydrogen peroxide by this strain. This strain was also less efficient in inducing the differentiation of THP-1 cell line as compared to wild type M. genitalium. Conclusions: The results of the study suggest that MG207 is an important signaling protein of M. genitalium and its presence may be crucial for the virulence of this species.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-02-27
    Description: Background: The life cycle of a bacteriophage has tightly programmed steps to help virus infect its host through the interactions between the bacteriophage and its host proteins. However, bacteriophage--host protein interactions in high temperature environment remain poorly understood. To address this issue, the protein interaction between the thermophilic bacteriophage GVE2 and its host thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal vent was characterized. Results: This investigation showed that the host's aspartate aminotransferase (AST), chaperone GroEL, and viral capsid protein VP371 formed a linearly interacted complex. The results indicated that the VP371-GroEL-AST complex were up-regulated and co-localized in the GVE2 infection of Geobacillus sp. E263. Conclusions: As reported, the VP371 is a capsid protein of GVE2 and the host AST is essential for the GVE2 infection. Therefore, our study revealed that the phage could use the anti-stress system of its host to protect the virus reproduction in a high-temperature environment for the first time.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-02-26
    Description: Background: Autologous platelet concentrates (PCs) have been extensively used in a variety of medical fields to promote soft and hard tissue regeneration. The significance behind their use lies in the abundance of growth factors in platelets alpha-granules that promotes wound healing. In addition, antibacterial properties of PCs against various bacteria have been recently pointed out. In this study, the antimicrobial effect of pure platelet-rich plasma (P-PRP) was evaluated against oral cavity microorganisms such as Enterococcus faecalis, Candida albicans, Streptococcus agalactiae, Streptococcus oralis and Pseudomonas aeruginosa. Blood samples were obtained from 17 patients who underwent oral surgery procedures involving the use of P-PRP. The antibacterial activity of P-PRP, evaluated as the minimum inhibitory concentration (MIC), was determined through the microdilution twofold serial method. Results: P-PRP inhibited the growth of Enterococcus faecalis, Candida albicans, Streptococcus agalactiae and Streptococcus oralis, but not of Pseudomonas aeruginosa strains. Conclusions: P-PRP is a potentially useful substance in the fight against postoperative infections. This might represent a valuable property in adjunct to the enhancement of tissue regeneration.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-03-02
    Description: Background: Fluoroquinolone use has been listed as a risk factor for the emergence of virulent clinical strains of some bacteria. The aim of our study was to evaluate the effect of fluoroquinolone (gatifloxacin) resistance selection on differential gene expression, including the toxin genes involved in virulence, in two fluoroquinolone-resistant strains of Clostridium perfringens by comparison with their wild-type isogenic strains. Results: DNA microarray analyses were used to compare the gene transcription of two wild types, NCTR and ATCC 13124, with their gatifloxacin-resistant mutants, NCTRR and 13124R. Transcription of a variety of genes involved in bacterial metabolism was either higher or lower in the mutants than in the wild types. Some genes, including genes for toxins and regulatory genes, were upregulated in NCTRR and downregulated in 13124R. Transcription analysis by quantitative real-time PCR (qRT-PCR) confirmed the altered expression of many of the genes that were affected differently in the fluoroquinolone-resistant mutants and wild types. The levels of gene expression and enzyme production for the toxins phospholipase C, perfringolysin O, collagenase and clostripain had decreased in 13124R and increased in NCTRR in comparison with the wild types. After centrifugation, the cytotoxicity of the supernatants of NCTRR and 13224R cultures for mouse peritoneal macrophages confirmed the increased cytotoxicity of NCTRR and the decreased cytotoxicity of 13124R in comparison with the respective wild types. Fluoroquinolone resistance selection also affected cell shape and colony morphology in both strains. Conclusion: Our results indicate that gatifloxacin resistance selection was associated with altered gene expression in two C. perfringens strains and that the effect was strain-specific. This study clearly demonstrates that bacterial exposure to fluoroquinolones may affect virulence (toxin production) in addition to drug resistance.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-03-02
    Description: Background: Water-deficiency adversely affects crop growth by generating reactive oxygen species (ROS) at cellular level. To mitigate such stressful events, it was aimed to investigate the co-synergism of exogenous salicylic acid (SA) and symbiosis of endophytic fungus with Capsicum annuum L. (pepper). Results: The findings of the study showed that exogenous SA (10-6 M) application to endophyte (Penicillium resedanum LK6) infected plants not only increased the shoot length and chlorophyll content but also improved the biomass recovery of pepper plants under polyethylene glycol (15%) induced osmotic stress (2, 4 and 8 days). Endophyte-infected plants had low cellular injury and high photosynthesis rate. SA also enhanced the colonization rate of endophyte in the host-plant roots. Endophyte and SA, in combination, reduced the production of ROS by increasing the total polyphenol, reduce glutathione, catalase, peroxidase and polyphenol oxidase as compared to control plants. Osmotic stress pronounced the lipid peroxidation and superoxide anions formation in control plants as compared to endophyte and SA-treated plants. The endogenous SA contents were significantly higher in pepper plants treated with endophyte and SA under osmotic stress as compared to control. Conclusion: Endophytic fungal symbiosis and exogenous SA application can help the plants to relieve the adverse effects of osmotic stress by decreasing losses in biomass as compared to non-inoculated plants. These findings suggest that SA application positively impact microbial colonization while in combination, it reprograms the plant growth under various intervals of drought stress. Such symbiotic strategy can be useful for expanding agriculture production in drought prone lands.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-02-08
    Description: Background: Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). Results: A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, P
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-02-08
    Description: Background: Lippia sidoides Cham., also known as pepper-rosmarin, produces an essential oil in its leaves that is currently used by the pharmaceutical, perfumery and cosmetic industries for its antimicrobial and aromatic properties. Because of the antimicrobial compounds (mainly thymol and carvacrol) found in the essential oil, we believe that the endophytic microorganisms found in L. sidoides are selected to live in different parts of the plant. Results: In this study, the endophytic microbial communities from the stems and leaves of four L. sidoides genotypes were determined using cultivation-dependent and cultivation-independent approaches. In total, 145 endophytic bacterial strains were isolated and further grouped using either ERIC-PCR or BOX-PCR, resulting in 76 groups composed of different genera predominantly belonging to the Gammaproteobacteria. The endophytic microbial diversity was also analyzed by PCR-DGGE using 16S rRNA-based universal and group-specific primers for total bacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria and 18S rRNA-based primers for fungi. PCR-DGGE profile analysis and principal component analysis showed that the total bacteria, Alphaproteobacteria, Betaproteobacteria and fungi were influenced not only by the location within the plant (leaf vs. stem) but also by the presence of the main components of the L. sidoides essential oil (thymol and/or carvacrol) in the leaves. However, the same could not be observed within the Actinobacteria. Conclusion: The data presented here are the first step to begin shedding light on the impact of the essential oil in the endophytic microorganisms in pepper-rosmarin.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-02-18
    Description: Background: All Shigella flexneri serotypes except serotype 6 share a common O-antigen tetrasaccharide backbone and nearly all variation between serotypes are due to glucosyl and/or O-acetyl modifications of the common O units mediated by glycosyltransferases encoded by serotype-converting bacteriophages. Several S. flexneri serotype-converting phages including SfV, SfX, Sf6 and SfII have been isolated and characterized. However, S. flexneri serotype-converting phage SfI which encodes a type I modification of serotype 1 (1a, 1b, 1c and 1d) had not yet been characterized. Results: The SfI phage was induced and purified from a S. flexneri serotype 1a clinical strain 019. Electron microscopy showed that the SfI phage has a hexagonal head and a long contractile tail, characteristic of the members of Myoviridae family. SfI can convert serotype Y to serotype 1a and serotype X to serotype 1d, but cannot convert 10 other S. flexneri serotypes (1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, 5a, Xv) tested, suggesting that SfI has a narrow host range. Similar to other S. flexneri serotype-converting phages, SfI integrates into the tRNA-thrW gene adjacent to proA of the host chromosome when lysogenized. The complete sequence of the SfI genome was 38,389 bp, encoding 66 open reading frames and two tRNA genes. Phage SfI shares significant homology with S. flexneri phage SfV, Escherichia coli prophage e14 and lambda, and is classified into the lambdoid phage family. SfI was found to use a cos mechanism for DNA packaging similar to that of phage SfV. Conclusions: SfI contains features of lambdoid phages and is closely related to S. flexneri phage SfV, E. coli prophage e14 and lambda. The characterization of SfI enhances our understanding of serotype conversion of S. flexneri.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-02-07
    Description: Background: Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results: The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p 〈 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion: Significant differences (p 〈 0.05) observed between dead and living microbial cells for metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study advocates the use of Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas putida and Bacillus licheniformis.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-02-09
    Description: Background: Hfq is an RNA chaperone protein that has been broadly implicated in sRNA function in bacteria. Here we describe the construction and characterization of a null allele of the gene that encodes the RNA chaperone Hfq in Shewanella oneidensis strain MR-1, a dissimilatory metal reducing bacterium. Results: Loss of hfq in S. oneidensis results in a variety of mutant phenotypes, all of which are fully complemented by addition of a plasmid-borne copy of the wild type hfq gene. Aerobic cultures of the hfq[increment] mutant grow more slowly through exponential phase than wild type cultures, and hfq[increment] cultures reach a terminal cell density in stationary phase that is ~2/3 of that observed in wild type cultures. We have observed a similar growth phenotype when the hfq[increment] mutant is cultured under anaerobic conditions with fumarate as the terminal electron acceptor, and we have found that the hfq[increment] mutant is defective in Cr(VI) reduction. Finally, the hfq[increment] mutant exhibits a striking loss of colony forming units in extended stationary phase and is highly sensitive to oxidative stress induced by H2O2 or methyl viologen (paraquat). Conclusions: The hfq mutant in S. oneidensis exhibits pleiotropic phenotypes, including a defect in metal reduction. Our results also suggest that hfq mutant phenotypes in S. oneidensis may be at least partially due to increased sensitivity to oxidative stress.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-02-09
