ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (524)
  • Hindawi  (524)
  • American Physical Society (APS)
  • Institute of Physics
  • Public Library of Science
  • 2020-2024
  • 2015-2019  (524)
  • 1985-1989
  • 1945-1949
  • Science and Technology of Nuclear Installations  (232)
  • 97430
  • Energy, Environment Protection, Nuclear Power Engineering  (524)
  • Media Resources and Communication Sciences, Journalism
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Articles  (524)
Publisher
  • Hindawi  (524)
  • American Physical Society (APS)
  • Institute of Physics
  • Public Library of Science
Years
Year
Topic
  • Energy, Environment Protection, Nuclear Power Engineering  (524)
  • Media Resources and Communication Sciences, Journalism
  • Electrical Engineering, Measurement and Control Technology
  • 1
    Publication Date: 2015-08-05
    Description: Nuclear power plants are highly complex systems and the issues related to their safety are of primary importance. Probabilistic safety assessment is regarded as the most widespread methodology for studying the safety of nuclear power plants. As maintenance is one of the most important factors for affecting the reliability and safety, an enhanced preventive maintenance optimization model based on a three-stage failure process is proposed. Preventive maintenance is still a dominant maintenance policy due to its easy implementation. In order to correspond to the three-color scheme commonly used in practice, the lifetime of system before failure is divided into three stages, namely, normal, minor defective, and severe defective stages. When the minor defective stage is identified, two measures are considered for comparison: one is that halving the inspection interval only when the minor defective stage is identified at the first time; the other one is that if only identifying the minor defective stage, the subsequent inspection interval is halved. Maintenance is implemented immediately once the severe defective stage is identified. Minimizing the expected cost per unit time is our objective function to optimize the inspection interval. Finally, a numerical example is presented to illustrate the effectiveness of the proposed models.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-05
    Description: An integrated deterministic and probabilistic safety analysis (IDPSA) was carried out to assess the performances of the firefighting means to be applied in a nuclear power plant. The tools used in the analysis are the code FDS (Fire Dynamics Simulator) for fire simulation and the tool MCDET (Monte Carlo Dynamic Event Tree) for handling epistemic and aleatory uncertainties. The combination of both tools allowed for an improved modelling of a fire interacting with firefighting means while epistemic uncertainties because lack of knowledge and aleatory uncertainties due to the stochastic aspects of the performances of the firefighting means are simultaneously taken into account. The MCDET-FDS simulations provided a huge spectrum of fire sequences each associated with a conditional occurrence probability at each point in time. These results were used to derive probabilities of damage states based on failure criteria considering high temperatures of safety related targets and critical exposure times. The influence of epistemic uncertainties on the resulting probabilities was quantified. The paper describes the steps of the IDPSA and presents a selection of results. Focus is laid on the consideration of epistemic and aleatory uncertainties. Insights and lessons learned from the analysis are discussed.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-05
    Description: In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. In addition, the impact of power uprate is determined in terms of both core damage probability and safety margins.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-05
    Description: In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be analysed as beyond design basis hazard. The aim of the analysis is to define the postevent condition of the plant, definition of plant vulnerabilities, and identification of the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The procedure includes identification of the scope of the safety analysis and the acceptable limit cases for plant structures having different role from accident management point of view. Considerations are made for identification of dominating effects of liquefaction. The possibility of the decoupling of the analysis of liquefaction effects from the analysis of vibratory ground motion is discussed. It is shown in the paper that the practicable empirical methods for definition of liquefaction susceptibility provide rather controversial results. Selection of method for assessment of soil behaviour that affects the integrity of structures requires specific considerations. The case of nuclear power plant at Paks, Hungary, is used as an example for demonstration of practical importance of the presented results and considerations.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-05
