ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,845)
  • Hindawi  (1,845)
  • American Physical Society (APS)
  • Institute of Physics
  • 2020-2024
  • 2015-2019  (1,845)
  • International Journal of Antennas and Propagation  (739)
  • 97415
Collection
  • Articles  (1,845)
Publisher
  • Hindawi  (1,845)
  • American Physical Society (APS)
  • Institute of Physics
Years
Year
  • 1
    Publication Date: 2015-08-12
    Description: The pattern synthesis and activated element selection for conformal array is investigated based on hybrid particle swarm optimization-gravitational search algorithm (PSOGSA) in this paper. With the introduction of PSOGSA algorithm which is a novel hybrid optimization technique, the element excitations are optimized to obtain the desired pattern for conformal array in the case of considering uncoupled and coupled element pattern. Numerical simulation and full-wave electromagnetic calculation verify the advantage and efficiency of our method. Then, a novel strategy of activated element selection based on PSOGSA algorithm is proposed for saving the energy consumption in conformal array.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-04
    Description: A practical antenna design combined with a universal serial bus (USB) connector in close vicinity is proposed. In the proposed arrangement, the antenna unit consisted of two planar inverted F antennas (PIFAs) placed on the two sides of the USB connector. The antenna is located at the bottom of the mobile phone to avoid the crowded space on the top side of the phone where various mobile phone accessories are usually assigned. A diplexer is incorporated in the unit to alleviate the adverse effect of the metal USB connector on the radiating efficiency of the antenna. A prototype antenna was fabricated and tested and showed good coverage for GSM850/900/1800/1900, UMTS2100, and LTE700/2500 multibands operation. The overall performances demonstrated the good design of the proposed unit for mobile phone application.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-03
    Description: This paper proposes a new design technique for internal antenna development. The proposed method is based on the framework of topology optimization incorporated with three effective mechanisms favoring the building blocks of associated optimization problems. Conventionally, the topology optimization of antenna structures discretizes a design space into uniform and rectangular pixels. However, the defining length of the resultant building blocks is so large that the problem difficulty arises; furthermore, the order of the building blocks becomes extremely high, so genetic algorithms (GAs) and binary particle swarm optimization (BPSO) are not more efficient than the random search algorithm. In order to form tight linkage groups of building blocks, this paper proposes a novel approach to handle the design details. In particular, a nonuniform discretization is adopted to discretize the design space, and the initialization of GAs is assigned as orthogonal arrays (OAs) instead of a randomized population; moreover, the control map of GAs is constructed by ensuring the schema growth based on the generalized schema theorem. By using the proposed method, two internal antennas are thus successfully developed. The simulated and measured results show that the proposed technique significantly outperforms the conventional topology optimization.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-19
    Description: This paper presents radio frequency (RF) capacity estimation for millimeter wave (mm-wave) based fifth-generation (5G) cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS). This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS) roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average) compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-24
    Description: Multipaths represent a common predominant and uncontrolled component on channel impairments for all terrestrial and Land Mobile Satellite systems. Without restrictions w.r.t mobile terrestrial applications, the addressed multipath problematic in this paper is focused on Land Mobile Satellite applications where delayed signal replicas are highly impacting performances on communication systems while they induce strong positioning errors for navigation systems. The actual trend in propagation channel modelling is to improve the multipath characterisation and representation by using semideterministic and hybrid physical-statistical models into channel simulators instead of narrow-band empirical approaches. In this context, this paper presents a new simplified model, called 3CM (3-Component Model) to reproduce building scattering in an efficient way which strongly improves computation performances. This model is based on asymptotic methods, namely, PO (Physical Optics) which allows the 3CM to be frequency scalable, polarimetric, and dielectric materials oriented. Note that the proposed model and the retained approach can be integrated into more complex tools such as existing ray tracers. However, this issue is not discussed in this paper.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-18
    Description: This work presents a full-wave analysis of stable frequency selective surfaces (FSSs) composed of periodic arrays of cross fractal patch elements. The shapes of these patch elements are defined conforming to a fractal concept, where the generator fractal geometry is successively subdivided into parts which are smaller copies of the previous ones (defined as fractal levels). The main objective of this work is to investigate the performance of FSSs with cross fractal patch element geometries including their frequency response and stability in relation to both the angle of incidence and polarization of the plane wave. The frequency response of FSS structures is obtained using the wave concept iterative procedure (WCIP). This method is based on a wave concept formulation and the boundary conditions for the FSS structure. Prototypes were manufactured and measured to verify the WCIP model accuracy. A good agreement between WCIP and measured results was observed for the proposed cross fractal FSSs. In addition, these FSSs exhibited good angular stability.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-13
    Description: The prediction of RF coverage in urban environments is now commonly considered a solved problem with tens of models proposed in the literature showing good performance against measurements. Among these, ray tracing is regarded as one of the most accurate ones available. In the present work, however, we show that a great deal of work is still needed to make ray tracing really unleash its potential in practical use. A very extensive validation of a state-of-the-art 3D ray tracing model is carried out through comparison with measurements in one of the most challenging environments: the city of San Francisco. Although the comparison is based on RF cellular coverage at 850 and 1900 MHz, a widely studied territory, very relevant sources of error and inaccuracy are identified in several cases along with possible solutions.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-05
    Description: A space-domain integral equation method accelerated with adaptive cross approximation (ACA) is presented for the fast and accurate analysis of electromagnetic (EM) scattering from multilayered metallic photonic crystal (MPC). The method directly solves for the electric field in order to easily enable the periodic boundary condition (PBC) in the spatial domain. The ACA is a purely algebraic method allowing the compression of fully populated matrices; hence, its formulation and implementation are independent of integral equation kernel (Green’s function). Therefore, the ACA is very well suited for accelerating integral equation analysis of periodic structure with the integral kernel of the periodic Green’s function (PGF). The computation of the spatial-domain periodic Green’s function (PGF) is accelerated by the modified Ewald transformation, such that the multilayered periodic structure can be analyzed efficiently and accurately. An effective interpolation method is also proposed to fast compute the periodic Green’s function, which can greatly reduce the time of matrix filling. Numerical examples show that the proposed method can greatly save the frequency sweep time for multilayered periodic structure.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-04
    Description: The colocated dual-polarized dipole (DPD) and dual-polarized loop (DPL) MIMO channel performances are compared. Computation results show that, for the ideal electric and magnetic dipoles, the dual-polarized MIMO systems have identical channel capacity. But the contour plots of the capacity gain of the realistic DPD and DPL are different, due to the difference in antenna patterns. The cumulative distribution function (CDF) of the capacity gain in the two-mirror (TM) channel shows that, for small distance, the capacity gain obtained by the DPD is obviously smaller than that of the DPL, but, with the increase of the distance, the difference gets smaller. A DPL with low mutual coupling is fabricated. Measured results show that high MIMO capacities can be obtained by this DPL in both the anechoic chamber (AC) and the realistic office room. The capacity gain of the DPL antenna is 1.5–1.99, which basically coincides with the theoretical and numerical results. Furthermore, the capacity of the virtual DPL antenna with no mutual couplings is also investigated. It is shown that, in the AC, the mutual coupling will generally decrease the dual-polarized MIMO capacity; however, in the office room, the effect of mutual coupling is not always negative.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-05
    Description: The true polarization diversity (TPD) technique is combined with the spatial diversity technique in novel MIMO antenna array geometries with a large number of elements. The use of a large number of elements requires some angular reuse within the array for polarization diversity. With designs compatible with existing base station antenna array configurations, the novel geometries with combining diversity schemes are shown to be able to achieve near the maximum spectral efficiencies. True polarization diversity (TPD) schemes are found to be an excellent complement to more conventional spatial diversity schemes for obtaining optimum MIMO array performance in base station antennas.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-06-05
    Description: Measured propagation loss for capacitive body-coupled communication (BCC) channel (1 MHz to 60 MHz) is limitedly available in the literature for distances longer than 50 cm. This is either because of experimental complexity to isolate the earth-ground or design complexity in realizing a reliable communication link to assess the performance limitations of capacitive BCC channel. Therefore, an alternate efficient full-wave electromagnetic (EM) simulation approach is presented to realistically analyze capacitive BCC, that is, the interaction of capacitive coupler, the human body, and the environment all together. The presented simulation approach is first evaluated for numerical/human body variation uncertainties and then validated with measurement results from literature, followed by the analysis of capacitive BCC channel for twenty different scenarios. The simulation results show that the vertical coupler configuration is less susceptible to physiological variations of underlying tissues compared to the horizontal coupler configuration. The propagation loss is less for arm positions when they are not touching the torso region irrespective of the communication distance. The propagation loss has also been explained for complex scenarios formed by the ground-plane and the material structures (metals or dielectrics) with the human body. The estimated propagation loss has been used to investigate the link-budget requirement for designing capacitive BCC system in CMOS sub-micron technologies.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-07-30
    Description: A novel compressive sensing- (CS-) based direction-of-arrival (DOA) estimation algorithm is proposed to solve the performance degradation of the CS-based DOA estimation in the presence of sensing matrix mismatching. Firstly, a DOA sparse sensing model is set up in the presence of sensing matrix mismatching. Secondly, combining the Dantzig selector (DS) algorithm and least-absolute shrinkage and selection operator (LASSO) algorithm, a CS-based DOA estimation algorithm which performs iterative optimization alternatively on target angle information vector and sensing matrix mismatching error vector is proposed. The simulation result indicates that the proposed algorithm possesses higher angle resolution and estimation accuracy compared with conventional CS-based DOA estimation algorithms.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-07-30