    Description: Background: Mycoplasmas-contamination of Orientia tsutsugamushi, one of the obligated intracellular bacteria, is a very serious problem in in vitro studies using cell cultures because mycoplasmas have significant influence on the results of scientific studies. Only a recommended decontamination method is to passage the contaminated O. tsutsugamushi strains through mice to eliminate only mycoplasmas under influence of their immunity. However, this method sometimes does not work especially for low virulent strains of O. tsutsugamushi which are difficult to propagate in mice. In this study, we tried to eliminate mycoplasmas contaminants from both high virulent and low virulent strains of the contaminated O. tsutsugamushi by repeating passage through cell cultures with antibiotics in vitro. Results: We cultured a contaminated, high virulent strain of O. tsutsugamushi using a mouse lung fibroblasts cell line, L-929 cell in the culture medium containing lincomycin at various concentrations and repeated passages about every seven days. At the passage 5 only with 10 mug/ml of lincomycin, we did not detect mycoplasmas by two PCR based methods whereas O. tsutsugamushi continued good growth. During following four passages without lincomycin, mycoplasmas did not recover. These results suggested that mycoplasmas were completely eliminated from the high virulent strain of O. tsutsugamushi. Furthermore, by the same procedures with 10 mug/ml of lincomycin, we also eliminated mycoplasmas from a contaminated, low virulent strain of O. tsutsugamushi. Our additional assay showed that 50 mug/ml of lyncomycin did not inhibit the growth of O. tsutsugamushi, although MICs of many mycoplasmas contaminants were less than 6 mug/ml as shown previously. Conclusion: Our results showed an alternative method to eliminate mycoplasmas from the contaminated O. tsutsugamushi strains in place of in vivo passage through mice. Especially this notable method works for the decontamination not only from the high virulent strain also from the low virulent strain of O. tsutsugamushi. For further elimination, lincomycin at the limit concentration, which does not inhibit the growth of O. tsutsugamushi, can possibly eliminate most mycoplasmas from contaminated O. tsutsugamushi strains.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-02-12
    Description: Background: Glucose is a signaling molecule which regulates multiple events in eukaryotic organisms and the most preferred carbon source in the fission yeast Schizosaccharomyces pombe. The ability of this yeast to grow in the absence of glucose becomes strongly limited due to lack of enzymes of the glyoxylate cycle that support diauxic growth. The stress-activated protein kinase (SAPK) pathway and its effectors, Sty1 MAPK and transcription factor Atf1, play a critical role in the adaptation of fission yeast to grow on alternative non-fermentable carbon sources by inducing the expression of fbp1+ gene, coding for the gluconeogenic enzyme fructose-1,6-bisphosphatase. The cell integrity Pmk1 pathway is another MAPK cascade that regulates various processes in fission yeast, including cell wall construction, cytokinesis, and ionic homeostasis. Pmk1 pathway also becomes strongly activated in response to glucose deprivation but its role during glucose exhaustion and ensuing adaptation to respiratory metabolism is currently unknown. Results: We found that Pmk1 activation in the absence of glucose takes place only after complete depletion of this carbon source and that such activation is not related to an endogenous oxidative stress. Notably, Pmk1 MAPK activation relies on de novo protein synthesis, is independent on known upstream activators of the pathway like Rho2 GTPase, and involves PKC ortholog Pck2. Also, the Glucose/cAMP pathway is required operative for full activation of the Pmk1 signaling cascade. Mutants lacking Pmk1 displayed a partial growth defect in respiratory media which was not observed in the presence of glucose. This phenotype was accompanied by a decreased and delayed expression of transcription factor Atf1 and target genes fbp1+ and pyp2+. Intriguingly, the kinetics of Sty1 activation in Pmk1-less cells was clearly altered during growth adaptation to non-fermentable carbon sources. Conclusions: Unknown upstream elements mediate Pck2-dependent signal transduction of glucose withdrawal to the cell integrity MAPK pathway. This signaling cascade reinforces the adaptive response of fission yeast to such nutritional stress by enhancing the activity of the SAPK pathway.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-02-14
    Description: Background: The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of A. salmonicida subsp. salmonicida A449. Results: By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity while 'atypical' A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much lower in other Aeromonas species. Conclusions: HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630 insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A. salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A. salmonicida subsp. salmonicida.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    BioMed Central
    Publication Date: 2013-02-20
    Description: Contributing reviewersThe editors of BMC Microbiology would like to thank all our reviewers who have contributed to the journal in Volume 12 (2012).
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-02-07
    Description: Background: In Bacillus mycoides, as well as in other members of the B. cereus group, the tubulin-like protein of the division septum FtsZ is encoded by the distal gene of the cluster division and cell wall (dcw). Along the cluster the genes coding for structural proteins of the division apparatus are intermingled with those coding for enzymes of peptidoglycan biosynthesis, raising the possibility that genes with this different function might be coexpressed. Transcription of ftsZ in two model bacteria had been reported to differ: in B. subtilis, the ftsZ gene was found transcribed as a bigenic mRNA in the AZ operon; in E. coli, the transcripts of ftsZ were monogenic, expressed by specific promoters. Here we analyzed the size and the initiation sites of RNAs transcribed from ftsZ and from other cluster genes in two B. mycoides strains, DX and SIN, characterized by colonies of different chirality and density, to explore the correlation of the different morphotypes with transcription of the dcw genes. Results: In both strains, during vegetative growth, the ftsZ-specific RNAs were composed mainly of ftsZ, ftsA-ftsZ and ftsQ-ftsA-ftsZ transcripts. A low number of RNA molecules included the sequences of the upstream murG and murB genes, which are involved in peptidoglycan synthesis. No cotranscription was detected between ftsZ and the downstream genes of the SpoIIG cluster. The monogenic ftsZ RNA was found in both strains, with the main initiation site located inside the ftsA coding sequence. To confirm the promoter property of the site, a B. mycoides construct carrying the ftsA region in front of the shortened ftsZ gene was inserted into the AmyE locus of B. subtilis 168. The promoter site in the ftsA region was recognized in the heterologous cellular context and expressed as in B. mycoides. Conclusions: The DX and SIN strains of B. mycoides display very similar RNA transcription specificity. The ftsZ messenger RNA can be found either as an independent transcript or expressed together with ftsA and ftsQ and, in low amounts, with genes that are specific to peptidoglycan biosynthesis.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-02-09
    Description: Background: Shigella is a major pathogen responsible for bacillary dysentery, a severe form of shigellosis. Severity of the disease depends on the virulence of the infecting strain. Shigella pathogenicity is a multi-gene phenomenon, involving the participation of genes on an unstable large virulence plasmid and chromosomal pathogenicity islands. Results: A multiplex PCR (mPCR) assay was developed to detect S. flexneri 2a from rural regions of Zhengding (Hebei Province, China). We isolated and tested 86 strains using our mPCR assay, which targeted the ipaH, ial and set1B genes. A clinical strain of S. flexneri 2a 51 (SF51) containing ipaH and ial, but lacking set1B was found. The virulence of this strain was found to be markedly decreased. Further testing showed that the SF51 strain lacked pic. To investigate the role of pic in S. flexneri 2a infections, a pic knockout mutant (SF301-[increment]pic) and two complementation strains, SF301-[increment]pic/pPic and SF51/pPic, were created. Differences in virulence for SF51, SF301-[increment]pic, SF301-[increment]pic/pPic, SF51/pPic and S. flexneri 2a 301 (SF301) were compared. Compared with SF301, both SF51 and SF301-[increment]pic exhibited lower levels of Hela cell invasion and resulted in reduced keratoconjunctivitis, with low levels of tissue damage seen in murine eye sections. The virulence of SF301-[increment]pic and SF51 was partially recovered in vitro and in vivo through the addition of a complementary pic gene. Conclusions: The pic gene appears to be involved in an increase in pathogenicity of S. flexneri 2a. This gene assists with bacterial invasion into host cells and alters inflammatory reactions.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-02-14
    Description: Background: Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results: We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions: In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-02-15
    Description: Background: Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results: We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases' at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that, fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that, of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency ( 〈 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p 〈 0.05) among sites under purifying selection in the virus. Conclusion: The study provides the first evidence for intracodon recombination in DENV and suggests that within codon genetic recombination has a significant role in maintaining extensive purifying selection of DENV in natural populations. Our study also suggests that fixation of beneficial mutations may lead to virus evolution via translational selection of specific sites in the DENV genome.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-02-17
    Description: Background: Cronobacter spp. are opportunistic pathogens that can cause septicemia and infections of the central nervous system primarily in premature, low-birth weight and/or immune-compromised neonates. Serum resistance is a crucial virulence factor for the development of systemic infections, including bacteremia. It was the aim of the current study to identify genes involved in serum tolerance in a selected Cronobacter sakazakii strain of clinical origin. Results: Screening of 2749 random transposon knock out mutants of a C. sakazakii ES 5 library for modified serum tolerance (compared to wild type) revealed 10 mutants showing significantly increased/reduced resistance to serum killing. Identification of the affected sites in mutants displaying reduced serum resistance revealed genes encoding for surface and membrane proteins as well as regulatory elements or chaperones. By this approach, the involvement of the yet undescribed Wzy_C superfamily domain containing coding region in serum tolerance was observed and experimentally confirmed. Additionally, knock out mutants with enhanced serum tolerance were observed. Examination of respective transposon insertion loci revealed regulatory (repressor) elements, coding regions for chaperones and efflux systems as well as the coding region for the protein YbaJ. Real time expression analysis experiments revealed, that knock out of the gene for this protein negatively affects the expression of the fimA gene, which is a key structural component of the formation of fimbriae. Fimbriae are structures of high immunogenic potential and it is likely that absence/truncation of the ybaJ gene resulted in a non-fimbriated phenotype accounting for the enhanced survival of this mutant in human serum. Conclusion: By using a transposon knock out approach we were able to identify genes involved in both increased and reduced serum tolerance in Cronobacter sakazakii ES5. This study reveals first insights in the complex nature of serum tolerance of Cronobacter spp.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-02-19
