ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18,592)
  • BMC Genomics  (4,656)
  • 9764
  • Biology  (18,592)
  • Geosciences
  • Architecture, Civil Engineering, Surveying
  • 11
    Publication Date: 2015-08-23
    Description: Background: In archaea and eukaryotes, ribonucleoprotein complexes containing small C/D box s(no)RNAs use base pair complementarity to target specific sites within ribosomal RNA for 2'-O-ribose methylation. These modifications aid in the folding and stabilization of nascent rRNA molecules and their assembly into ribosomal particles. The genomes of hyperthermophilic archaea encode large numbers of C/D box sRNA genes, suggesting an increased necessity for rRNA stabilization at extreme growth temperatures. Results: We have identified the complete sets of C/D box sRNAs from seven archaea using RNA-Seq methodology. In total, 489 C/D box sRNAs were identified, each containing two guide regions. A combination of computational and manual analyses predicts 719 guide interactions with 16S and 23S rRNA molecules. This first pan-archaeal description of guide sequences identifies (i) modified rRNA nucleotides that are frequently conserved between species and (ii) regions within rRNA that are hotspots for 2'-O-methylation. Gene duplication, rearrangement, mutational drift and convergent evolution of sRNA genes and guide sequences were observed. In addition, several C/D box sRNAs were identified that use their two guides to target locations distant in the rRNA sequence but close in the secondary and tertiary structure. We propose that they act as RNA chaperones and facilitate complex folding events between distant sequences. Conclusions: This pan-archaeal analysis of C/D box sRNA guide regions identified conserved patterns of rRNA 2'-O-methylation in archaea. The interaction between the sRNP complexes and the nascent rRNA facilitates proper folding and the methyl modifications stabilize higher order rRNA structure within the assembled ribosome.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-23
    Description: Background: The application of phages is a promising tool to reduce the number of Campylobacter along the food chain. Besides the efficacy against a broad range of strains, phages have to be safe in terms of their genomes. Thus far, no genes with pathogenic potential (e.g., genes encoding virulence factors) have been detected in Campylobacter phages. However, preliminary studies suggested that the genomes of group II phages may be diverse and prone to genomic rearrangements. Results: We determined and analysed the genomic sequence (182,761 bp) of group II phage CP21 that is closely related to the already characterized group II phages CP220 and CPt10. The genomes of these phages are comprised of four modules separated by very similar repeat regions, some of which harbouring open reading frames (ORFs). Though, the arrangement of the modules and the location of some ORFs on the genomes are different in CP21 and in CP220/CPt10. In this work, a PCR system was established to study the modular genome organization of other group II phages demonstrating that they belong to different subgroups of the CP220-like virus genus, the prototypes of which are CP21 and CP220. The subgroups revealed different restriction patterns and, interestingly enough, also distinct host specificities, tail fiber proteins and tRNA genes. We additionally analysed the genome of group II phage vB_CcoM-IBB_35 (IBB_35) for which to date only five individual contigs could be determined. We show that the contigs represent modules linked by long repeat regions enclosing some yet not identified ORFs (e.g., for a head completion protein). The data suggest that IBB_35 is a member of the CP220 subgroup. Conclusion: Campylobacter group II phages are diverse regarding their genome organization. Since all hitherto characterized group II phages contain numerous genes for transposases and homing endonucleases as well as similar repeat regions, it cannot be excluded that these phages are genetically unstable. To answer this question, further experiments and sequencing of more group II phages should be performed.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-17
    Description: Background: Mycoplasma pneumoniae is a common pathogen that causes upper and lower respiratory tract infections in people of all ages, responsible for up to 40 % of community-acquired pneumonias. It also causes a wide array of extrapulmonary infections and autoimmune phenomena. Phylogenetic studies of the organism have been generally restricted to specific genes or regions of the genome, because whole genome sequencing has been completed for only 4 strains. To better understand the physiology and pathogenicity of this important human pathogen, we performed comparative genomic analysis of 15 strains of M. pneumoniae that were isolated between the 1940s to 2009 from respiratory specimens and cerebrospinal fluid originating from the USA, China and England. Results: Illumina MiSeq whole genome sequencing was performed on the 15 strains and all genome sequences were completed. Results from the comparative genomic analysis indicate that although about 1500 SNP and indel variants exist between type1 and type 2 strains, there is an overall high degree of sequence similarity among the strains (〉99 % identical to each other). Within the two subtypes, conservation of most genes, including the CARDS toxin gene and arginine deiminase genes, was observed. The major variation occurs in the P1 and ORF6 genes associated with the adhesin complex. Multiple hsdS genes (encodes S subunit of type I restriction enzyme) with variable tandem repeat copy numbers were found in all 15 genomes. Conclusions: These data indicate that despite conclusions drawn from 16S rRNA sequences suggesting rapid evolution, the M. pneumoniae genome is extraordinarily stable over time and geographic distance across the globe with a striking lack of evidence of horizontal gene transfer.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-19