    Description: The loss of off-site power (LOOP) event occurs when all electrical power to the nuclear power plant from the power grid is lost. Complete failure of both off-site and on-site alternating current (AC) power sources is referred to as a station blackout (SBO). Combined LOOP and SBO events are analyzed in this paper. The analysis is done for different time delays between the LOOP and SBO events. Deterministic safety analysis is utilized for the assessment of the plant parameters for different time delays of the SBO event. Obtained plant parameters are used for the assessment of the probabilities of the functional events in the SBO event tree. The results show that the time delay of the SBO after the LOOP leads to a decrease of the core damage frequency (CDF) from the SBO event tree. The reduction of the CDF depends on the time delay of the SBO after the LOOP event. The results show the importance of the safety systems to operate after the plant shutdown when the decay heat is large. Small changes of the basic events importance measures are identified with the introduction of the delay of the SBO event.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-05
    Description: Integrated Deterministic-Probabilistic Safety Assessment (IDPSA) combines deterministic model of a nuclear power plant with a method for exploration of the uncertainty space. Huge amount of data is generated in the process of such exploration. It is very difficult to “manually” process and extract from such data information that can be used by a decision maker for risk-informed characterization, understanding, and eventually decision making on improvement of the system safety and performance. Such understanding requires an approach for interpretation, grouping of similar scenario evolutions, and classification of the principal characteristics of the events that contribute to the risk. In this work, we develop an approach for classification and characterization of failure domains. The method is based on scenario grouping, clustering, and application of decision trees for characterization of the influence of timing and order of events. We demonstrate how the proposed approach is used to classify scenarios that are amenable to treatment with Boolean logic in classical Probabilistic Safety Assessment (PSA) from those where timing and order of events determine process evolution and eventually violation of safety criteria. The efficiency of the approach has been verified with application to the SARNET benchmark exercise on the effectiveness of hydrogen management in the containment.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-05
    Description: The analytical/deterministic modelling and simulation/probabilistic methods are used separately as a rule in order to analyse the physical processes and random or uncertain events. However, in the currently used probabilistic safety assessment this is an issue. The lack of treatment of dynamic interactions between the physical processes on one hand and random events on the other hand causes the limited assessment. In general, there are a lot of mathematical modelling theories, which can be used separately or integrated in order to extend possibilities of modelling and analysis. The Theory of Probabilistic Dynamics (TPD) and its augmented version based on the concept of stimulus and delay are introduced for the dynamic reliability modelling and the simulation of accidents in hybrid (continuous-discrete) systems considering uncertain events. An approach of non-Markovian simulation and uncertainty analysis is discussed in order to adapt the Stimulus-Driven TPD for practical applications. The developed approach and related methods are used as a basis for a test case simulation in view of various methods applications for severe accident scenario simulation and uncertainty analysis. For this and for wider analysis of accident sequences the initial test case specification is then extended and discussed. Finally, it is concluded that enhancing the modelling of stimulated dynamics with uncertainty and sensitivity analysis allows the detailed simulation of complex system characteristics and representation of their uncertainty. The developed approach of accident modelling and analysis can be efficiently used to estimate the reliability of hybrid systems and at the same time to analyze and possibly decrease the uncertainty of this estimate.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-05
    Description: In integrated deterministic and probabilistic safety analysis (IDPSA), safe scenarios and prime implicants (PIs) are generated by simulation. In this paper, we propose a novel postprocessing method, which resorts to a risk-based clustering method for identifying Near Misses among the safe scenarios. This is important because the possibility of recovering these combinations of failures within a tolerable grace time allows avoiding deviations to accident and, thus, reducing the downtime (and the risk) of the system. The postprocessing risk-significant features for the clustering are extracted from the following: (i) the probability of a scenario to develop into an accidental scenario, (ii) the severity of the consequences that the developing scenario would cause to the system, and (iii) the combination of (i) and (ii) into the overall risk of the developing scenario. The optimal selection of the extracted features is done by a wrapper approach, whereby a modified binary differential evolution (MBDE) embeds a -means clustering algorithm. The characteristics of the Near Misses scenarios are identified solving a multiobjective optimization problem, using the Hamming distance as a measure of similarity. The feasibility of the analysis is shown with respect to fault scenarios in a dynamic steam generator (SG) of a nuclear power plant (NPP).