    Description: Background: Ciliates of the family Sonderiidae are common members of the eukaryotic communities in various anoxic environments. They host both ecto- and endosymbiotic prokaryotes (the latter associated with hydrogenosomes) and possess peculiar morpho-ultrastructural features, whose functions and homologies are not known. Their phylogenetic relationships with other ciliates are not completely resolved and the available literature, especially concerning electron microscopy and molecular studies, is quite scarce. Results: Sonderia vorax Kahl, 1928 is redescribed from an oxygen-deficient, brackish-water pond along the Ligurian Sea coastlines of Italy. Data on morphology, morphometry, and ultrastructure are reported. S. vorax is ovoid-ellipsoid in shape, dorsoventrally flattened, 130 x 69 mum (mean in vivo); it shows an almost spherical macronucleus, and one relatively large micronucleus. The ventral kinetom has a "secant system" including fronto-ventral and fronto-lateral kineties. A distinctive layer of bacteria laying between kineties covers the ciliate surface. Two types of extrusomes and hydrogenosomes-endosymbiotic bacteria assemblages are present in the cytoplasm. The phylogeny based on 18S rRNA gene sequences places S. vorax among Plagiopylida; Sonderiidae clusters with Plagiopylidae, although lower-level relationships remain uncertain. The studied population is fixed as neotype and the ciliate is established as type species of the genus, currently lacking. Conclusions: This is the first description of a representative of Sonderiidae performed with both morphological and molecular data. To sum up, many previous hypotheses on this interesting but poorly known taxon are confirmed but confusion and contradictory data are as well highlighted.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-02-19
    Description: Background: In humans, Streptococcus agalactiae or group B streptococcus (GBS) is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods: Isolates from fish (n = 26), seals (n = 6), a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results: Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST) 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions: The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host-associated genome content of S. agalactiae strains.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-02-20
    Description: Background: Bacteriocins are protein antimicrobial agents that are produced by all prokaryotic lineages. Escherichia coli strains frequently produce the bacteriocins known as colicins. One of the most prevalent colicins, colicin M, can kill susceptible cells by hydrolyzing the peptidoglycan lipid II intermediate, which arrests peptidoglycan polymerization steps and provokes cell lysis. Due to the alarming rise in antibiotic resistance and the lack of novel antimicrobial agents, colicin M has recently received renewed attention as a promising antimicrobial candidate. Here the effects of subinhibitory concentrations of colicin M on whole genome transcription in E. coli were investigated, to gain insight into its ecological role and for purposes related to antimicrobial therapy. Results: Transcriptome analysis revealed that exposure to subinhibitory concentrations of colicin M altered expression of genes involved in envelope, osmotic and other stresses, including genes of the CreBC two-component system, exopolysaccharide production and cell motility. Nonetheless, there was no induction of biofilm formation or genes involved in mutagenesis. Conclusion: At subinhibitory concentrations colicin M induces an adaptive response primarily to protect the bacterial cells against envelope stress provoked by peptidoglycan damage. Among the first induced were genes of the CreBC two-component system known to promote increased resistance against colicins M and E2, providing novel insight into the ecology of colicin M production in natural environments. While an adaptive response was induced nevertheless, colicin M application did not increase biofilm formation, nor induce SOS genes, adverse effects that can be provoked by a number of traditional antibiotics, providing support for colicin M as a promising antimicrobial agent.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-02-06
    Description: Background: Bacterial persistence describes a phenomenon wherein a small subpopulation of cells is able to survive a challenge with high doses of an antibiotic (or other stressor) better than the majority of the population. Previous work has shown that cells that are in a dormant or slow-growing state are persistent to antibiotic treatment and that populations with higher fractions of dormant cells exhibit higher levels of persistence. These data suggest that a major determinant of the fraction of persisters within a population is the rate at which cells enter and exit from dormancy. However, it is not known whether there are physiological changes in addition to dormancy that influence persistence. Here, we use quantitative measurements of persister fractions in a set of environmental isolates of E. coli together with a mathematical model of persister formation to test whether a single general physiological change, such as cell dormancy, can explain the differences in persister phenotypes observed in different strains. Results: If a single physiological change (e.g. cell dormancy) underlies most persister phenotypes, then strains should exhibit characteristic fractions of persister cells: some strains will consistently have high fractions of persisters (dormant cells), whereas others will have low fractions. Although we found substantial variation in the fraction of persisters between different environmental isolates of E. coli, these fractions were not correlated across antibiotics. Some strains exhibited high persister fractions in one antibiotic, but low persister fractions in a second antibiotic. Surprisingly, no correlation in persister fractions was observed between any two drugs, even for antibiotics with nearly identical modes of action (ciprofloxacin and nalidixic acid). Conclusions: These data support the hypothesis that there is no single physiological change that determines the persistence level in a population of cells. Instead, the fraction of cells that survive antibiotic treatment (persist) depends critically on the specific antibiotic that is used, suggesting that physiological changes in addition to dormancy can underlie persister phenotypes.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-02-05
    Description: Background: The oral spirochete bacterium Treponema denticola is associated with both the incidence and severity of periodontal disease. Although the biological or phenotypic properties of a significant number of T. denticola isolates have been reported in the literature, their genetic diversity or phylogeny has never been systematically investigated. Here, we describe a multilocus sequence analysis (MLSA) of 20 of the most highly studied reference strains and clinical isolates of T. denticola; which were originally isolated from subgingival plaque samples taken from subjects from China, Japan, the Netherlands, Canada and the USA. Results: The sequences of the 16S ribosomal RNA gene, and 7 conserved protein-encoding genes (flaA, recA, pyrH, ppnK, dnaN, era and radC) were successfully determined for each strain. Sequence data was analyzed using a variety of bioinformatic and phylogenetic software tools. We found no evidence of positive selection or DNA recombination within the protein-encoding genes, where levels of intraspecific sequence polymorphism varied from 18.8% (flaA) to 8.9% (dnaN). Phylogenetic analysis of the concatenated protein-encoding gene sequence data (ca. 6,513 nucleotides for each strain) using Bayesian and maximum likelihood approaches indicated that the T. denticola strains were monophyletic, and formed 6 well-defined clades. All analyzed T. denticola strains appeared to have a genetic origin distinct from that of 'Treponema vincentii' or Treponema pallidum. No specific geographical relationships could be established; but several strains isolated from different continents appear to be closely related at the genetic level. Conclusions: Our analyses indicate that previous biological and biophysical investigations have predominantly focused on a subset of T. denticola strains with a relatively narrow range of genetic diversity. Our methodology and results establish a genetic framework for the discrimination and phylogenetic analysis of T. denticola isolates, which will greatly assist future biological and epidemiological investigations involving this putative 'periodontopathogen'.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-02-06
    Description: Background: FtsZ is an essential cell division protein, which localizes at the middle of the bacterial cell to mediate cytokinesis. In vitro, FtsZ polymerizes and induces GTPase activity through longitudinal interactions to form the protofilaments, whilst lateral interactions result within formation of bundles. The interactions that participate in the protofilaments are similar to its eukaryotic homologue tubulin and are well characterized; however, lateral interactions between the inter protofilaments are less defined. FtsZ forms double protofilaments in vitro, though the key elements on the interface of the inter-protofilaments remain unclear as well as the structures involved in the lateral interactions in vivo and in vitro. In this study, we demonstrate that the highly conserved negative charge of glutamate 83 and the positive charge of arginine 85 located in the helix H3 bend of FtsZ are required for in vitro FtsZ lateral and longitudinal interactions, respectively and for in vivo cell division. Results: The effect of mutation on the widely conserved glutamate-83 and arginine-85 residues located in the helix H3 (present in most of the tubulin family) was evaluated by in vitro and in situ experiments. The morphology of the cells expressing Escherichia coli FtsZ (E83Q) mutant at 42[degree sign]C formed filamented cells while those expressing FtsZ(R85Q) formed shorter filamented cells. In situ immunofluorescence experiments showed that the FtsZ(E83Q) mutant formed rings within the filamented cells whereas those formed by the FtsZ(R85Q) mutant were less defined. The expression of the mutant proteins diminished cell viability as follows: wild type 〉 E83Q 〉 R85Q. In vitro, both, R85Q and E83Q reduced the rate of FtsZ polymerization (WT 〉 E83Q 〉〉 R85Q) and GTPase activity (WT 〉 E83Q 〉〉 R85Q). R85Q protein polymerized into shorter filaments compared to WT and E83Q, with a GTPase lag period that was inversely proportional to the protein concentration. In the presence of ZipA, R85Q GTPase activity increased two fold, but no bundles were formed suggesting that lateral interactions were affected. Conclusions: We found that glutamate 83 and arginine 85 located in the bend of helix H3 at the lateral face are required for the protofilament lateral interaction and also affects the inter-protofilament lateral interactions that ultimately play a role in the functional localization of the FtsZ ring at the cell division site.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-12-06