    Description: Background: Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. Results: SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. ‘SNP_only’ markers accounted for 89.25 % of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD 〉 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9 %, and their LOD scores varied from 3.22 to 4.04. Conclusions: High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-21
    Description: Background: In the male germline, neonatal prospermatogonia give rise to spermatogonia, which include stem cell population (undifferentiated spermatogonia) that supports continuous spermatogenesis in adults. Although the levels of DNA methyltransferases change dynamically in the neonatal and early postnatal male germ cells, detailed genome-wide DNA methylation profiles of these cells during the stem cell formation and differentiation have not been reported. Results: To understand the regulation of spermatogonial stem cell formation and differentiation, we examined the DNA methylation and gene expression dynamics of male mouse germ cells at the critical stages: neonatal prospermatogonia, and early postntal (day 7) undifferentiated and differentiating spermatogonia. We found large partially methylated domains similar to those found in cancer cells and placenta in all these germ cells, and high levels of non-CG methylation and 5-hydroxymethylcytosines in neonatal prospermatogonia. Although the global CG methylation levels were stable in early postnatal male germ cells, and despite the reported scarcity of differential methylation in the adult spermatogonial stem cells, we identified many regions showing stage-specific differential methylation in and around genes important for stem cell function and spermatogenesis. These regions contained binding sites for specific transcription factors including the SOX family members. Conclusions: Our findings show a distinctive and dynamic regulation of DNA methylation during spermatogonial stem cell formation and differentiation in the neonatal and early postnatal testes. Furthermore, we revealed a unique accumulation and distribution of non-CG methylation and 5hmC marks in neonatal prospermatogonia. These findings contrast with the reported scarcity of differential methylation in adult spermatogonial stem cell differentiation and represent a unique phase of male germ cell development.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-21
    Description: Background: The transposable element (TE) content of the genomes of plant species varies from near zero in the genome of Utricularia gibba to more than 80 % in many species. It is not well understood whether this variation in genome composition results from common mechanisms or stochastic variation. The major obstacles to investigating mechanisms of TE evolution have been a lack of comparative genomic data sets and efficient computational methods for measuring differences in TE composition between species. In this study, we describe patterns of TE evolution in 14 species in the flowering plant family Asteraceae and 1 outgroup species in the Calyceraceae to investigate phylogenetic patterns of TE dynamics in this important group of plants. Results: Our findings indicate that TE families in the Asteraceae exhibit distinct patterns of non-neutral evolution, and that there has been a directional increase in copy number of Gypsy retrotransposons since the origin of the Asteraceae. Specifically, there is marked increase in Gypsy abundance at the origin of the Asteraceae and at the base of the tribe Heliantheae. This latter shift in genome composition has had a significant impact on the diversity and abundance distribution of TEs in a lineage-specific manner. Conclusions: We show that the TE-driven expansion of plant genomes can be facilitated by just a few TE families, and is likely accompanied by the modification and/or replacement of the TE community. Importantly, large shifts in TE composition may be correlated with major of phylogenetic transitions.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-22
    Description: Background: Root rot caused by Aphanomyces euteiches is one of the most destructive pea diseases while a distantly related species P. pisi has been recently described as the agent of pea and faba bean root rot. These two oomycete pathogens with different pathogenicity factor repertories have both evolved specific mechanisms to infect pea. However, little is known about the genes and mechanisms of defence against these pathogens in pea. In the present study, the transcriptomic response of pea to these two pathogens was investigated at two time points during early phase of infection using a Medicago truncatula microarray. Results: Of the 37,976 genes analysed, 574 and 817 were differentially expressed in response to A. euteiches at 6 hpi and 20 hpi, respectively, while 544 and 611 genes were differentially regulated against P. pisi at 6 hpi and 20 hpi, respectively. Differentially expressed genes associated with plant immunity responses were involved in cell wall reinforcement, hormonal signalling and phenylpropanoid metabolism. Activation of cell wall modification, regulation of jasmonic acid biosynthesis and induction of ethylene signalling pathway were among the common transcriptional responses to both of these oomycetes. However, induction of chalcone synthesis and the auxin pathway were specific transcriptional changes against A. euteiches. Conclusions: Our results demonstrate a global view of differentially expressed pea genes during compatible interactions with P. pisi and A. euteiches at an early phase of infection. The results suggest that distinct signalling pathways are triggered in pea by these two pathogens that lead to common and specific immune mechanisms in response to these two oomycetes. The generated knowledge may eventually be used in breeding pea varieties with resistance against root rot disease.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-23