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-05
    Description: System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. This work uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-17
    Description: This paper presents the results of the analysis of the Unprotected Loss of Flow (ULOF) experiment SHRT-45R performed in the EBR-II fast reactor. These experiments are being analyzed in the scope of a benchmark exercise coordinated by the IAEA. The SHRT-45R benchmark contains a neutronic and a thermal-hydraulic part and results are presented for both. Neutronic calculations are performed with the ERANOS2.0 code in combination with various sets of nuclear data. The thermal-hydraulic evaluation is done with RELAP5-3D. The results are that the major neutronic parameters are well predicted with error margins on the order of 1%. The thermal-hydraulic results are less favourable: a consistent overestimation of the outlet temperature occurs in combination with erroneous flow distribution. Observed differences with measured data cannot be explained easily. The work presented in this paper was undertaken to investigate and validate the effectiveness of the calculational tools and data that are commonly used in our lab for the design and analysis of liquid metal cooled fast reactors.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-15
    Description: This paper reports two numerical simulation methods for modeling displacement instabilities around a surface groove in a metal substrate used in nuclear power plant. The amplitude change in the groove, the downward displacement at the base node, and the groove displacement at the periphery were simulated using ABAQUS to compare the results from two methods, as well as the tangential stress in the elements at the groove base and periphery. The comparison showed that for the tangential stress two methods were in close agreement for all thermal cycles. For the amplitude change, the downward displacement, the groove displacement, and the stress distribution, the two methods were in close agreement for the first 3 to 6 thermal cycles. After that, inconsistency increased with the number of thermal cycles. It is interesting that the thermal cycle at which the discrepancy between the two methods began to occur corresponded to a thermally grown oxide (TGO) thickness of 1 μm, which showed the accuracy of the present work over the classic method. It is concluded that the present work’s numerical simulation scheme worked better with a thinner TGO layer than the classic method and could overcome the limitation of TGO thickness by simulating any thickness.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-08-05
    Description: Instrumental neutron activation analysis (INAA) is a powerful technique for trace element determination in rocks. Nine alabaster samples were collected from Wadi El-Nakhil located at the intersection of lat. 26°10′50′′N and long. 34°03′40′′E, central Eastern Desert, Egypt, for investigation by INAA and Energy Depressive X-Ray Fluorescence (EDXRF). The samples were irradiated by thermal neutrons at the TRIGA Mainz research reactor at a neutron flux of 7 × 1011 n/cm2·s. Twenty-two elements were determined, namely, As, Ba, Ca, Co, Cr, Sc, Fe, Hf, K, Mg, Mn, Na, Rb, U, Zn, Zr, Lu, Ce, Sm, La, Yb, and Eu. The chemical analysis of alabaster indicated having high contents of CaO and MgO and LOI and low contents of SiO2, Al2O3, Na2O, K2O, MnO, and Fe2O3.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-07-11
    Description: This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR). The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers), heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s). The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use radial nodes per assembly, axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-19
    Description: The double-ended guillotine break (DEGB) of the horizontal coaxial gas duct accident is a serious air ingress accident of the high temperature gas-cooled reactor pebble-bed module (HTR-PM). Because the graphite is widely used as the structure material and the fuel element matrix of HTR-PM, the oxidation analyses of this severe air ingress accident have got enough attention in the safety analyses of the HTR-PM. The DEGB of the horizontal coaxial gas duct accident is calculated by using the TINTE code in this paper. The results show that the maximum local oxidation of the matrix graphite of spherical fuel elements in the core will firstly reach  mol/m3 at about 120 h, which means that only the outer 5 mm fuel-free zone of matrix graphite will be oxidized out. Even at 150 h, the maximum local weight loss ratio of the nuclear grade graphite in the bottom reflectors is only 0.26. Besides, there is enough time to carry out some countermeasures to stop the air ingress during several days. Therefore, the nuclear grade graphite of the bottom reflectors will not be fractured in the DEGB of the horizontal coaxial gas duct accident and the integrity of the HTR-PM can be guaranteed.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-01