    Description: A novel miniaturized 1 × 10 uniform linear dual slant-polarized UWB antenna array for MIMO base station is presented. The antenna array operates in the frequency band from 1710 to 2690 MHz with a 17.3–18.7 dBi gain in a size of 105 × 1100 × 37 mm. The array element is composed of two single-polarized dipoles evolved from bow-tie antenna with slots on them, which miniaturize the size of the antenna. The 10 array elements are fed through an air dielectric strip-line power splitter. Two parameters, the beam tracking and the beam squint, are presented to quantitatively describe the pattern symmetry property of the antenna. The simulated and measured radiation performances are studied and compared. The results show that the pattern symmetry property of the single antenna element has been improved about 24% compared with the former study, and the antenna array also provides excellent pattern symmetry property.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-05
    Description: The paper introduces a novel method for agile and precise wireless power transmission operated by a time-modulated array. The unique, almost real-time reconfiguration capability of these arrays is fully exploited by a two-step procedure: first, a two-element time-modulated subarray is used for localization of tagged sensors to be energized; the entire 16-element TMA then provides the power to the detected tags, by exploiting the fundamental and first-sideband harmonic radiation. An investigation on the best array architecture is carried out, showing the importance of the adopted nonlinear/full-wave computer-aided-design platform. Very promising simulated energy transfer performance of the entire nonlinear radiating system is demonstrated.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-07
    Description: This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR) in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element, the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two operation modes, the alternately transmitting and simultaneously receiving (ATSR) mode and the simultaneously transmitting and simultaneously receiving (STSR) mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights of the accuracy requirements are obtained and summarized.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-07
    Description: A dual circularly polarized (CP) omnidirectional antenna based on slot array in coaxial cylinder structure is presented in this paper. It is constructed by perpendicular slot pairs around and along the axis of the coaxial cylinder to realize the omnidirectional CP property, and two ports are assigned in its two sides as left hand circularly polarized (LHCP) port and right hand circularly polarized (RHCP) port, respectively. The proposed antenna achieves a bandwidth of 16.4% ranging from 5.05 to 5.95 GHz with an isolation higher than 15 dB between the two CP ports, and the return loss (RL) is higher than 10 dB within the bandwidth in both of the two ports. From the measured results, the average axial ratio (AR) of the proposed antenna in omnidirectional plane is lower than 1.5 dB.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-13
    Description: Although the uniform theory of diffraction (UTD) could be theoretically applied to arbitrarilyshaped convex objects modeled by nonuniform rational B-splines (NURBS), one of the great challenges in calculation of the UTD surface diffracted fields is the difficulty in determining the geodesic paths along which the creeping waves propagate on arbitrarilyshaped NURBS surfaces. In differential geometry, geodesic paths satisfy geodesic differential equation (GDE). Hence, in this paper, a general and efficient adaptive variable step Euler method is introduced for solving the GDE on arbitrarilyshaped NURBS surfaces. In contrast with conventional Euler method, the proposed method employs a shape factor (SF) to efficiently enhance the accuracy of tracing and extends the application of UTD for practical engineering. The validity and usefulness of the algorithm can be verified by the numerical results.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-13
    Description: A wideband dual-polarized antenna for WLAN, WiMAX, and LTE base station applications is presented in this paper. The proposed antenna consists of two pairs of orthogonal planar quasi-open-sleeve dipoles along the centerlines, a balanced feeding structure and a square ground plane. The planar quasi-open-sleeve dipole comprises a pair of bowtie-shaped planar dipoles with two parallel curve parasitic elements. The introduced parallel curve parasitic elements change the path of the current of the original bowtie-shaped planar dipoles at high frequencies and hence wideband characteristic is achieved. Two pairs of the planar quasi-open-sleeve dipoles placed orthogonally further broaden the bandwidth of the antenna with dual-polarization characteristics. The proposed antenna achieves a 10-dB return loss bandwidth from 2.32 to 4.03 GHz (53.9% bandwidth) using the planar quasi-open-sleeve dipole structures. The isolation between the two ports remains more than 32 dB in the whole bandwidth. Measured results show that the proposed antenna keeps the cross-polarization under −33 dB and the front-to-back ratio better than 15 dB in the operating band. The antenna has an area of 0.3λ  × 0.3λ at 2.32 GHz making it easy to be extended to an array element.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-09-11
    Description: Wave propagation along a closely spaced folded cylindrical helix (FCH) array is investigated for the purpose of designing compact array for energy transport and antenna radiation. It is found that the height of this surface wave guiding structure can be decreased from 0.24 to 0.06 by replacing the monopole element with the FCH. Both the propagation constant and the mode distribution of the dominant wave mechanism are extracted by ESPRIT algorithm, which indicates that a backward propagating surface wave is supported by the array structure. A compact backfire FCH antenna array is designed and measured based on the identified dominant wave mechanism.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-09-15
    Description: This work presents a review on the concept of harmonic or secondary radar, where a tag or transponder is used to respond at a harmonic multiple of the incoming interrogation signal. In harmonic radar, the tag is called a harmonic transponder and the necessary frequency multiplication is implemented using a nonlinear element, such as a Schottky diode. Different applications and operating frequencies of harmonic transponders are presented, along with various tag design aspects. The designer may have to deal with certain tradeoffs during the design with respect to a number of transponder properties, and the role of these tradeoffs is also considered. Additionally, techniques usable for characterization of harmonic transponders are discussed.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-09-16
    Description: Sidelobe level suppression is a major problem in circular array antenna (CAA) synthesis. Many conventional numerical techniques are proposed to achieve this which are time consuming and often fail to handle multimodal problems. In this paper, a method of circular array synthesis using nature inspired flower pollination algorithm (FPA) is proposed. The synthesis technique considered here adapts one and two degrees of freedom, namely, amplitude only and amplitude spacing. The effectiveness of the FPA is studied by comparing the results with genetic algorithm (GA) and uniform circular array antenna (UCAA) with uniform spacing. Also the effect of additional degree of freedom on the aperture size and the computational time is analyzed. A relative side lobe level (SLL) of −25 dB is achieved using the algorithm under both no beam scanning (0°) and beam scanning (15°) conditions for 20 and 40 elements of CAA.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-09-18
    Description: Capacity of a wireless link can be enhanced by increasing the number of receive antennas. However, imposed receiver physical size constraints necessitate that the antenna elements be in close proximity, which typically reduces the overall link capacity of the wireless channel. Counterintuitively, under certain conditions the capacity of the overall link can be enhanced by decreasing antenna spacings. The focus of this paper is that of identifying the fundamental mechanisms and the conditions that give rise to this excess capacity. Closed-form expressions that directly quantify this capacity gain are derived based on a representative circuit theoretic model. Interesting insights are developed about the impact of different noise and interference sources and the limiting effect of heat losses in the antenna system. The capacity analysis is subsequently generalized to encompass the effect of antenna current deformation and load mismatch due to mutual coupling, based on the standard Method of Moments (MoM) analysis, demonstrating similar capacity enhancement behavior as predicted by the closed-form expressions.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-09-21
    Description: Fractal patch antennas based on the Sierpinski structure are studied in this paper. The antennas operate at dual bands (around 2 and 5 GHz) and are designed to steer the beam directions at around 5 GHz band (the first harmonic). The antennas use reconfigurable triple feeds on the same antenna plane to have three beam directions. The same scale factor defines the geometrical self-similarity of the Sierpinski fractal. The proposed antennas are fabricated through three iterations from 1st order to 3rd order and utilize FR-4 (εr = 4.4) for the microwave substrate. The performances of the antennas, such as reflection coefficients and radiation patterns are verified by simulation and measurement. The results show that the properties of the proposed antennas in three orders are similar.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-09-21
    Description: A triband MIMO antenna used for gsm1800/td-scdma/lte/wi-max/wiLan/wifi has been proposed in this paper. The design with the size of 32 m 73.6 mm is fabricated on FR4 substrate (thickness is 1.6 mm). This antenna consists of two reversed monopole meandered radiators and defected ground structure which work together to achieve impedance match and enhance isolation for all operating bands. According to the subsequent measured results, the working frequency domains are at gsm1800 (1.71 GHz–1.88 GHz), td-scdma (1.88 GHz–2.025 GHz), lte (2.1–2.35, 2.48–2.51), wi-max (3.5 GHz, 5.5 GHz), wiLan (5.725 GHz–5.8 GHz), and wifi (5.8 GHz–5.88 GHz) approximately. Besides, the measured radiation patterns (gain total) are also well at these working frequency domains and the omnidirectional performance has been achieved for the reversed MIMO antenna array. Furthermore, the realized isolation is more than 15 dB, 24.2 dB, and 22 dB at the first, the second, and the third working frequency band, respectively.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-11-24
    Description: A compact circular polarized antenna array with a convenient gain/bandwidth/dimension trade-off is proposed for applications in the C-band. The design is based on the recursive application of the sequential phase architecture, resulting in a 4 × 4 array of closely packed identical antennas. The 16 antenna elements are disc-based patches operating in modal degeneration, tuned to exhibit a broad while imperfect polarization. Exploiting the compact dimension of the patches and a space-filling design for the feeding network, the entire array is designed to minimize the occupied area. A prototype of the proposed array is fabricated with standard photoetching procedure in a single-layer via less printed board of overall area 80 × 80 mm2. Adequate left-hand polarization is observed over a wide bandwidth, demonstrating a convenient trade-off between bandwidth and axial ratio. Satisfying experimental results validate the proposed design, with a peak gain of 12.6 dB at 6.7 GHz maintained within 3 dB for 1 GHz, a very wide 10 dB return loss bandwidth of 3 GHz, and a 4 dB axial ratio bandwidth of 1.82 GHz, meaning 31% of fractional bandwidth.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-26
    Description: A new algorithm for improving Direction of Arrival Estimation (DOAE) accuracy has been carried out. Two contributions are introduced. First, Doppler frequency shift that resulted from the target movement is estimated using the displacement invariance technique (DIT). Second, the effect of Doppler frequency is modeled and incorporated into ESPRIT algorithm in order to increase the estimation accuracy. It is worth mentioning that the subspace approach has been employed into ESPRIT and DIT methods to reduce the computational complexity and the model’s nonlinearity effect. The DOAE accuracy has been verified by closed-form Cramér-Rao bound (CRB). The simulation results of the proposed algorithm are better than those of the previous estimation techniques leading to the estimator performance enhancement.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-10-28
    Description: The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom).