    Description: Background: In humans it is unknown if the composition of the gut microbiota alters the risk of Plasmodium falciparum infection or the risk of developing febrile malaria once P. falciparum infection is established. Here we collected stool samples from a cohort composed of 195 Malian children and adults just prior to an intense P. falciparum transmission season. We assayed these samples using massively parallel sequencing of the 16S ribosomal RNA gene to identify the composition of the gut bacterial communities in these individuals. During the ensuing 6-month P. falciparum transmission season we examined the relationship between the stool microbiota composition of individuals in this cohort and their prospective risk of both P. falciparum infection and febrile malaria. Results: Consistent with prior studies, stool microbial diversity in the present cohort increased with age, although the overall microbiota profile was distinct from cohorts in other regions of Africa, Asia and North America. Age-adjusted Cox regression analysis revealed a significant association between microbiota composition and the prospective risk of P. falciparum infection; however, no relationship was observed between microbiota composition and the risk of developing febrile malaria once P. falciparum infection was established. Conclusions: These findings underscore the diversity of gut microbiota across geographic regions, and suggest that strategic modulation of gut microbiota composition could decrease the risk of P. falciparum infection in malaria-endemic areas, potentially as an adjunct to partially effective malaria vaccines.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-23
    Description: Background: The hemibiotroph Colletotrichum lentis, causative agent of anthracnose on Lens culinaris (lentil) was recently described as a new species. During its interaction with the host plant, C. lentis likely secretes numerous effector proteins, including toxins to alter the plant’s innate immunity, thereby gaining access to the host tissues for nutrition and reproduction. Results: In silico analysis of 2000 ESTs generated from C. lentis-infected lentil leaf tissues identified 15 candidate effectors. In planta infection stage-specific gene expression waves among candidate effectors were revealed for the appressorial penetration phase, biotrophic phase and necrotrophic phase. No sign of positive selection pressure [ω (dN/dS) 
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-23
    Description: Background: Improved understanding of bacterial-fungal interactions in the rhizosphere should assist in the successful application of bacteria as biological control agents against fungal pathogens of plants, providing alternatives to chemicals in sustainable agriculture. Rhizoctonia solani is an important soil-associated fungal pathogen and its chemical treatment is not feasible or economic. The genomes of the plant-associated bacteria Serratia proteamaculans S4 and Serratia plymuthica AS13 have been sequenced, revealing genetic traits that may explain their diverse plant growth promoting activities and antagonistic interactions with R. solani. To understand the functional response of this pathogen to different bacteria and to elucidate whether the molecular mechanisms that the fungus exploits involve general stress or more specific responses, we performed a global transcriptome profiling of R. solani Rhs1AP anastomosis group 3 (AG-3) during interaction with the S4 and AS13 species of Serratia using RNA-seq. Results: Approximately 104,504 million clean 75-100 bp paired-end reads were obtained from three libraries, each in triplicate (AG3-Control, AG3-S4 and AG3-AS13). Transcriptome analysis revealed that approximately 10 % of the fungal transcriptome was differentially expressed during challenge with Serratia. The numbers of S4- and AS13-specific differentially expressed genes (DEG) were 866 and 292 respectively, while there were 1035 common DEGs in the two treatment groups. Four hundred and sixty and 242 genes respectively had values of log 2 fold-change 〉 3 and for further analyses this cut-off value was used. Functional classification of DEGs based on Gene Ontology enrichment analysis and on KEGG pathway annotations revealed a general shift in fungal gene expression in which genes related to xenobiotic degradation, toxin and antioxidant production, energy, carbohydrate and lipid metabolism and hyphal rearrangements were subjected to transcriptional regulation. Conclusions: This RNA-seq profiling generated a novel dataset describing the functional response of the phytopathogen R. solani AG3 to the plant-associated Serratia bacteria S4 and AS13. Most genes were regulated in the same way in the presence of both bacterial isolates, but there were also some strain-specific responses. The findings in this study will be beneficial for further research on biological control and in depth exploration of bacterial-fungal interactions in the rhizosphere.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...