    Description: Background: Stachybotrys chartarum is a filamentous mold frequently identified among the mycobiota of water-damaged building materials. Growth of S. chartarum on suitable substrates and under favorable environmental conditions leads to the production of secondary metabolites such as mycotoxins and microbial volatile organic compounds (MVOCs). The aim of this study was to characterize MVOC emission profiles of seven toxigenic strains of S. chartarum, isolated from water-damaged buildings, in order to identify unique MVOCs generated during growth on gypsum wallboard and ceiling tile coupons. Inoculated coupons were incubated and monitored for emissions and growth using a closed glass environmental growth chamber maintained at a constant room temperature. Gas samples were collected from the headspace for three to four weeks using Tenax TA tubes. Results: Most of the MVOCs identified were alcohols, ketones, ethers and esters. The data showed that anisole (methoxybenzene) was emitted from all of the S. chartarum strains tested on both types of substrates. Maximum anisole concentration was detected after seven days of incubation. Conclusions: MVOCs are suitable markers for fungal identification because they easily diffuse through weak barriers like wallpaper, and could be used for early detection of mold growth in hidden cavities. This study identifies the production of anisole by seven toxigenic strains of Stachybotrys chartarum within a period of one week of growth on gypsum wallboard and ceiling tiles. These data could provide useful information for the future construction of a robust MVOC library for the early detection of this mold.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-12-06
    Description: Background: The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. Results: We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Conclusion: Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-12-06
    Description: Background: Bovine papillomatous digital dermatitis (DD) is the leading cause of lameness in dairy cattle and represents a serious welfare and economic burden. Found primarily in high production dairy cattle worldwide, DD is characterized by the development of an often painful red, raw ulcerative or papillomatous lesion frequently located near the interdigital cleft and above the bulbs of the heel. While the exact etiology is unknown, several spirochete species have been isolated from lesion material. Four isolates of Treponema phagedenis-like spirochetes were isolated from dairy cows in Iowa. Given the distinct differences in host, environmental niche, and disease association, a closer analysis of phenotypic characteristics, growth characteristics, and genomic sequences of T. phagedenis, a human genitalia commensal, and the Iowa DD isolates was undertaken. Results: Phenotypically, these isolates range from 8.0 to 9.7 mum in length with 6-8 flagella on each end. These isolates, like T. phagedenis, are strictly anaerobic, require serum and volatile fatty acids for growth, and are capable of fermenting fructose, mannitol, pectin, mannose, ribose, maltose, and glucose. Major glucose fermentation products produced are formate, acetate, and butyrate. Further study was conducted with a single isolate, 4A, showing an optimal growth pH of 7.0 (range of 6-8.5) and an optimal growth temperature of 40[degree sign]C (range of 29[degree sign]C-43[degree sign]C). Comparison of partial genomic contigs of isolate 4A and contigs of T. phagedenis F0421 revealed 〉 95% amino acid sequence identity with amino acid sequence of 4A. In silico DNA-DNA whole genome hybridization and BLAT analysis indicated a DDH estimate of 〉80% between isolate 4A and T. phagedenis F0421, and estimates of 52.5% or less when compared to the fully sequenced genomes of other treponeme species. Conclusion: Using both physiological, biochemical and genomic analysis, there is a lack of evidence for difference between T. phagedenis and isolate 4A. The description of Treponema phagedenis should be expanded from human genital skin commensal to include being an inhabitant within DD lesions in cattle.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-12-06
    Description: Background: Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the delta-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results: Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions: Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene amplification.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-12-07
    Description: Background: Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, is a bacterial disease of fish, which is both geographically widespread and difficult to control. Previously, application of various molecular typing methods has failed to reliably discriminate between R. salmoninarum isolates originating from different host species and geographic areas. The current study aimed to utilize multilocus variable number tandem repeats (VNTR) to investigate inter-strain variation of R. salmoninarum to establish whether host-specific populations exist in Atlantic salmon and rainbow trout respectively. Such information would be valuable in risk assessment of transmission of R. salmoninarum in a multispecies aquaculture environment. Results: The present analysis utilizing sixteen VNTRs distinguished 17 different haplotypes amongst 41 R. salmoninarum isolates originating from Atlantic salmon and rainbow trout in Scotland, Norway and the US. The VNTR typing system revealed two well supported groups of R. salmoninarum haplotypes. The first group included R. salmoninarum isolates originating from both Atlantic salmon and rainbow trout circulating in Scottish and Norwegian aquaculture, in addition to the type strain ATCC33209T originating from Chinook salmon in North America. The second group comprised isolates found exclusively in Atlantic salmon, of mainly wild origin, including isolates NCIB1114 and NCIB1116 associated with the original Dee disease in Scotland. Conclusions: The present study confirmed that VNTR analysis can be successfully applied to discriminate R. salmoninarum strains. There was no clear distinction between isolates originating from Atlantic salmon and rainbow trout as several haplotypes in group 1 clustered together R. salmoninarum isolates from both species. These findings indicate a potential exchange of pathogens between Atlantic salmon and rainbow trout in Scottish and Norwegian aquaculture during the last 20 years. In a scenario of expansion of rainbow trout farming into the marine environment, appropriate biosecurity measures to minimize disease occurrence are advised. The present results also suggest that R. salmoninarum isolates circulating in European aquaculture over the last 20 years are genetically distant to the wild strains originally causing BKD in the rivers Dee and Spey.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-12-12
    Description: Background: Bradyrhizobium japonicum USDA110, a soybean symbiont, is capable of accumulating a large amount of poly-beta-hydroxybutyrate (PHB) as an intracellular carbon storage polymer during free-living growth. Within the genome of USDA110, there are a number of genes annotated as paralogs of proteins involved in PHB metabolism, including its biosynthesis, degradation, and stabilization of its granules. They include two phbA paralogs encoding 3-ketoacyl-CoA thiolase, two phbB paralogs encoding acetoacetylCoA reductase, five phbC paralogs encoding PHB synthase, two phaZ paralogs encoding PHB depolymerase, at least four phaP phasin paralogs for stabilization of PHB granules, and one phaR encoding a putative transcriptional repressor to control phaP expression. Results: Quantitative reverse-transcriptase PCR analyses of RNA samples prepared from cells grown using three different media revealed that PHB accumulation was related neither to redundancy nor expression levels of the phbA, phbB, phbC, and phaZ paralogs for PHB-synthesis and degradation. On the other hand, at least three of the phaP paralogs, involved in the growth and stabilization of PHB granules, were induced under PHB accumulating conditions. Moreover, the most prominently induced phasin exhibited the highest affinity to PHB in vitro; it was able to displace PhaR previously bound to PHB. Conclusions: These results suggest that PHB accumulation in free-living B. japonicum USDA110 may not be achieved by controlling production and degradation of PHB. In contrast, it is achieved by stabilizing granules autonomously produced in an environment of excess carbon sources together with restricted nitrogen sources.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-12-12
    Description: Background: Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results: Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de Mexico Federico Gomez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion: This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-12-11
    Description: Background: Enterovirus 71 (EV71) is major cause of hand, foot and mouth disease. Large epidemics of EV71 infection have been recently reported in the Asian-Pacific region. Currently, no vaccine is available to prevent EV71 infection. Results: The peptide (VP4N20) consisting of the first 20 amino acids at the N-terminal of VP4 of EV71 genotype C4 were fused to hepatitis B core (HBcAg) protein. Expression of fusion proteins in E. coli resulted in the formation of chimeric virus-like particles (VLPs). Mice immunized with the chimeric VLPs elicited anti-VP4N20 antibody response. In vitro microneutralization experiments showed that anti-chimeric VLPs sera were able to neutralize not only EV71 of genotype C4 but also EV71 of genotype A. Neonatal mice model confirmed the neutralizing ability of anti-chimeric VLPs sera. Eiptope mapping led to the identification of a "core sequence" responsible for antibody recognition within the peptide. Conclusions: Immunization of chimeric VLPs is able to elicit antibodies displaying a broad neutralizing activity against different genotypes of EV71 in vitro. The "core sequence" of EV71-VP4 is highly conserved across EV71 genotypes. The chimeric VLPs have a great potential to be a novel vaccine candidate with a broad cross-protection against different EV71 genotypes.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-12-11
    Description: Background: Vancomycin has been the medication of last resort to cure infections caused by Staphylococcus aureus since the increase in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA). Some strains have developed vancomycin-intermediate resistance, which is generally associated with altered expression of or mutations in some part of the two-component system (TCS), such as GraSR, VraSR, and WalKR. Results: We deleted the AirSR TCS in S. aureus NCTC8325 and compared the resultant transcript levels with those of its parent strain using microarray analysis. The results indicated that more than 20 genes that are related to cell wall metabolism were down-regulated in the airSR mutant. The airSR mutant exhibited reduced autolysis rates and reduced viability in the presence of vancomycin. Reverse-transcript real-time PCR and DNA mobility shift assays verified that AirR can directly bind to and regulate genes that function in cell wall metabolism (cap, pbp1, and ddl) and autolysis (lytM). Conclusions: AirSR acts as a positive regulator in cell wall biosynthesis and turnover in Staphylococcus aureus NCTC8325.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-12-11
    Description: Background: Recent studies have shown that mammalian milk represents a continuous supply of commensal bacteria, including enterococci. The objectives of this study were to evaluate the presence of enterococci in milk of different species and to screen them for several genetic and phenotypic traits of clinical significance among enterococci. Results: Samples were obtained from, at least, nine porcine, canine, ovine, feline and human healthy hosts. Enterococci could be isolated, at a concentration of 1.00 x 102 -1.16 x 103 CFU/ml, from all the porcine samples and, also from 85, 50, 25 and 25% of the human, canine, feline and ovine ones, respectively. They were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus durans. Among the 120 initial enterococcal isolates, 36 were selected on the basis of their different PFGE profiles and further characterized. MLST analysis revealed a wide diversity of STs among the E. faecalis and E. faecium strains, including some frequently associated to hospital infections and novel STs. All the E. faecalis strains possessed some of the potential virulence determinants (cad, ccf, cob, cpd, efaAfs, agg2, gelE, cylA, espfs) assayed while the E. faecium ones only harboured the efaAfm gene. All the tested strains were susceptible to tigecycline, linezolid and vancomycin, and produced tyramine. Their susceptibility to the rest of the antimicrobials and their ability to produce other biogenic amines varied depending on the strain. Enterococci strains isolated from porcine samples showed the widest spectrum of antibiotic resistance. Conclusions: Enterococci isolated from milk of different mammals showed a great genetic diversity. The wide distribution of virulence genes and/or antibiotic resistance among the E. faecalis and E. faecium isolates indicates that they can constitute a reservoir of such traits and a risk to animal and human health.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-12-12