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-06-01
    Description: As the available space in the board of a mobile device becomes smaller and more compact, circuit elements and transmission lines are arranged in very close proximity, especially from the antennas which are usually installed on the same board. Due to the various on-board antennas which are designed in small space, the transmission lines on the board are electromagnetically interfered, resulting in the performance degradation of the circuit. So the engineers and circuit designers should find the least interfered place for the transmission lines and components to minimize the electromagnetic interferences. This paper discusses and presents a methodology to find the least sensitive position in the induced current distribution as well as in the noise power delivered from the antenna. For this purpose some vertical, horizontal, and bent transmission lines with antenna on the same board are designed and fabricated with and without common ground, and the transferred powers to the transmission lines were measured and were also simulated using a full-wave simulator. The results predicted by the EM simulation model were successfully confirmed through the measurement of S-parameters in the experimental setup, which shows the validness of the suggested analysis method.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-07-18
    Description: The first- and second-order bistatic high frequency radar cross sections of the ocean surface with an antenna on a floating platform are derived for a frequency-modulated continuous wave (FMCW) source. Based on previous work, the derivation begins with the general bistatic electric field in the frequency domain for the case of a floating antenna. Demodulation and range transformation are used to obtain the range information, distinguishing the process from that used for a pulsed radar. After Fourier-transforming the autocorrelation and comparing the result with the radar range equation, the radar cross sections are derived. The new first- and second-order antenna-motion-incorporated bistatic radar cross section models for an FMCW source are simulated and compared with those for a pulsed source. Results show that, for the same radar operating parameters, the first-order radar cross section for the FMCW waveform is a little lower than that for a pulsed source. The second-order radar cross section for the FMCW waveform reduces to that for the pulsed waveform when the scattering patch limit approaches infinity. The effect of platform motion on the radar cross sections for an FMCW waveform is investigated for a variety of sea states and operating frequencies and, in general, is found to be similar to that for a pulsed waveform.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-07-15
    Description: The detection and identification of ship targets navigating in coastal areas are essential in order to prevent maritime accidents and to take countermeasures against illegal activities. Usually, coastal radar systems are employed for the detection of vessels, whereas noncooperative ship targets as well as ships not equipped with AIS transponders can be identified by means of dedicated active radar imaging system by means of ISAR processing. In this work, we define a parasitic array receiver for ISAR imaging purposes based on the signal transmitted by an opportunistic coastal radar over its successive scans. In order to obtain the proper cross-range resolution, the physical aperture provided by the array is combined with the synthetic aperture provided by the target motion. By properly designing the array of passive devices, the system is able to correctly observe the signal reflected from the ships over successive scans of the coastal radar. Specifically, the upper bounded interelement spacing provides a correct angular sampling accordingly to the Nyquist theorem and the lower bounded number of elements of the array ensures the continuity of the observation during multiple scans. An ad hoc focusing technique has been then proposed to provide the ISAR images of the ships. Simulated analysis proved the effectiveness of the proposed system to provide top-view images of ship targets suitable for ATR procedures.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-07-15
    Description: The increase in global navigation satellite systems (GNSS) availability and services is fostering a new wave of applications related to satellite navigation. Such increase is also followed by more and more threats, aiming at signal disruption. In order to fully exploit the potentialities of precise and reliable navigation, being able at the same time to counteract threats such as interference, jamming, and spoofing, smart antenna systems are being investigated worldwide, with the requirements of multiband operation and compactness. In order to answer such need, the present work proposes a miniaturized dielectric resonator antenna (DRA) 2 × 2 array able to operate at E5/L5, L2, and E6 bands, with an overall footprint of only 3.5′′ (89 mm).
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-07-18
    Description: A wideband slot antenna for mobile phone applications is proposed. The antenna has two slots with open ends etched on the opposite edges of the ground plane. The main slot, of total length of 59 mm, is composed of a rectangle connected to a circle having radius of 5 mm. Another slot, having a rectangular shape with width of 2.8 mm and length of 26 mm, is employed to enhance the antenna bandwidth. The slots are fed by means of a rectangular monopole connected to a circular patch joined to a bent 50 Ω microstrip transmission line forming two right angles. To obtain a wideband impedance matching, the upper edge of the monopole and a part of the feeding line evolve along the top edge of the two slots. To reduce the antenna size, the upper part of the board above the slot (just 3 mm from the slot) is folded vertically to the ground plane. The measured bandwidth of the antenna is 0.698–1.10 GHz and 1.64–2.83 GHz covering LTE700/2300/2500, GSM850/900/1800/1900, and UMTS bands.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-26
    Description: An approximation mathematical formula to compute the distorted radiation pattern for reflector antennas is presented. In this approximation formula, besides the phase error caused by the structural deformation being added in the far field integral, the surface normal vector variation is also taken into consideration. The formula is derived by expanding the surface normal vector into a first-order Taylor series and the phase error into a second-order Taylor series. By assembling the integrals including the contributions of both surface normal vector variation and phase error, the far field electrical vector expressed as a function of structural nodal displacements is further obtained in a matrix form. Simulation results of a distorted reflector show the application of this formula.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-07-27
    Description: The significant wave height (SWH) retrieved from collocated HH and VV polarized X-band marine radars under different sea states is studied. The SWH are retrieved from different principal components of X-band marine radar image sequence. As compared with the SWH measured by a buoy, the root-mean-square errors of the SWH are 0.32–0.45 m for VV polarization, and they are 0.37–0.60 m for HH polarization. At the wind speeds of 0–5 m/s, the SWH can be derived from VV polarized radar images, while the backscatter of HH polarized radar is too weak to contain wave signals at very low wind speeds (~0–3 m/s). At the wind speeds of 5–18 m/s, the SWH retrieved from VV polarization coincide well with the SWH measured by the buoy, while the SWH retrieved from HH polarization correspond with the changes of the wind speed. At the wind speeds of 18–26 m/s, the influence of wave breaking on HH polarization is more important than that on VV polarization. This indicates that the imaging mechanisms of HH polarized X-band marine radar are different from those of VV polarized X-band marine radar.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-08-01
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-21
    Description: Printed circuit antennas have been used for the detection of electromagnetic radiation at a wide range of frequencies that go from radio frequencies (RF) up to optical frequencies. The design of printed antennas at optical frequencies has been done by using design rules derived from the radio frequency domain which do not take into account the dispersion of material parameters at optical frequencies. This can make traditional RF antenna design not suitable for optical antenna design. This work presents the results of using a genetic algorithm (GA) for obtaining an optimized geometry (unconventional geometries) that may be used as optical regime antennas to capture electromagnetic waves. The radiation patterns and optical properties of the GA generated geometries were compared with the conventional dipole geometry. The characterizations were conducted via finite element method (FEM) computational simulations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-05-06
    Description: Radio wave propagation in confined spaces is consequent upon the reflections of boundaries; thus, the radiation characteristics of the antenna have significant influence on the field coverage in the confined space. This paper investigates the effects of antenna parameters on field coverage characteristics in a tunnel environment. A modified modal method is proposed to analyse the wave propagation properties along the tunnel. The relationships between the amplitudes of modes and the antenna parameters, including the beam width, beam direction, and antenna location, are analysed. The results indicate that by properly selecting the antenna parameters, optimum field coverage in tunnel environments can be realized.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-05-10
    Description: The analysis and design of a small planar multiband antenna operating in the 4G frequency bands are presented. The numerical and experimental results demonstrated that the proposed antenna satisfies the requirement of 6 dB return loss for the impedance bandwidth of the LTE700/LTE2300/LTE2500 and WiMAX3500 bands. The gains at 750 MHz/2.3 GHz/2.6 GHz/3.5 GHz are 2.1 dBi/4.9 dBi/4.7 dBi/4.3 dBi, respectively. The measured radiation patterns verify the suitability of the antenna to be employed in mobile phones. The dimensions of the radiant patch are 49 × 10 mm2. The proposed antenna can be easily fabricated and customized to various 4G mobile phones as a compact internal antenna.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-05-11
    Description: A novel millimeter wave coplanar waveguide (CPW) fed Fabry-Perot (F-P) antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS) and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth of less than −10 dB is from 34 to 37.7 GHz (10.5%), and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-05-11
    Description: In recent works thinned arrays giving minimum peak sidelobe levels for planar square antenna arrays are obtained using Hadamard difference sets. In the current work thinned array configurations giving lower peak sidelobe levels than those given in the literature are obtained for square arrays of , , , and elements. Differential evolution algorithm is used in the determination of the antenna locations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-05-27
    Description: A novel dual-band printed end-fired antenna with double-sided parallel-strip line (DSPSL) feeding is presented. The DSPSL acts in wideband transition using balanced transmission. Two different modes of the parasitic patches allow the antenna to work in different bands. The printed antenna is designed as a quasi-Yagi structure to achieve directivity in the lower band, and the parallel rectangular patches serve as the parasitic director. These patches act as radiation patches with end-fire direction characteristics in the upper band. The measured bandwidths were 18.3% for the lower frequency band (2.28–2.74 GHz) and 12.6% for the upper frequency band (5.46–6.2 GHz).