    Description: Background: Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is 'RHA' unlike 'RHG' found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal. Results: Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution. Conclusion: Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic annotation systems towards a better understanding of this important group of enzymes.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-10-06
    Description: Background: Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. Results: We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. Conclusions: Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-10-06
    Description: Background: Coxiella burnetii is a Gram-negative intracellular bacterial pathogen that replicates within a phagolysosome-like parasitophorous vacuole (PV) of macrophages. PV formation requires delivery of effector proteins directly into the host cell cytoplasm by a type IVB secretion system. However, additional secretion systems are likely responsible for modification of the PV lumen microenvironment that promote pathogen replication. Results: To assess the potential of C. burnetii to secrete proteins into the PV, we analyzed the protein content of modified acidified citrate cysteine medium for the presence of C. burnetii proteins following axenic (host cell-free) growth. Mass spectrometry generated a list of 105 C. burnetii proteins that could be secreted. Based on bioinformatic analysis, 55 proteins were selected for further study by expressing them in C. burnetii with a C-terminal 3xFLAG-tag. Secretion of 27 proteins by C. burnetii transformants was confirmed by immunoblotting culture supernatants. Tagged proteins expressed by C. burnetii transformants were also found in the soluble fraction of infected Vero cells, indicating secretion occurs ex vivo. All secreted proteins contained a signal sequence, and deletion of this sequence from selected proteins abolished secretion. These data indicate protein secretion initially requires translocation across the inner-membrane into the periplasm via the activity of the Sec translocase. Conclusions: C. burnetii secretes multiple proteins, in vitro and ex vivo, in a Sec-dependent manner. Possible roles for secreted proteins and secretion mechanisms are discussed.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-10-09
    Description: Background: Standardisation of disk diffusion readings could improve reproducibility and accuracy of antibiotic susceptibility testing (AST). This study evaluated accuracy, reproducibility, and precision of automated inhibition zone reading using the "Sirscan automatic" zone reader (i2a, Perols Cedex, France). Results: In a first step we compared Sirscan results with manual calliper measurements for comparability and accuracy. Sirscan readings were checked and adjusted on-screen as recommended by the manufacturer. One hundred clinical bacterial isolates representing a broad spectrum of organisms routinely isolated in a clinical laboratory were tested, and zone diameter values and interpretation according to EUCAST guidelines were compared. In a second step we analysed, whether fully automated zone reading can decrease standard deviation of diameter measurements and, thus, improve reproducibility and precision of the disk diffusion method. Standard deviations of manual measurements, on-screen adjusted Sirscan measurements, and fully automated Sirscan readings were compared for 19 repeat independent measurements of inhibition zones of S. aureus ATCC 29213, E. coli ATCC 25922, and P. aeruginosa ATCC 27853 (EUCAST quality control strains).On-screen adjusted Sirscan and calliper measurements displayed high comparability. No significant differences were detected comparing the results of both reading methods. Standard deviations of inhibition zone diameters were significantly lower for fully automated Sirscan measurements compared with both adjusted Sirscan readings and the manual method, resulting in better reproducibility and precision of the automated readings. Conclusions: Our results indicate that fully automated zone reading can further improve standardisation of AST by decreasing standard deviation and, thus, improve precision of inhibition zone diameter results.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-10-12
    Description: Background: The cell wall of pathogenic mycobacteria is known to possess poly-L-glutamine (PLG) layer. PLG synthesis has been directly linked to glutamine synthetase (GS) enzyme. glnA1 gene encodes for GS enzyme in mycobacteria. PLG layer is absent in cell wall of avirulent Mycobacterium smegmatis, although M. smegmatis strain expressing GS enzyme of pathogenic mycobacteria can synthesize PLG layer in the cell wall. The role of GS enzyme has been extensively studied in Mycobacterium tuberculosis, however, little is known about GS enzyme in other mycobacterial species. Mycobacterium bovis, as an intracellular pathogen encounters nitrogen stress inside macrophages, thus it has developed nitrogen assimilatory pathways to survive in adverse conditions. We have investigated the expression and activity of M. bovis GS in response to nitrogen availability and effect on synthesis of PLG layer in the cell wall. M. smegmatis was used as a model to study the behaviour of glnA1 locus of M. bovis. Results: We observed that GS expression and activity decreased significantly in high nitrogen grown conditions. In high nitrogen conditions, the amount of PLG in cell wall was drastically reduced (below detectable limits) as compared to low nitrogen condition in M. bovis and in M. smegmatis strain complemented with M. bovis glnA1. Additionally, biofilm formation by M. smegmatis strain complemented with M. bovis glnA1 was increased than the wild type M. smegmatis strain. Conclusions: The physiological regulation of GS in M. bovis was found to be similar to that reported in other mycobacteria but this data revealed that PLG synthesis in the cell wall of pathogenic mycobacteria occurs only in nitrogen limiting conditions and on the contrary high nitrogen conditions inhibit PLG synthesis. This indicates that PLG synthesis may be a form of nitrogen assimilatory pathway during ammonium starvation in virulent mycobacteria. Also, we have found that M. smegmatis complemented with M. bovis glnA1 was more efficient in biofilm formation than the wild type strain. This indicates that PLG layer favors biofilm formation. This study demonstrate that the nitrogen availability not only regulates GS expression and activity in M. bovis but also affects cell surface properties by modulating synthesis of PLG.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-10-08
    Description: Background: Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leadingcauses of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance aretwo major deleterious issues associated with existing antifungal agents. Increasing a host's toleranceand/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance maybe improved by modulating the immune system such that it responds more rapidly and robustly in allfacets, ranging from the recognition of pathogens to their clearance from the host. An understandingof biological processes and genes that are perturbed during attempted fungal exposure, colonization,and/or invasion will help guide the identification of endogenous immunomodulators and/or smallmolecules that activate host-immune responses such as specialized adjuvants. Results: In this study, we present computational techniques and approaches using publicly availabletranscriptional data sets, to predict immunomodulators that may act against multiple fungalpathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens,namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, andStachybotrys chartarum. We observed statistically significant associations between host responsesto A. fumigatus and C. albicans. Our analysis identified biological processes that were consistentlyperturbed by these two pathogens. These processes contained both immune response-inducing genessuch as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such asDUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of commonimmunomodulators that can potentially be activated or suppressed (agonized or antagonized) in orderto render the host more tolerant to infections caused by A. fumigatus and C. albicans. Conclusions: Conclusions: Our computational approaches and methodologies described here can now be applied to newlygenerated or expanded data sets for further elucidation of additional drug targets. Moreover,identified immunomodulators may be used to generate experimentally testable hypotheses thatcould help in the discovery of broad-spectrum immunotherapeutic interventions. All of ourresults are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc.KeywordsHost-oriented therapy, Broad-spectrum target, Immunomodulation,
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-10-13
    Description: Background: The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-beta-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress. Results: We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment. Conclusions: The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-10-15
    Description: Background: Campylobacter jejuni strain 11168 was demonstrated to have a broad specificity for eukaryotic surface glycosylation using glycan array analysis. The initial screen indicated that sialic acid and mannose are important binding partners after environmental stress, while galactose and fucose structures are likely to be involved in persistent infection. Results: In this broader study, five additional human/clinical isolates and six chicken isolates were fully assessed to determine their glycan binding capacity using an extended glycan array. C. jejuni 11168 was rescreened here due to the presence of glycoaminoglycan (GAG) and other structures that were not available on our previous glycan array. The current array analysis of additional C. jejuni strains confirmed the growth condition dependent differences in glycan binding that was previously observed for C. jejuni 11168. We noted strain to strain variations, particularly for the human isolates C. jejuni 520 and 81116 and the chicken isolate C. jejuni 331, with the majority of differences observed in galactose, mannose and GAG binding. Chicken isolates were found to bind to a broader range of glycans compared to the human isolates, recognising branched mannose and carageenan (red seaweed) glycans. Glycan array data was confirmed using cell-based lectin inhibition assays with the fucose (UEA-I) and mannose (ConA) binding lectins. Conclusions: This study confirms that all C. jejuni strains tested bind to a broad range of glycans, with the majority of strains (all except 81116) altering recognition of sialic acid and mannose after environmental stress. Galactose and fucose structures were bound best by all strains when C. jejuni was grown under host like conditions confirming the likelihood of these structures being involved in persistent infection.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-10-15
    Description: Background: In Saccharomyces cerevisiae, Rad59 is required for multiple homologous recombination mechanisms and viability in DNA replication-defective rad27 mutant cells. Recently, four rad59 missense alleles were found to have distinct effects on homologous recombination that are consistent with separation-of-function mutations. The rad59-K166A allele alters an amino acid in a conserved alpha-helical domain, and, like the rad59 null allele diminishes association of Rad52 with double-strand breaks. The rad59-K174A and rad59-F180A alleles alter amino acids in the same domain and have genetically similar effects on homologous recombination. The rad59-Y92A allele alters a conserved amino acid in a separate domain, has genetically distinct effects on homologous recombination, and does not diminish association of Rad52 with double-strand breaks. Results: In this study, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2. Unlike rad27, the stimulatory effect of rad59-Y92A on homologous recombination was not accompanied by effects on growth rate, cell cycle distribution, mutation, unequal sister-chromatid recombination, or loss of heterozygosity. Conclusions: The synthetic lethality conferred by rad59 null and rad59-K166A alleles correlates with their inhibitory effect on association of Rad52 with double-strand breaks, suggesting that this may be essential for rescuing replication lesions in rad27 mutant cells. The rad59-K174A and rad59-F180A alleles may fractionally reduce this same function, which proportionally reduced repair of replication lesions by homologous recombination and growth rate. In contrast, rad59-Y92A stimulates homologous recombination, perhaps by affecting association of replication lesions with the Rad51 recombinase. This suggests that Rad59 influences the rescue of replication lesions by multiple recombination factors.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-10-23
    Description: Background: Development of Salmonella enterica serovar Typhimurium (S. Typhimurium) live attenuated vaccine carrier strain to prevent enteric infections has been a subject of intensive study. Several mutants of S. Typhimurium have been proposed as an effective live attenuated vaccine strain. Unfortunately, many such mutant strains failed to successfully complete the clinical trials as they were suboptimal in delivering effective safety and immunogenicity. However, it remained unclear, whether the existing live attenuated S. Typhimurium strains can further be attenuated with improved safety and immune efficacy or not. Results: We deleted a specific non-SPI (Salmonella Pathogenicity Island) encoded virulence factor mig-14 (an antimicrobial peptide resistant protein) in ssaV deficient S. Typhimurium strain. The ssaV is an important SPI-II gene involved in Salmonella replication in macrophages and its mutant strain is considered as a potential live attenuated strain. However, fatal systemic infection was previously reported in immunocompromised mice like Nos2-/- and Il-10-/- when infected with ssaV deficient S. Typhimurium. Here we reported that attenuation of S. Typhimurium ssaV mutant in immunocompromised mice can further be improved by introducing additional deletion of gene mig-14. The ssaV, mig-14 double mutant was as efficient as ssaV mutant, with respect to host colonization and eliciting Salmonella-specific mucosal sIgA and serum IgG response in wild-type C57BL/6 mice. Interestingly, this double mutant did not show any systemic infection in immunocompromised mice. Conclusions: This study suggests that ssaV, mig-14 double mutant strain can be effectively used as a potential vaccine candidate even in immunocompromised mice. Such attenuated vaccine strain could possibly used for expression of heterologous antigens and thus for development of a polyvalent vaccine strain.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-10-23
    Description: Background: Lactic acid bacteria (LAB) has been considered a beneficial bacterial group, found as part of the microbiota of diverse hosts, including humans and various animals. However, the mechanisms of how hosts and LAB interact are still poorly understood. Previous work demonstrates that 13 species of Lactobacillus and Bifidobacterium from the honey crop in bees function symbiotically with the honeybee. They protect each other, their hosts, and the surrounding environment against severe bee pathogens, bacteria, and yeasts. Therefore, we hypothesized that these LAB under stress, i.e. in their natural niche in the honey crop, are likely to produce bioactive substances with antimicrobial activity. Results: The genomic analysis of the LAB demonstrated varying genome sizes ranging from 1.5 to 2.2 mega-base pairs (Mbps) which points out a clear difference within the protein gene content, as well as specialized functions in the honeybee microbiota and their adaptation to their host. We demonstrate a clear variation between the secreted proteins of the symbiotic LAB when subjected to microbial stressors. We have identified that 10 of the 13 LAB produced extra-cellular proteins of known or unknown function in which some are arranged in interesting putative operons that may be involved in antimicrobial action, host interaction, or biofilm formation. The most common known extra-cellular proteins secreted were enzymes, DNA chaperones, S-layer proteins, bacteriocins, and lysozymes. A new bacteriocin may have been identified in one of the LAB symbionts while many proteins with unknown functions were produced which must be investigated further. Conclusions: The 13 LAB symbionts likely play different roles in their natural environment defending their niche and their host and participating in the honeybee's food production. These roles are partly played through producing extracellular proteins on exposure to microbial stressors widely found in natural occurring flowers. Many of these secreted proteins may have a putative antimicrobial function. In the future, understanding these processes in this complicated environment may lead to novel applications of honey crop LAB proteins.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-10-23
    Description: Background: Acinetobacter baumannii is a notorious opportunistic pathogen mainly associated with hospital-acquired infections. Studies on the clonal relatedness of isolates could lay the foundation for effective infection control. A snapshot study was performed to investigate the clonal relatedness of A. baumannii clinical isolates in our local settings. Results: Among 82 non-repetitive Acinetobacter spp. clinical isolates that were recovered during a period of four days in 13 hospitals in Sichuan, Southwest China, 67 isolates were identified as A. baumannii. Half of the 67 A. baumannii isolates were non-susceptible to carbapenems. blaOXA-23 was the only acquired carbapenemase gene detected, present in 40 isolates including five carbapenem-susceptible ones. The isolates belonged to 62 pulsotypes determined by PFGE and 31 sequence types (ST) by multi-locus sequence typing. Forty-three isolates belonged to the globally-disseminated clonal complex 92, among which ST75, ST92 and ST208 were the most common sequence types. Conclusions: Clinical isolates of A. baumannii were diverse in clonality in this snapshot study. However, most of the isolates belonged to the globally-distributed clonal complex CC92. ST75, ST92 and ST208 were the most common types in our region. In particular, ST208 might be an emerging lineage carrying blaOXA-23.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-10-23
    Description: Background: Oxyspirura petrowi appears to be emerging as a nematode parasite that could negatively impact Northern Bobwhite quail individuals and populations within Texas and other regions of the United States. Despite this eye worm's potential importance in the conservation of wild quail, little is known about the general biology and genome composition of O. petrowi. To fill the knowledge gap, we performed a small scale random genome sequence survey sequenced its 18S rRNA and the intergenic region between the 18S and 28S rRNA genes, studied its phylogenetic affinity, and developed a PCR protocol for the detection of this eye worm. Results: We have generated ~24 kb of genome sequence data derived from 348 clones by a random genome survey of an O. petrowi genomic library. The eye worm genome is AT-rich (i.e., 62.2% AT-content), and contains a high number of microsatellite sequences. The discovered genes encode a wide-range of proteins including hypothetical proteins, enzymes, nematode-specific proteins. Phylogenetic analysis based on 18S rRNA sequences indicate that the Spiruroidea is paraphyletic, in which Oxyspirura and its closely related species are sisters to the filarial nematodes. We have also developed a PCR protocol based on the ITS2 sequence that allows sensitive and specific detection of eye worm DNA in feces. Using this newly developed protocol, we have determined that ~28% to 33% of the fecal samples collected from Northern Bobwhites and Scaled Quail in Texas in the spring of 2013 are O. petrowi positive. Conclusions: The O. petrowi genome is rich in microsatellite sequences that may be used in future genotyping and molecular fingerprinting analysis. This eye worm is evolutionarily close to the filarial nematodes, implying that therapeutic strategies for filariasis such as Loa loa would be referential in developing treatments for the Thelazoidea parasites. Our qPCR-based survey has confirmed that O. petrowi infection is of potential concern to quail managers in Texas.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-10-16
    Description: Background: The open reading frames of subAB genes and their flanking regions of 18 food-borne Shiga toxin-producing E. coli (STEC) strains were analyzed. Results: All but one subAB open reading frames (ORF) were complete in all STEC strains. The subAB1 genes of nine STEC strains were located on large plasmids. The subAB2 allele (here designated subAB2-1), which was recently described by others to be present in the Subtilase-Encoding PAI (SE-PAI) was found in 6 STEC strains. A new chromosomal subAB2 variant, designated subAB2-2 was detected in 6 strains and was linked to a chromosomal gene hypothetically encoding an outer membrane efflux protein (OEP). Three STEC strains contained both subAB2 variants. DNA analysis indicated sequence conservation in the plasmid-located alleles and sequence heterogeneity among the chromosomal subAB2 genes. Conclusions: The results of this study have shown that 18 subAB-PCR positive STEC strains contain complete subAB open reading frames. Furthermore, the new allelic variant subAB2-2 was described, which can occur in addition to subAB2-1 on a new chromosomal locus.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-10-19
    Description: Background: Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results: We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions: These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-10-19
    Description: Background: Alginate overproduction in P. aeruginosa, also referred to as mucoidy, is a poor prognostic marker for patients with cystic fibrosis (CF). We previously reported the construction of a unique mucoid strain which overexpresses a small envelope protein MucE leading to activation of the protease AlgW. AlgW then degrades the anti-sigma factor MucA thus releasing the alternative sigma factor AlgU/T (sigma22) to initiate transcription of the alginate biosynthetic operon. Results: In the current study, we mapped the mucE transcriptional start site, and determined that PmucE activity was dependent on AlgU. Additionally, the presence of triclosan and sodium dodecyl sulfate was shown to cause an increase in PmucE activity. It was observed that mucE-mediated mucoidy in CF isolates was dependent on both the size of MucA and the genotype of algU. We also performed shotgun proteomic analysis with cell lysates from the strains PAO1, VE2 (PAO1 with constitutive expression of mucE) and VE2DeltaalgU (VE2 with in-frame deletion of algU). As a result, we identified nine algU-dependent and two algU-independent proteins that were affected by overexpression of MucE. Conclusions: Our data indicates there is a positive feedback regulation between MucE and AlgU. Furthermore, it seems likely that MucE may be part of the signal transduction system that senses certain types of cell wall stress to P. aeruginosa.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-10-25