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-05-27
    Description: A novel compact dual-polarized antenna is proposed. The antenna has a 1.43% impedance bandwidth which is from 1801 MHz to 1827 MHz for return loss larger than 10 dB. The isolation between the two ports is above 28 dB in the bandwidth, and the gain is 6.6 dBi. The proposed antenna not only consists of a full-planar structure, but also is easy to be fabricated for its simple structure. Additionally, a section of slots and slits is cut on the radiation patch to reduce the area of it to 54% compared with the conventional square patch.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-05-13
    Description: Additive deposition of inks with metallic inclusions provides compelling means to embed electronics into versatile structures. The need to integrate electronics into environmentally friendly components and structures increases dramatically together with the increasing popularity of the Internet of Things. We demonstrate a novel brush-painting method for depositing copper oxide and silver inks directly on wood and cardboard substrates and discuss the optimization of the photonic sintering process parameters for both materials. The optimized parameters were utilized to manufacture passive ultra high frequency (UHF) radio frequency identification (RFID) tag antennas. The results from wireless testing show that the RFID tags based on the copper oxide and silver ink antennas on wood substrate are readable from ranges of 8.5 and 11 meters, respectively, and on cardboard substrate from read ranges of 8.5 and 12 meters, respectively. These results are well sufficient for many future wireless applications requiring remote identification with RFID.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-05-13
    Description: The pilot design problem in large-scale multi-input-multioutput orthogonal frequency division multiplexing (MIMO-OFDM) system is investigated from the perspective of compressed sensing (CS). According to the CS theory, the success probability of estimation is dependent on the mutual coherence of the reconstruction matrix. Specifically, the smaller the mutual coherence is, the higher the success probability is. Based on this conclusion, this paper proposes a pilot design algorithm based on alternating projection and obtains a nonorthogonal pilot pattern. Simulation results show that applying the proposed pattern gives the better performance compared to applying conventional orthogonal one in terms of normalized mean square error (NMSE) of the channel estimate. Moreover, the bit error rate (BER) performance of the large-scale MIMO-OFDM system is improved.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-02-08
    Description: A composite Global Positioning System (GPS) patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR) bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-05-13
    Description: It should be noted that the peak sidelobe level (PSLL) significantly influences the performance of the multibeam imaging sonar. Although a great amount of work has been done to suppress the PSLL of the array, one can verify that these methods do not provide optimal results when applied to the case of multiple patterns. In order to suppress the PSLL for multibeam imaging sonar array, a hybrid algorithm of binary particle swarm optimization (BPSO) and convex optimization is proposed in this paper. In this algorithm, the PSLL of multiple patterns is taken as the optimization objective. BPSO is considered as a global optimization algorithm to determine best common elements’ positions and convex optimization is considered as a local optimization algorithm to optimize elements’ weights, which guarantees the complete match of the two factors. At last, simulations are carried out to illustrate the effectiveness of the proposed algorithm in this paper. Results show that, for a sparse semicircular array with multiple patterns, the hybrid algorithm can obtain a lower PSLL compared with existing methods and it consumes less calculation time in comparison with other hybrid algorithms.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-05-13
    Description: Two curved targets are used to explore far-field superconvergence effects arising in numerical solutions of the electric-field and magnetic-field integral equations. Three different orders of basis and testing functions are used to discretize these equations, and three different types of target models (flat facets, quadratic-curved facets, and cubic-curved facets) are employed. Ideal far-field convergence rates are only observed when the model curvature is one degree higher than the basis order.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-07-11
    Description: A novel low-complexity robust adaptive beamforming (RAB) technique is proposed in order to overcome the major drawbacks from which the recent reported RAB algorithms suffer, mainly the high computational cost and the requirement for optimization programs. The proposed algorithm estimates the array steering vector (ASV) using a closed-form formula obtained by a subspace-based method and reconstructs the interference-plus-noise (IPN) covariance matrix by utilizing a sampling progress and employing the covariance matrix taper (CMT) technique. Moreover, the proposed beamformer only requires knowledge of the antenna array geometry and prior information of the probable angular sector in which the actual ASV lies. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing RAB methods.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-07-21
    Description: Due to the fluctuation of the signal-to-noise ratio (SNR) and the single snapshot case in the MIMO HF sky-wave radar system, the accuracy of the online estimation of the mutual coupling coefficients matrix of the uniform rectangle array (URA) might be degraded by the classical approach, especially in the case of low SNR. In this paper, an Online Particle Mean-Shift Approach (OPMA) is proposed, which is to get a relatively more effective estimation of the mutual coupling coefficients matrix with the low SNR. Firstly, the spatial smoothing technique combined with the MUSIC algorithm of URA is introduced for the DOA estimation of the multiple targets in the case of single snapshot which are taken as coherent sources. Then, based on the idea of the particle filter, the online particles with a moderate computational complexity are used to generate some different estimation results. Finally, the mean-shift algorithm is applied to get a more robust estimate of the equivalent mutual coupling coefficients matrix. The simulation results demonstrate the validity of the proposed approach in terms of the success probability, the statistics of bias, and the variance. The proposed approach is more robust and more accurate than the other two approaches.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-05-04
    Description: This work is about a horizontal electrically small wire antenna located underground, which transmits electromagnetic signals to the ground. To solve this problem, the expressions of the magnetic vector potential and the electric field are derived. Further, a quasi-static situation is considered in the condition of extremely low frequency (ELF) or super low frequency (SLF) to make an approximation on Sommerfeld integral for easy calculation. The method of moments (MOM) is used to solve the current distribution along the antenna surface at different frequencies, which lays a good foundation for obtaining the electric field of the antenna. Then the three components of the electric field along the radial distance at different polar angles on the ground are investigated, as well as the voltage received on the ground. Furthermore, some influence factors of the antenna are analyzed in order to know the operating characteristics of the antenna better. The results indicate that the antenna length and relative permittivity have a positive correlation with the radial component of the electric field magnitude, while the buried depth, frequency, and conductivity have a negative correlation with that. The influence of these factors on electric field is obvious except the relative permittivity.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-05-11
    Description: Direct power injection (DPI) and bulk current injection (BCI) methods are defined in IEC 62132-3 and IEC 62132-4 as the electromagnetic immunity test method of integrated circuits (IC). The forward power measured at the RF noise generator when the IC malfunctions is used as the measure of immunity level of the IC. However, the actual power that causes failure in ICs is different from forward power measured at the noise source. Power transfer efficiency is used as a measure of power loss of the noise injection path. In this paper, the power transfer efficiencies of DPI and BCI methods are derived and validated experimentally with immunity test setup of a clock divider IC. Power transfer efficiency varies significantly over the frequency range as a function of the test method used and the IC input impedance. For the frequency range of 15 kHz to 1 GHz, power transfer efficiency of the BCI test was constantly higher than that of the DPI test. In the DPI test, power transfer efficiency is particularly low in the lower test frequency range up to 10 MHz. When performing the IC immunity tests following the standards, these characteristics of the test methods need to be considered.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-05-11
    Description: This paper aims at applying a simplified sea surface model into the physical optics (PO) method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-05-11