    Description: Background: beta-Galactosidases can be used to produce low-lactose milk and dairy products for lactose intolerant people. Although commercial beta-galactosidases have outstanding lactose hydrolysis ability, their thermostability is low, and reaction products have strong inhibition to these enzymes. In addition, the beta-galactosidases possessing simultaneously high thermostability and tolerance of galactose and glucose are still seldom reported until now. Therefore, identification of novel beta-galactosidases with high thermostability and tolerance to reaction products from unculturable microorganisms accounting for over 99% of microorganisms in the environment via metagenomic strategy is still urgently in demand. Results: In the present study, a novel beta-galactosidase (Gal308) consisting of 658 amino acids was identified from a metagenomic library from soil samples of Turpan Basin in China by functional screening. After being overexpressed in Escherichia coli and purified to homogeneity, the enzymatic properties of Gal308 with N-terminal fusion tag were investigated. The recombinant enzyme displayed a pH optimum of 6.8 and a temperature optimum of 78[degree sign]C, and was considerably stable in the temperature range of 40[degree sign]C - 70[degree sign]C with almost unchangeable activity after incubation for 60 min. Furthermore, Gal308 displayed a very high tolerance of galactose and glucose, with the highest inhibition constant Ki,gal (238 mM) and Ki,glu (1725 mM) among beta-galactosidases. In addition, Gal308 also exhibited high enzymatic activity for its synthetic substrate o-nitrophenyl-beta-D-galactopyranoside (ONPG, 185 U/mg) and natural substrate lactose (47.6 U/mg). Conclusion: This study will enrich the source of beta-galactosidases, and attract some attentions to beta-galactosidases from extreme habitats and metagenomic library. Furthermore, the recombinant Gal308 fused with 156 amino acids exhibits many novel properties including high activity and thermostability at high temperatures, the pH optimum of 6.8, high enzyme activity for lactose, as well as high tolerance of galactose and glucose. These properties make it a good candidate in the production of low-lactose milk and dairy products after further study.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-12-06
    Description: Background: Emergence of multidrug resistance in Enterobacteriaceae limits the selection of antimicrobials for treatment of infectious diseases. Identification of NDM-1 makes more difficulty in treating multidrug-resistant Enterobacteriaceae infections. Carbapenem-resistant Escherichia coli clinical isolates from a tertiary hospital in Wenzhou, east China, were investigated for NDM-1 production. Results: The two tested isolates were negative for modified Hodge test, but positive for a double-disc synergy test used for detecting metallo-beta-lactamase production. E. coli WZ33 and WZ51 exhibited discrepant-level resistance to most clinically frequent used antimicrobials, but still susceptible to trimethoprim/sulfamethoxazole, amikacin, fosfomycin, tigecycline and polymyxin B. E. coli WZ33 and WZ51 were positive for blaNDM-1 determined by PCR and DNA sequencing. Other than blaNDM-1, E. coli WZ33 also harbored blaCTX-M-14 and blaCMY-42, while E. coli WZ51 simultaneously harbored blaSHV-12, blaCTX-M-14 and blaCMY-42. Carbapenem resistance for E. coli WZ51 and WZ33 could not be transferred to E. coli recipients through conjugation, but could be transferred to E. coli recipients by chemical transformation. The EcoR1-digested DNA pattern of plasmids from the transformant of E. coli WZ51 was different from that of E. coli WZ51. MLST showed that E. coli WZ33 and WZ51 belonged to an animal-associated clone (ST167). Conclusion: The present study is the first report of blaNDM-1 carriage in E. coli ST167 isolates and coexistence of blaNDM-1 and blaCMY-42 in same isolate. Systemic surveillance should focus on the dissemination of blaNDM-1 among Enterobacteriaceae, especially E. coli ST167 clone associated with animal infection.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-12-07
    Description: Background: One of the critical tasks in analytical testing is to monitor and assign the infectivity or potency of viral based vaccines from process development to production of final clinical lots. In this study, a high throughput RT-qPCR based approach was developed to evaluate the infectious titre in a replication-defective HSV-2 candidate vaccine, called HSV529. This assay is a combination of viral propagation and quantitative RT-PCR which measures the amount of RNA in infected cells after incubation with test samples. Results: The relative infectious titre of HSV529 candidate vaccine was determined by a RT-qPCR method targeting HSV-2 gD2 gene. The data were analyzed using the parallel-line analysis as described in the European Pharmacopoeia 8th edition. The stability of HSV529 test samples were also investigated in a concordance study between RT-qPCR infectivity assay and a classical plaque assays. A suitable correlation was determined between both assays using an identical sample set in both assays. The RT-qPCR infectivity assay was further characterized by evaluating the intermediate precision and accuracy. The coefficient of variation from the six independent assays was less than 10%. The accuracy of each of the assay was also evaluated in the range of 93.0% to 121.0%. Conclusions: Our data demonstrate that the developed RT-qPCR infectivity assay is a rapid high throughput approach to quantify the infectious titer or potency of live attenuated or defective viral-based vaccines, an attribute which is associated with product quality.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-12-12
    Description: Background: Inflammatory bowel disease (IBD) involves a breakdown in interactions between the host immune response and the resident commensal microbiota. Recent studies have suggested gut physiology and pathology relevant to human IBD can be rapidly modeled in zebrafish larvae. The aim of this study was to investigate the dysbiosis of intestinal microbiota in zebrafish models with IBD-like enterocolitis using culture-independent techniques. Results: IBD-like enterocolitis was induced by exposing larval zebrafish to trinitrobenzenesulfonic acid (TNBS). Pathology was assessed by histology and immunofluorescence. Changes in intestinal microbiota were evaluated by denaturing gradient gel electrophoresis (DGGE) and the predominant bacterial composition was determined with DNA sequencing and BLAST and confirmed by real-time polymerase chain reaction. Larval zebrafish exposed to TNBS displayed intestinal-fold architecture disruption and inflammation reminiscent of human IBD. In this study, we defined a reduced biodiversity of gut bacterial community in TNBS-induced coliitis. The intestinal microbiota dysbiosis in zebrafish larvae with IBD-like colitis was characterized by an increased proportion of Proteobacteria (especially Burkholderia) and a decreased of Firmicutes(Lactobacillus group), which were significantly correlated with enterocolitis severity(Pearson correlation p 〈 0.01). Conclusions: This is the first description of intestinal microbiota dysbiosis in zebrafish IBD-like models, and these changes correlate with TNBS-induced enterocolitis. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of human IBD.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-11-28
    Description: Background: Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes. Methods: We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS). Single chain (scFv) antibodies are selected using phage display against a bacteria or microbial community, resulting in species-specific antibodies that can be used in FACS for relative quantification of an organism in a community, as well as enrichment or depletion prior to genome sequencing. Results: We selected antibodies against Lactobacillus acidophilus and demonstrate a FACS-based approach for identification and enrichment of the organism from both laboratory-cultured and commercially derived bacterial mixtures. The ability to selectively enrich for L. acidophilus when it is present at a very low abundance ( 99.8%) de novo genome coverage whereas the standard single-cell sequencing approach is incomplete (
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-11-28
    Description: Background: Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis. Results: The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine, phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5--9 and at temperatures of 30-64[degree sign]C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However, V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared to the wild type strain when used to infect rainbow trout. Conclusion: The plp gene of V. anguillarum encoding a phospholipase with A2 activity is specific for phosphatidylcholine and, therefore, able to lyse fish erythrocytes, but not sheep erythrocytes. Mutation of plp does not affect the virulence of V. anguillarum in rainbow trout.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-07-27
    Description: Background: Success of biofilm dwelling bacteria in causing persistent and chronic infections is attributed to their resistance towards antibiotics and immune defences. Free iron is critical for the growth of biofilm associated bacteria. Therefore in the present study, the effect of limiting iron levels by addition of divalent Co[II] ions in combination with a bacteriophage was used for preventing/disrupting Klebsiella pneumoniae biofilms. Results: A significantly higher reduction (p 〈 0.005) in bacterial numbers in the younger as well as older biofilms treated with Co[II] and depolymerase producing phage in combination was observed in comparison to when either of the agents was used alone. The role of phage borne depolymerase was confirmed, as an insignificant eradication of biofilm by non-depolymerase producing bacteriophage in combination with cobalt ions was observed. The results of viable count were further confirmed by visual examination of biofilms. Conclusion: From the study it can be concluded, that iron antagonizing molecules and bacteriophages can be used as adjunct therapy for preventing biofilm development.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-01
    Description: Background: Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts.ResultWe identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition. Conclusion: The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-07-31
    Description: Background: The ability of pathogens to adapt to the widely used biocide, triclosan, varies substantially. The purpose of the study was to examine bacterial adaptation over an extended period of time to low increments of triclosan concentrations. Focus was two human pathogens, S. aureus and L. monocytogenes that previously have displayed inherent high and low adaptability, respectively. Results: Three strains of L. monocytogenes and two strains of S. aureus including the community-acquired USA300 were exposed to increasing, sub-lethal concentrations of triclosan in triclosan-containing agar gradients. Following 25 days of exposure on agar plates to sub-lethal concentrations of triclosan with a twofold concentration increase every second day, minimum inhibitory concentration (MIC) for S. aureus increased from 0.125 (8325--4) and 0.0625 (USA 300) mg/L to 4 mg/L. The MIC of all three L. monocytogenes strains was initially 4 mg/L and remained unaltered by the exposure. The adapted S. aureus isolates retained normal colony size but displayed increased expression of fabI encoding an essential enzyme in bacterial fatty acid synthesis. Also, they displayed decreased or no expression of the virulence associated agrC of the agr quorum sensing system. While most adapted strains of USA300 carried mutations in fabI , none of the adapted strains of 8325--4 did. Conclusions: Adaptability to triclosan varies substantially between Gram positive human pathogens. S. aureus displayed an intrinsically lower MIC for triclosan compared to L. monocytogenes but was easily adapted leading to the same MIC as L. monocytogenes. Even though all adapted S. aureus strains over-expressed fabI and eliminated expression of the agr quorum sensing system, adaptation in USA300 involved fabI mutations whereas this was not the case for 8325--4. Thus, adaptation to triclosan by S. aureus appears to involve multiple genetic pathways.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-07-31