    Description: We describe a measurement technique to characterize the equivalent isotropically radiated power (EIRP) of electrically large wireless equipment in a compact environment. A modified phase-measurement method was proposed and, thus, the separation of the signal generator and radiating element was not required during the measurement. A Fresnel-to-far-field transformation was used for the fast measurement time in a compact anechoic chamber. An experimental verification of the method was carried out in a compact anechoic chamber, where the source-detector separation was approximately 1/5 of the far-field distance. The measured magnitude and phase pattern exhibited only a small error. The EIRP obtained using a Fresnel-to-far-field transformation was compared with a reference value, and the error was within 0.5 dB.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-05-14
    Description: In through-wall radar imaging (TWRI), ambiguities in wall characteristics including the thickness and the relative permittivity will distort the image and shift the imaged target position. To quickly and accurately estimate the wall parameters, an approach based on a support vector machine (SVM) is proposed. In TWRI problem, the nonlinearity is embodied in the relationship between backscatter data and the wall parameters, which can be obtained through the SVM training process. Measurement results reveal that once the training phase is completed, the technique only needs no more than one second to estimate wall parameters with acceptable errors. Then through-wall images are reconstructed using a back-projection (BP) algorithm by a finite-difference time-domain (FDTD) simulation. Noiseless and noisy measurements are discussed; the simulation results demonstrate that noisy contamination has little influence on the imaging quality. Furthermore, the feasibility and the validity are tested by a more realistic situation. The results show that high-quality and focused images are obtained regardless of the errors in the wall parameter estimates.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-05-15
    Description: The hybrid solvers based on integral equation domain decomposition method (HS-DDM) are developed for modeling of electromagnetic radiation. Based on the philosophy of “divide and conquer,” the IE-DDM divides the original multiscale problem into many closed nonoverlapping subdomains. For adjacent subdomains, the Robin transmission conditions ensure the continuity of currents, so the meshes of different subdomains can be allowed to be nonconformal. It also allows different fast solvers to be used in different subdomains based on the property of different subdomains to reduce the time and memory consumption. Here, the multilevel fast multipole algorithm (MLFMA) and hierarchical (H-) matrices method are combined in the framework of IE-DDM to enhance the capability of IE-DDM and realize efficient solution of multiscale electromagnetic radiating problems. The MLFMA is used to capture propagating wave physics in large, smooth regions, while H-matrices are used to capture evanescent wave physics in small regions which are discretized with dense meshes. Numerical results demonstrate the validity of the HS-DDM.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-05-05
    Description: This paper presents results of investigation on the coherence bandwidth of narrowband radio channels in 430 MHz band. The coherence bandwidth values were estimated from a power delay profile obtained by recording CDMA2000 forward channel signals during real-field measurements in various environments: medium city, flat terrain, and hilly terrain in northern Poland. The results of measurements are compared with characteristic parameters of UHF radio channel models defined for exemplary narrowband digital system from the TETRA standard. In all of the tested environments, the coherence bandwidth values during most of an observation time were much higher than 25 kHz. Therefore, the fading in tested UHF narrowband channels should be classified as flat fading.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-05-06
    Description: The indoor radio channels at 15 GHz are investigated based on measurements. The large- and small-scale fading behaviors as well as the delay dispersion characteristics are discussed. It is found that the large-scale fading, Ricean -factor, and delay spread can be described by log-normal distributions. Furthermore, both autocorrelation and cross correlation properties of the above parameters are analyzed and modeled. These parameters characterize fading and delay behaviors as well as their mutual dependency and can be used as empirical values for future wireless system design and simulation in 15 GHz short-range indoor channels.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-05-06
    Description: The paper assumes that the channel state information (CSI) is available at the receiver and is known partially at the transmitter through a feedback channel. The bit error rate (BER) performance of multiple transmit antenna selection (MTAS) for the multiple-input and single-output (MISO) system with STBC (MTAS/MISO-STBC) will be investigated in detail. Meanwhile, the selection criterion that maximizes the channel Frobenius norm or minimizes the error probability of MTAS/MISO-STBC system is employed. In two cases of erroneous CSI (ECSI) and inerrable CSI (ICSI), wireless channels of the MTAS systems are modeled and their analytical expressions are derived. For the case of ICSI, the exact BER expressions of the Chernoff upper bound (CUB) for both the MISO-STBC system of full complexity and MTAS system are evaluated, respectively. Next, for the ECSI case, a comprehensive analytical expression of BER CUB for the same system is derived in detail. Finally, extensive Monte-Carlo simulations are presented to support and validate our numerical analysis proposed in this paper. Both the simulating results and the numerical results show that MTAS can reduce effectively the effect of the erroneous CSI.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-05-06
    Description: Energy-efficient communications, namely, green communications, has attracted increasing attention due to energy shortage and greenhouse effect. Motivated by this, we consider the uplink energy-efficient resource allocation in multiuser massive multiple-input multiple-output (MIMO) systems. Specifically, we consider that both the number of antenna arrays at the base station (BS) and the transmit data rate at UE are adjusted adaptively to maximize the energy efficiency. Firstly, we demonstrate the existence of a unique resource allocation solution that is globally optimal by exploiting the properties of objective function. Then we develop an iterative algorithm to solve it. By transforming the originally fractional optimization problem into an equivalent subtractive form using the properties of fractional programming, we develop another efficient iterative resource allocation algorithm. Simulation results have validated the effectiveness of the proposed two algorithms and have shown that both algorithms can fast converge to a near-optimal solution in a small number of iterations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-05-07
    Description: Wireless channels are commonly affected by short-term fading and long-term fading (shadowing). The shadowing effects must be taken into account also when mobility is present in the wireless scenario. Using a composite fading model, the total channel capacity can be studied for a scenario with short-term Rayleigh fading along with shadowing. This work provides quantitative results for these kinds of scenarios with Rayleigh fading and shadowing, considering also multiple-input and multiple-output systems, which have not been previously reported. In addition, the channel capacity has been studied in depth in its relation with the shadowing level, signal to noise ratio, and the number of elements in the multiple-input and multiple-output system. Moreover, the channel performance with shadowing has been compared to the one without it. Furthermore, Rician model with shadowing is studied and its results are reported. In addition, correlated and experimental results are provided. It is identified that the distributed MIMO systems can benefit from shadowing in Rician channels. This advantage has not been reported previously. This type of fading is proposed for massive MIMO by others and our results open the door to emulate massive MIMO on a reverberation chamber.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-05-08
    Description: To minimize the peak sidelobe level (PSLL) of sparse concentric ring arrays, this paper presents an optimization method of grid ring radii of these arrays. The proposed method is based on modified real genetic algorithm (MGA); it makes grid ring radii as optimal variables and makes elements more reasonably distributed on the array aperture. Also, it can improve the PSLL of the sparse concentric ring arrays and can meanwhile control the computational cost. The simulated results confirming the efficiency and the robustness of the algorithm are provided at last.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-04-02
    Description: The cellphone based localization system for search and rescue in complex high density ruins has attracted a great interest in recent years, where the radio channel characteristics are critical for design and development of such a system. This paper presents a spatial smoothing estimation via rotational invariance technique (SS-ESPRIT) for radio channel characterization of high density ruins. The radio propagations at three typical mobile communication bands (0.9, 1.8, and 2 GHz) are investigated in two different scenarios. Channel parameters, such as arrival time, delays, and complex amplitudes, are statistically analyzed. Furthermore, a channel simulator is built based on these statistics. By comparison analysis of average excess delay and delay spread, the validation results show a good agreement between the measurements and channel modeling results.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-02-06
    Description: An optimal resource allocation strategy for MIMO relay system is considered in simultaneous wireless information and energy transfer network, where two users with multiple antennas communicate with each other assisted by an energy harvesting MIMO relay that gathers energy from the received signal by applying time switching scheme and forwards the received signal by using the harvesting energy. It is focused on the precoder design and resource allocation strategies for the system to allocate the resources among the nodes in decode-and-forward (DF) mode. Specifically, optimal precoder design and energy transfer strategy in MIMO relay channel are firstly proposed. Then, we formulate the resource allocation optimization problem. The closed-form solutions for the time and power allocation are derived. It is revealed that the solution can flexibly allocate the resource for the MIMO relay channel to maximize the sum rate of the system. Simulation results demonstrated that the performance of the proposed algorithm outperforms the traditional fixed method.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-04-29
    Description: Direction of arrival (DOA) estimation is a crucial problem in electronic reconnaissance. A novel broadband DOA estimation method utilizing nested arrays is devised in this paper, which is capable of estimating the frequencies and DOAs of multiple narrowband signals in broadbands, even though they may have different carrier frequencies. The proposed method converts the DOA estimation of multiple signals with different frequencies into the spatial frequency estimation. Then, the DOAs and frequencies are pair matched by sparse recovery. It is possible to significantly increase the degrees of freedom (DOF) with the nested arrays and the number of sources can be more than that of sensor array. In addition, the method can achieve high estimation precision without the two-dimensional search process in frequency and angle domain. The validity of the proposed method is verified by theoretic analysis and simulation results.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-04-08
    Description: A UWB E-plane omnidirectional microwave antenna is designed and fabricated for IEEE 802.11a communication system and microwave magnetron source system as a radiation monitor. A cooptimization method based on particle swarm optimization (PSO) algorithm and FDTD software is presented. The presented PSO algorithm is useful in many industrial microwave applications, such as microwave magnetron design and other techniques with a high power level. The maximum measured relative bandwidth of 65% is achieved for the proposed antenna after a rapid and efficient optimization. Furthermore, the measured antenna polarization purity reaches about 20 dB at the communication C band. The PSO algorithm is a powerful candidate for microwave passive component design.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-04-08
    Description: This paper is dedicated to different experimental validations concerning a novel concept of beam forming and beam steering antenna. The working principle of the antenna is based on the equivalent radiating surface approach and inspired from an electromagnetic band gap antenna. The theoretical aspect and some numerical validations have been already published in the work of Abou Taam et al. (2014). Different electromagnetic behaviors have been demonstrated, such as low mutual coupling, and high gain preservation for high scanning angles values. In this paper, some of these electromagnetic behaviors will be proven experimentally by the means of two different feeding configurations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-04-08
    Description: A non-cross-fed printed log-periodic antenna is simulated and studied experimentally. To avoid complex feeding with long coaxial line, the non-cross-feeding structure is applied in this antenna. The software CST Microwave Studio is employed to simulate the proposed antenna, and the optimized antenna model is obtained. According to the simulation results, the antenna prototype is produced and measured. Simulation and measured results show that the antenna is with  dB in band of 4.2–9.2 GHz. And the radiation pattern and gain vary steadily in this band, which achieves requirements for wideband antenna. This antenna design can be extended to the design of the antenna integrated in communication circuit.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-04-09
    Description: The ideal lossless symmetrical reciprocal network (ILSRN) is constructed and introduced to resolve the complex interconnections of two arbitrary microwave networks. By inserting the ILSRNs, the complex interconnections can be converted into the standard one-by-one case without changing the characteristics of the previous microwave networks. Based on the algorithm of the generalized cascade scattering matrix, a useful derivation on the excitation coefficients of antenna arrays is firstly proposed with consideration of the coupling effects. And then, the proposed techniques are applied on the microwave circuits and antenna arrays. Firstly, an improved magic-T is optimized, fabricated, and measured. Compared with the existing results, the prototype has a wider bandwidth, lower insertion loss, better return loss, isolation, and imbalances. Secondly, two typical linear waveguide slotted arrays are designed. Both the radiation patterns and scattering parameters at the input ports agree well with the desired goals. Finally, the feeding network of a two-element microstrip antenna array is optimized to decrease the mismatch at the input port, and a good impedance matching is successfully achieved.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-04-10
    Description: A broadband single-feed circularly polarized patch antenna with wide beamwidth is presented. The patch is coupled to four asymmetric cross slots via a microstrip ring with eight matching segments underneath the ground plane, traversing through the arms of the cross slots in a serial manner. And a coupling slice instead of a resistive load is used as matching load of the microstrip ring for higher gain. Furthermore, a metal side wall surrounding the antenna is used to improve the isolation between adjacent elements in an array. Through optimizing the four asymmetric cross slots and eight matching segments, excellent performances are achieved by the proposed antenna, especially for the broadband and wide beamwidth. Measurement results show that the antenna has −10 dB reflection coefficient bandwidth of 29.7%, 3-dB axial-ratio bandwidth of 21.6%, and beamwidth of more than 90°. It can be considered as a good candidate for the element of arrays.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-04-10
    Description: The Lorentz reciprocity theorem enables us to establish that the transmitting and receiving patterns of any antenna are identical, provided some hypotheses on this antenna and the surrounding medium are satisfied. But reciprocity does not mean that the antenna behaves the same in the transmitting and the receiving modes. In this paper, array antennas fed by multiple beam forming networks are discussed, highlighting the possibility to have different values of internal losses in the beam forming network depending on the operation mode. In particular, a mathematical condition is derived for the specific case of a multiple beam forming network with lossless transmitting mode and lossy receiving mode, such a behavior being fully consistent with the reciprocity theorem. A theoretical discussion is provided, starting from a simple 2-element array to a general multiple beam forming network. A more practical example is then given, discussing a specific Nolen matrix design and comparing theoretical aspects with simulation results.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-04-10
    Description: Vector-sensor arrays such as those composed of crossed dipole pairs are used as they can account for a signal’s polarisation in addition to the usual direction of arrival information, hence allowing expanded capacity of the system. The problem of designing fixed beamformers based on such an array, with a quaternionic signal model, is considered in this paper. Firstly, we consider the problem of designing the weight coefficients for a fixed set of vector-sensor locations. This can be achieved by minimising the sidelobe levels while keeping a unitary response for the main lobe. The second problem is then how to find a sparse set of sensor locations which can be efficiently used to implement a fixed beamformer. We propose solving this problem by converting the traditional norm minimisation associated with compressive sensing into a modified norm minimisation which simultaneously minimises all four parts of the quaternionic weight coefficients. Further improvements can be made in terms of sparsity by converting the problem into a series of iteratively solved reweighted minimisations, as well as being able to enforce a minimum spacing between active sensor locations. Design examples are provided to verify the effectiveness of the proposed design methods.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-04-17
    Description: A method for determining the location of Global Systems for Mobile Communications (GSM) mobile transmitters is proposed. Our approach estimates the location of a source without the use of multilateration or Line-of-Sight (LOS) techniques. A Multipath Characteristic Database (MCD) containing the multipath feature vectors, for each possible transmitter location within an area of interest, is populated via ray-tracing software simulations. The multipath characteristics of interest are angle-of-arrival (AOA) (azimuth) and time-of-arrival (TOA). By minimizing the “distance” between estimated and simulated multipath feature vectors, an estimate for the actual source location can be obtained. The development of the estimation method is presented, followed by a detailed analysis of its estimation accuracy. Since the proposed method utilizes a simulated multipath signature database based upon the knowledge of the environment and the terrain, the need for a priori soundings from the area of interest is eliminated, thus making this location estimation system suitable for application in denied territories. Location accuracies compare favorably with the requirements for the location of wireless 9-1-1 callers as recommended by the Federal Communications Commission (FCC).