    Description: Background: Molecular typing of syphilis-causing strains provides important epidemiologic data. We tested whether identified molecular subtypes were identical in PCR-positive parallel samples taken from the same patient at a same time. We also tested whether subtype prevalence differs in skin and blood samples. Results: Eighteen syphilis positive patients (showing both positive serology and PCR), with two PCR-typeable parallel samples taken at the same time, were tested with both CDC (Centers for Disease Control and Prevention) and sequence-based typing. Samples taken from 9 of 18 patients were completely typed for TP0136, TP0548, 23S rDNA, arp, and tpr loci. The CDC typing revealed 11 distinct genotypes while the sequence-based typing identified 6 genotypes. When results from molecular typing of TP0136, TP0548, and 23S rDNA were analyzed in samples taken from the same patient, no discrepancies in the identified genotypes were found; however, there were discrepancies in 11 of 18 patients (61.1%) samples relative to the arp and tpr loci. In addition to the above described typing, 127 PCR-positive swabs and whole blood samples were tested for individual genotype frequencies. The repetition number for the arp gene was lower in whole blood (WB) samples compared to swab samples. Similarly, the most common tpr RFLP type "d" was found to have lower occurrence rates in WB samples while type "e" had an increased occurrence in these samples. Conclusions: Differences in the CDC subtypes identified in parallel samples indicated genetic instability of the arp and tpr loci and suggested limited applicability of the CDC typing system in epidemiological studies. Differences in treponemal genotypes detected in whole blood and swab samples suggested important differences between both compartments and/or differences in adherence of treponeme variants to human cells.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-09-05
    Description: Background: During the infection process, bacteria are confronted with various stress factors including nutrient starvation. In an in vitro model, adaptation strategies of nutrient-starved brucellae, which are facultative intracellular pathogens capable of long-term persistence, were determined. Results: Long-term nutrient starvation in a medium devoid of carbon and nitrogen sources resulted in a rapid decline in viability of Brucella suis during the first three weeks, followed by stabilization of the number of viable bacteria for a period of at least three weeks thereafter. A 2D-Difference Gel Electrophoresis (DIGE) approach allowed the characterization of the bacterial proteome under these conditions. A total of 30 proteins showing altered concentrations in comparison with bacteria grown to early stationary phase in rich medium were identified. More than half of the 27 significantly regulated proteins were involved in bacterial metabolism with a marked reduction of the concentrations of enzymes participating in amino acid and nucleic acid biosynthesis. A total of 70% of the significantly regulated proteins showed an increased expression, including proteins involved in the adaptation to harsh conditions, in regulation, and in transport. Conclusions: The adaptive response of Brucella suis most likely contributes to the long-term survival of the pathogen under starvation conditions, and may play a key role in persistence.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-05
    Description: Background: Enveloped viruses utilize cellular membranes to bud from infected cells. The process of virion assembly and budding is often facilitated by the presence of certain conserved motifs within viral in conjunction with cellular factors. We hence examined the West Nile Virus (WNV) Envelope protein for the presence of any such motifs and their functional characterization. Results: We identified conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope glycoprotein bearing resemblance to retroviral late domains. Disruptive mutations of PXAP to LAAL and of the highly conserved Cys350 in the YCYL motif, led to a severe reduction in WNV particle production. Similar motifs in case of retroviruses are known to interact with components of host sorting machinery like PXAP with Tsg101 and YXXL with Alix. However, in the case of WNV, siRNA mediated depletion of Alix or Tsg101 did not have an effect on WNV release. Molecular modeling suggested that while the 461PXAP464 motif is surface accessible and could potentially interact with cellular proteins required for WNV assembly, the 349YCYL352 motif was found to be internal with Cys350 important for protein folding via disulphide bonding. Conclusions: The conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope are indispensable for WNV particle production. Although these motifs bear sequence similarity to retroviral late domains and are essential for WNV assembly, they are functionally distinct suggesting that they are not the typical late domain like motifs of retroviruses and may play a role other than Alix/Tsg101 utilization/dependence.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-06
    Description: Background: Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the agent of human tuberculosis, has developed strategies involving proteins and other compounds called virulence factors to subvert human host defences and damage and invade the human host. Among these virulence-related proteins are the Mce proteins, which are encoded in the mce1, mce2, mce3 and mce4 operons of M. tuberculosis. The expression of the mce2 operon is negatively regulated by the Mce2R transcriptional repressor. Here we evaluated the role of Mce2R during the infection of M. tuberculosis in mice and macrophages and defined the genes whose expression is in vitro regulated by this transcriptional repressor. Results: We used a specialized transduction method for generating a mce2R mutant of M. tuberculosis H37Rv. Although we found equivalent replication of the MtDeltamce2R mutant and the wild type strains in mouse lungs, overexpression of Mce2R in the complemented strain (MtDeltamce2RComp) significantly impaired its replication. During in vitro infection of macrophages, we observed a significantly increased association of the late endosomal marker LAMP-2 to MtDeltamce2RComp-containing phagosomes as compared to MtDeltamce2R and the wild type strains. Whole transcriptional analysis showed that Mce2R regulates mainly the expression of the mce2 operon, in the in vitro conditions studied. Conclusions: The findings of the current study indicate that Mce2R weakly represses the in vivo expression of the mce2 operon in the studied conditions and argue for a role of the proteins encoded in Mce2R regulon in the arrest of phagosome maturation induced by M. tuberculosis.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-03-30
    Description: Background: GeoChip 3.0, a microbial functional gene array, containing ~28,000 oligonucleotide probes and targeting ~57,000 sequences from 292 functional gene families, provided a powerful tool for researching microbial community structure in natural environments. The alpine meadow is a dominant plant community in the Qinghai-Tibetan plateau, hence it is important to profile the unique geographical flora and assess the response of the microbial communities to environmental variables. In this study, Geochip 3.0 was employed to understand the microbial functional gene diversity and structure, and metabolic potential and the major environmental factors in shaping microbial communities structure of alpine meadow soil in Qinghai-Tibetan Plateau. Results: A total of 6143 microbial functional genes involved in carbon degradation, carbon fixation, methane oxidation and production, nitrogen cycling, phosphorus utilization, sulphur cycling, organic remediation, metal resistance, energy process and other category were detected in six soil samples and high diversity was observed. Interestingly, most of the detected genes associated with carbon degradation were derived from cultivated organisms. To identify major environmental factors in shaping microbial communities, Mantel test and CCA Statistical analyses were performed. The results indicated that altitude, C/N, pH and soil organic carbon were significantly (P 〈 0.05) correlated with the microbial functional structure and a total of 80.97% of the variation was significantly explained by altitude, C/N and pH. The C/N contributed 38.2% to microbial functional gene variation, which is in accordance with the hierarchical clustering of overall microbial functional genes. Conclusions: High overall functional genes and phylogenetic diversity of the alpine meadow soil microbial communities existed in the Qinghai-Tibetan Plateau. Most of the genes involved in carbon degradation were derived from characterized microbial groups. Microbial composition and structures variation were significantly impacted by local environmental conditions, and soil C/N is the most important factor to impact the microbial structure in alpine meadow in Qinghai-Tibetan plateau.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-07-24
    Description: Background: Pseudomonas aeruginosa populations within the cystic fibrosis lung exhibit extensive phenotypic and genetic diversification. The resultant population diversity is thought to be crucial to the persistence of infection and may underpin the progression of disease. However, because cystic fibrosis lungs represent ecologically complex and hostile environments, the selective forces driving this diversification in vivo remain unclear. We took an experimental evolution approach to test the hypothesis that sub-inhibitory antibiotics can drive diversification of P. aeruginosa populations. Replicate populations of P. aeruginosa LESB58 were cultured for seven days in artificial sputum medium with and without sub-inhibitory concentrations of various clinically relevant antibiotics. We then characterised diversification with respect to 13 phenotypic and genotypic characteristics. Results: We observed that higher population diversity evolved in the presence of azithromycin, ceftazidime or colistin relative to antibiotic-free controls. Divergence occurred due to alterations in antimicrobial susceptibility profiles following exposure to azithromycin, ceftazidime and colistin. Alterations in colony morphology and pyocyanin production were observed following exposure to ceftazidime and colistin only. Diversification was not observed in the presence of meropenem. Conclusions: Our study indicates that certain antibiotics can promote population diversification when present in sub-inhibitory concentrations. Hence, the choice of antibiotic may have previously unforeseen implications for the development of P. aeruginosa infections in the lungs of cystic fibrosis patients.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-07-24
    Description: Background: Ralstonia eutropha H16 is well known to produce polyhydroxyalkanoates (PHA), which are potential bio-based biodegradable plastics, in an efficient manner as an energy storage material under unbalanced growth conditions. To obtain further knowledge of PHA biosynthesis, this study performed a quantitative transcriptome analysis based on deep sequencing of the complementary DNA generated from the RNA (RNA-seq) of R. eutropha H16. Results: Total RNAs were extracted from R. eutropha cells in growth, PHA production, and stationary phases on fructose. rRNAs in the preparation were removed by repeated treatments with magnetic beads specific to bacterial rRNAs, and then the 36 bp sequences were determined using an Illumina high-throughput sequencer. The RNA-seq results indicated the induction of gene expression for transcription, translation, cell division, peptidoglycan biosynthesis, pilus and flagella assembly, energy conservation, and fatty acid biosynthesis in the growth phase; and the repression trends of genes involved in central metabolisms in the PHA production phase. Interestingly, the transcription of genes for Calvin-Benson-Bassham (CBB) cycle and several genes for beta-oxidation were significantly induced in the PHA production phase even when the cells were grown on fructose. Moreover, incorporation of 13C was observed in poly(3-hydroxybutyrate) synthesized by R. eutropha H16 from fructose in the presence of NaH13CO3, and further gene deletion analyses revealed that both of the two ribulose 1,5-bisphosphate carboxylase (Rubiscos) in CBB cycle were actually functional in CO2 fixation under the heterotrophic condition. Conclusions: The results revealed the phase-dependent transcriptomic changes and a CO2 fixation capability under heterotrophic conditions by PHA-producing R. eutropha.
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...