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-03-25
    Description: A wireless charger for low capacity thin-film batteries is presented. The proposed device consists of a nonradiative wireless resonant energy link and a power management unit. Experimental data referring to a prototype operating in the ISM band centered at 434 MHz are presented and discussed. In more detail, in order to facilitate the integration into wearable accessories (such as handbags or suitcases), the prototype of the wireless energy link was implemented by exploiting a magnetic coupling between two planar resonators fabricated by using a conductive fabric on a layer of leather. From experimental data, it is demonstrated that, at 434 MHz, the RF-to-RF power transfer efficiency of the link is approximately 69.3%. As for the performance of the system as a whole, when an RF power of 7.5 dBm is provided at the input port, a total efficiency of about 29.7% is obtained. Finally, experiments performed for calculating the charging time for a low capacity thin-film battery demonstrated that, for RF input power higher than 6 dBm, the time necessary for recharging the battery is lower than 50 minutes.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-03-31
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-04-07
    Description: This paper deals with suitable antennas for energy harvesting, which is a growing research field due to the utilization of nowadays ubiquitous and abundant RF energy. Four types of basic antenna structures suitable for harvesting applications, namely, the patch antenna, slot antenna, modified inverted F antenna, and dielectric resonator antenna, are compared from the viewpoint of reflection coefficient, efficiency, radiation patterns, and dimensions. The frequencies of interest were chosen so that they cover several main wireless systems operating between 0.8 GHz and 2.6 GHz, that is, GSM, UMTS, and WiFi.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-04-08
    Description: A method of transforming high-order Gaussian beams (GBs) mode into circular symmetry fundamental Gaussian beam (FGB) mode with arbitrary waist size is presented using irradiance moments method in quasi-optical (QO) mode converters. The double shaped mirrors correcting amplitude and phase simultaneously are generated by a single incidence irradiance sampling data and known ideal output FGB taking advantage of linear moment matching technique and Fresnel diffraction theory, which can be applied to a wide frequency range especially significant for terahertz band. The numerical coding procedure of creating double correcting mirrors and its fast convergence speed are discussed at 325 GHz. Numerical and experimental comparisons reveal the conclusion that enhancing surface precision and increasing moments order can improve main lobe levels.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-12-28
    Description: The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-12-30
    Description: The paper presents an estimation of the reception angle distribution based on temporal characteristics such as the power delay spectrum (PDS) or power delay profile (PDP). Here, we focus on such wireless environment, where the propagation phenomenon predominates in azimuth plane. As a basis to determine probability density function (PDF) of the angle of arrival (AOA), a geometrical channel model (GCM) in form of the multielliptical model for delayed scattering components and the von Mises’ PDF for local scattering components are used. Therefore, this estimator is called the distribution based on multielliptical model (DBMM). The parameters of GCM are defined on the basis of the PDS or PDP and the relative position of the transmitter and the receiver. In contrast to the previously known statistical models, DBMM ensures the estimation PDF of AOA by using the temporal characteristics of the channel for differing propagation conditions. Based on the results of measurements taken from the literature, DBMM verification, assessment of accuracy, and comparison with other models are shown. The results of comparison show that DBMM is the only model that provides the smallest least-squares error for different environments.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-12-30
    Description: A comparative study between via-holed and via-free back-to-back GCPW-MS-GCPW (Grounded Coplanar Waveguide-Microstrip lines) transitions is reported in this paper. According to simulation results, both via-holed and via-free transitions on commercial benzocyclobutene polymer 20 µm film show a bandwidth over 57 GHz. Bandwidth of optimized via-holed transitions increases with the via-hole diameter, up to 75 GHz with 300 μm via-hole diameter. The via-hole free transition achieves experimentally an ultrabroadband from 2 GHz to 78 GHz with an insertion loss of only 0.5 dB thanks to the copper metallization thickness of 2 μm. In addition, these measurement results are in perfect agreement with the simulation results. These via-free and via-holes transitions are very useful and requested in component packaging, on-wafer measurements of microstrip based microwave integrated circuits, and also the interconnections in hybrid circuits including both microstrip and coplanar structures.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-12-30
    Description: An efficient neural network-based approach for tracking of variable number of moving electromagnetic (EM) sources in far-field is proposed in the paper. Electromagnetic sources considered here are of stochastic radiation nature, mutually uncorrelated, and at arbitrary angular distance. The neural network model is based on combination of probabilistic neural network (PNN) and the Multilayer Perceptron (MLP) networks and it performs real-time calculations in two stages, determining at first the number of moving sources present in an observed space sector in specific moments in time and then calculating their angular positions in azimuth plane. Once successfully trained, the neural network model is capable of performing an accurate and efficient direction of arrival (DoA) estimation within the training boundaries which is illustrated on the appropriate example.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-12-30
    Description: A wideband antenna is designed based on factor in this paper. Firstly, the volume-surface integral equations (VSIEs) and self-adaptive differential evolution algorithm (DEA) are introduced as the basic theories to optimize antennas. Secondly, we study the computation of of arbitrary shaped structures, aiming at designing an antenna with maximum bandwidth by minimizing the of the antenna. This method is much more efficient for only values at specific frequency points that are computed, which avoids optimizing bandwidth directly. Thirdly, an integrated method combining the above method with VSIEs and self-adaptive DEA is employed to optimize the wideband antenna, extending its bandwidth from 11.5~16.5 GHz to 7~20 GHz. Lastly, the optimized antenna is fabricated and measured. The measured results are consistent with the simulated results, demonstrating the feasibility and effectiveness of the proposed method.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-01-01
    Description: The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI). Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed code with neuronavigation tools will permit real-time evaluation of the stimulated brain regions during the TMS delivery, thus improving the efficacy of clinical applications.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-01-07
    Description: This paper presents a novel real-time compressive sensing (CS) reconstruction which employs high density field-programmable gate array (FPGA) for hardware acceleration. Traditionally, CS can be implemented using a high-level computer language in a personal computer (PC) or multicore platforms, such as graphics processing units (GPUs) and Digital Signal Processors (DSPs). However, reconstruction algorithms are computing demanding and software implementation of these algorithms is extremely slow and power consuming. In this paper, the orthogonal matching pursuit (OMP) algorithm is refined to solve the sparse decomposition optimization for partial Fourier dictionary, which is always adopted in radar imaging and detection application. OMP reconstruction can be divided into two main stages: optimization which finds the closely correlated vectors and least square problem. For large scale dictionary, the implementation of correlation is time consuming since it often requires a large number of matrix multiplications. Also solving the least square problem always needs a scalable matrix decomposition operation. To solve these problems efficiently, the correlation optimization is implemented by fast Fourier transform (FFT) and the large scale least square problem is implemented by Conjugate Gradient (CG) technique, respectively. The proposed method is verified by FPGA (Xilinx Virtex-7 XC7VX690T) realization, revealing its effectiveness in real-time applications.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-03-10
    Description: A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free) region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog) beamformer.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-03-09
    Description: A novel thinned array with symmetric distribution along the array center is proposed in this paper. The proposed symmetric thinned array is based on the theory of unequally spaced array and the amplitude of each element in the array can be changed by introducing the weighted function. The pattern of the proposed array can be properly adjusted by changing the weighted function and the amplitude of the weighted factor, which obviously releases new degrees of freedom in array design. It has advantages such as low side lobe level (SLL) in the visible region, no grating lobes, and low nearby side lobe level (NSL), which has good potential for wide-angle scanning. Both simulation and experiment have been done; the experiment results show that, by applying this novel symmetric thinned array with pattern reconfigurable quasi-Yagi antenna, the scanning range of the array is −70°~70° in -plane with SLL almost −10 dB below the maximum of the main beam. The 3 dB beam-width coverage is −86°~86°, which means that the proposed array can realize the entire upper-space beam coverage and restrain the SLL at the same time.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-03-23
    Description: Knowing source number correctly is the precondition for most spatial spectrum estimation methods; however, many snapshots are needed when we determine number of wideband signals. Therefore, a new method based on Bootstrap resampling is proposed in this paper. First, signals are divided into some nonoverlapping subbands; apply coherent signal methods (CSM) to focus them on the single frequency. Then, fuse the eigenvalues with the corresponding eigenvectors of the focused covariance matrix. Subsequently, use Bootstrap to construct the new resampling matrix. Finally, the number of wideband signals can be calculated with obtained vector sequences according to clustering technique. The method has a high probability of success under low signal to noise ratio (SNR) and small number of snapshots.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-12-28
    Description: The problem of the direction of arrival (DOA) estimation for the noncircular (NC) signals, which have been widely used in communications, is investigated. A reduced-dimension NC-Capon algorithm is proposed hereby for the DOA estimation of noncircular signals. The proposed algorithm, which only requires one-dimensional search, can avoid the high computational cost within the two-dimensional NC-Capon algorithm. The angle estimation performance of the proposed algorithm is much better than that of the conventional Capon algorithm and very close to that of the two-dimensional NC-Capon algorithm, which has a much higher complexity than the proposed algorithm. Furthermore, the proposed algorithm can be applied to arbitrary arrays and works well without estimating the noncircular phases. The simulation results verify the effectiveness and improvement of the proposed algorithm.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-12-28
    Description: Although the three-dimensional (3D) channel model considering the elevation factor has been used to analyze the performance of multiuser multiple-input multiple-output (MU-MIMO) systems, less attention is paid to the effect of the elevation variation. In this paper, we elaborate the sum rate of MU-MIMO systems with a 3D base station (BS) exploiting different elevations. To illustrate clearly, we consider a high-rise building scenario. Due to the floor height, each floor corresponds to an elevation. Therefore, we can analyze the sum rate performance for each floor and discuss its effect on the performance of the whole building. This work can be seen as the first attempt to analyze the sum rate performance for high-rise buildings in modern city and used as a reference for infrastructure.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-12-31
    Description: Spectrum sensing is the most important component in the cognitive radio (CR) technology. Spectrum sensing has considerable technical challenges, especially in wideband systems where higher sampling rates are required which increases the complexity and the power consumption of the hardware circuits. Compressive sensing (CS) is successfully deployed to solve this problem. Although CS solves the higher sampling rate problem, it does not reduce complexity to a large extent. Spectrum sensing via CS technique is performed in three steps: sensing compressed measurements, reconstructing the Nyquist rate signal, and performing spectrum sensing on the reconstructed signal. Compressed detectors perform spectrum sensing from the compressed measurements skipping the reconstruction step which is the most complex step in CS. In this paper, we propose a novel compressed detector using energy detection technique on compressed measurements sensed by the discrete cosine transform (DCT) matrix. The proposed algorithm not only reduces the computational complexity but also provides a better performance than the traditional energy detector and the traditional compressed detector in terms of the receiver operating characteristics. We also derive closed form expressions for the false alarm and detection probabilities. Numerical results show that the analytical expressions coincide with the exact probabilities obtained from simulations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-01-14
    Description: A high sensitivity sensor for measurement radio frequency (RF) dielectric permittivity of liquids is described. Interference is used and parasitic effects are cancellation, which makes the sensor can catch weak signals caused by liquids with extremely small volumes. In addition, we present the relationship between transmission coefficient and permittivity of liquids under test (LUT). Using this sensor, quantitative measurements of the dielectric properties at 5.8 GHz are demonstrated of LUTs. Experiments show that the proposed method only requires the volume of 160 nanoliters for liquids. Therefore, the technology can be used for RF spectroscopic analysis of biological samples and extremely precious liquids.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-03-30
    Description: In Passive Radar System, obtaining the mixed weak object signal against the super power signal (jamming) is still a challenging task. In this paper, a novel framework based on Passive Radar System is designed for weak object signal separation. Firstly, we propose an Interference Cancellation algorithm (IC-algorithm) to extract the mixed weak object signals from the strong jamming. Then, an improved FastICA algorithm with -means cluster is designed to separate each weak signal from the mixed weak object signals. At last, we discuss the performance of the proposed method and verify the novel method based on several simulations. The experimental results demonstrate the effectiveness of the proposed method.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: For the problem of joint angle and range estimation with frequency diverse array (FDA), MIMO radar, staggered frequency increment is proposed to expand the range ambiguity and the joint algorithm of ESPRIT and MUSIC is proposed to reduce the computational complexity. The uniformly weighted beampattern of FDA is a SINC-like function. Therefore, the grating lobe of range estimation exists. In this paper, staggered frequency increment is proposed to increase the distance of adjacent grating lobes. The proposed joint estimation algorithm firstly estimates the angle by using ESPRIT algorithm. Then we get the range estimation by MUSIC one-dimensional range search using the above estimated angle. In simulation results section, it is indicated in simulation results that the proposed method improves the range grating lobe and reduces the complexity.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: 5G new radio (NR) provides enhanced transmission capabilities to transceivers by utilizing the massive multiple-input multiple-output (MIMO) technology with a significantly increased number of antenna elements. Such transmission requires massive arrays to perform accurate high-gain beamforming over the millimeter-wave frequency band. There is no fixed form of array structures for 5G NR base stations, but they are likely to include multiple subarrays or panels for practicality of implementation and are expected to cover the user equipment (UE) in various locations. In this paper, we propose an array structure to transmit signals over the three-dimensional (3D) space in an isotropic fashion for all types of UEs in ground, aerial, and high-rise building locations, by employing panels on surfaces of a polyhedron. We further derive exact beamforming equations for the proposed array and show the resulting beams provide improved receiver performance over the exiting conventional beamforming. The presented beamforming expressions can be applied to an arbitrary multipanel array with massive antenna elements.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: Analysis of electromagnetic wave coupling to thin-wire structures plays a very important role in electromagnetic compatibility (EMC). In this paper, a hybrid method, which is integrated parabolic equation (PE) and two-potential integral equation (TPIE), is presented to analyze the coupling problems in terrain environments. To model the realistic scenarios, PE based on the split-step Fourier transform (SSFT) technique is applied to solve the three-dimensional field distribution to obtain the external excitations for the wires. According to the boundary conditions, the high-precision TPIE solved via the moment method (MoM) is developed to simulate the induced currents on the wires. The hybrid method takes the terrain influences into account and provides a more reasonable result compared to the traditional approaches. Numerical examples are given to demonstrate correctness of the proposed method. Simulation experiments of field-to-transmission lines with different frequencies, radiation source heights, conductor radii, and lengths, in a realistic scenario constructed by a digital map, are carried out to investigate the coupling properties.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: This research proposes a circularly polarized (CP) single-fed omnidirectional dipole antenna operable in 2.45 GHz frequency for the industrial, scientific, and medical (ISM) radio band applications. The proposed antenna consisted of bisectional dipole core, a pair of quarter-wave baluns, and four diagonally adjoined parasitic braces. The bisectional dipole core was utilized to improve the antenna gain and realize omnidirectional radiation pattern, and the quarter-wave baluns were to symmetrize the current on the bisectional core. The four parasitic braces collectively generated circular polarization. In the study, simulations were conducted using CST Microwave Studio and a prototype antenna fabricated. To validate, experiments were carried out, and simulation and experimental results compared. The finding revealed good agreement between the simulation and experimental results. Essentially, in addition to achieving an antenna gain of 2.07 dBic, the proposed CP single-fed omnidirectional antenna is suited to ISM frequency band applications.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: Ground penetrating radar (GPR), as a kind of fast, effective, and nondestructive tool, has been widely applied to nondestructive testing of road quality. The finite-difference time-domain method (FDTD) is the common numerical method studying the GPR wave propagation law in layered structure. However, the numerical accuracy and computational efficiency are not high because of the Courant-Friedrichs-Lewy (CFL) stability condition. In order to improve the accuracy and efficiency of FDTD simulation model, a parallel conformal FDTD algorithm based on graphics processor unit (GPU) acceleration technology and surface conformal technique was developed. The numerical simulation results showed that CUDA-implemented conformal FDTD method could greatly reduce computational time and the pseudo-waves generated by the ladder approximation. And the efficiency and accuracy of the proposed method are higher than the traditional FDTD method in simulating GPR wave propagation in two-dimensional (2D) complex underground structures.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: An equivalent circuit method (ECM) is proposed for the design of multilayer frequency-selective surfaces (FSSs). In contrast to the existing ECMs that were developed mainly for the analysis of the properties of a given FSS, the presented ECM aims at providing the initial design parameters of an FSS from the desired frequency response. In this method, four types of basic FSS structures are used as the building blocks to construct the multilayer FSSs, and their surface impedances in both the normal- and the oblique-incidence situations are studied in detail in order to achieve more accurate equivalent circuit (EC) representation of the entire FSS. For a general FSS design with expected frequency response, the EC parameters and the geometrical sizes of the required basic building blocks can be synthesized from a few typical S-parameter (S11/S12) samplings of the response curves via a simple least-square curve-fitting process. The effectiveness and accuracy of the method are shown by the designs of a band-pass FSS with steep falling edge and a miniaturized band-pass FSS with out-of-band absorption. The prototype of one design is fabricated, and the measured frequency response agrees well with the numerical results of the ECM and the full-wave simulations.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: A novel Gysel power divider with negative group delay (NGD), good matching, and low insertion loss is proposed. Resistors connected with short-circuited coupled lines (RCSCL) are shunted at output ports of the Gysel power divider to obtain NGD characteristics, and another resistor is shunted at the input port to realize perfect input and output matching. To verify the proposed structure, an NGD Gysel power divider is designed and fabricated. At the center frequency of 1.0 GHz, the measured NGD times for different output ports are −1.94 ns and −1.97 ns, the input/output port return loss is greater than 38 dB, the insertion loss is less than 8.3 dB, and the isolation between output ports is higher than 41 dB. To enhance the NGD bandwidth, two RCSCL networks having slightly different center frequencies are connected in parallel, which provides wider bandwidth with good input matching characteristics.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: In this paper, a wideband slot antenna element and its array with stereoscopic differentially fed structures are proposed for the radar system. Firstly, a series of slots and a stereoscopic differentially fed structure are designed for the antenna element, which makes it possess a wide bandwidth, stable radiation characteristics, and rather high gain. Moreover, the stereoscopic feeding structure can firmly support the antenna’s radiation structure and reduce the influence of feeding connectors on radiating performance. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a hierarchical feeding network is designed for the array on the basis of the stereoscopic differentially fed structure. For validation, the antenna element and 4 × 4 array are both fabricated and measured: (1) the measured −10 dB impedance bandwidth of the antenna element is 62% (6.8–12.9 GHz) and the gain within the entire band is 5–9.7 dBi and (2) the measured −10 dB impedance bandwidth of the array is approximately 50% (7 to 12 GHz) with its gain being 14–19.75 dBi within the entire band. Notably, measured results agree well with simulations and show great advantages over other similar antennas on bandwidth and gain.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: In this paper, a novel slot antenna array that is based on mirror polarization conversion metasurfaces (MPCM) is proposed. It achieves circular polarization (CP) and effectively reduces the radar cross section (RCS) and increases gain in the entire x-band. This design uses the mirrored composition of the polarization conversion metasurfaces (PCM) on the top surface of the substrate. The MPCM covers a 2 × 2 slot antenna array that is fed with by a sequentially rotating network. The CP radiation is realized by the polarization conversion characteristics of the PCM. At the same time, the reduction of RCS is achieved by 180° (±30°) reflection phase difference between two adjacent PCMs. The improvement in gain is achieved by using a Fabry–Perot cavity, which is constituted by the ground of the antenna and the PCM. Simulated and measured results show that approximately 46.4% of the operating bandwidth is in the range of 7.5–12 GHz (AR 
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...