    Description: Gamma-ray measurements in various research fields require efficient detectors. One of these research fields is mass attenuation coefficients of different materials. Apart from experimental studies, the Monte Carlo (MC) method has become one of the most popular tools in detector studies. An NaI(Tl) detector has been modeled, and, for a validation study of the modeled NaI(Tl) detector, the absolute efficiency of 3 × 3 inch cylindrical NaI(Tl) detector has been calculated by using the general purpose Monte Carlo code MCNP-X (version 2.4.0) and compared with previous studies in literature in the range of 661–2620 keV. In the present work, the applicability of MCNP-X Monte Carlo code for mass attenuation of concrete sample material as building material at photon energies 59.5 keV, 80 keV, 356 keV, 661.6 keV, 1173.2 keV, and 1332.5 keV has been tested by using validated NaI(Tl) detector. The mass attenuation coefficients of concrete sample have been calculated. The calculated results agreed well with experimental and some other theoretical results. The results specify that this process can be followed to determine the data on the attenuation of gamma-rays with other required energies in other materials or in new complex materials. It can be concluded that data from Monte Carlo is a strong tool not only for efficiency studies but also for mass attenuation coefficients calculations.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-06-23
    Description: Considering dangerous environmental conditions, maintenance of radioactive equipment can be performed by remote handling maintenance (RHM) system. The RHM system is a sophisticated man-machine system. Therefore, human factors analysis is an inevitable aspect considered in guaranteeing successful and safe task performance. This study proposes an approach for integrated analysis of human factors in RHM so as to make the evaluating process more practical. In the approach, indicators of accessibility, health safety, and fatigue are analyzed using virtual human simulation technologies. The human error factors in the maintenance process are analyzed using the human error probability (HEP) based on the success likelihood index method- (SLIM-) analytic hierarchy process (AHP). The psychological factors level of maintenance personnel is determined with an expert scoring. The human factors for the entire RHM system are then evaluated using the interval method. An application example is present, and the application results show that the approach can support the evaluation of the human factors in RHM.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-06-24
    Description: Based on the special application of 90-degree elbow pipe in the HTR-PM, the large eddy simulation was selected to calculate the instantaneous flow field in the 90-degree elbow pipe combining with the experimental results. The characteristics of the instantaneous turbulent flow field under the influence of flow separation and secondary flow were studied by analyzing the instantaneous pressure information at specific monitoring points and the instantaneous velocity field on the cross section of the elbow. The pattern and the intensity of the Dean vortex and the small scale eddies change over time and induce the asymmetry of the flow field. The turbulent disturbance upstream and the flow separation near the intrados couple with the vortexes of various scales. Energy is transferred from large scale eddies to small scale eddies and dissipated by the viscous stress in the end.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-05-11
    Description: Korea Atomic Energy Research Institute (KAERI) started the experimental research on moderator circulation as one of a the national research and development programs from 2012. This research program includes the construction of the moderator circulation test (MCT) facility, production of the validation data for self-reliant computational fluid dynamics (CFD) tools, and development of optical measurement system using the particle image velocimetry (PIV). In the present paper we introduce the scaling analysis performed to extend the scaling criteria suitable for reproducing thermal-hydraulic phenomena in a scaled-down CANDU- (CANada Deuterium Uranium-) 6 moderator tank, a manufacturing status of the 1/4 scale moderator tank. Also, preliminary CFD analysis results for the full-size and scaled-down moderator tanks are carried out to check whether the moderator flow and temperature patterns of both the full-size reactor and scaled-down facility are identical.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-03-23
    Description: Sensors health monitoring is essentially important for reliable functioning of safety-critical chemical and nuclear power plants. Autoassociative neural network (AANN) based empirical sensor models have widely been reported for sensor calibration monitoring. However, such ill-posed data driven models may result in poor generalization and robustness. To address above-mentioned issues, several regularization heuristics such as training with jitter, weight decay, and cross-validation are suggested in literature. Apart from these regularization heuristics, traditional error gradient based supervised learning algorithms for multilayered AANN models are highly susceptible of being trapped in local optimum. In order to address poor regularization and robust learning issues, here, we propose a denoised autoassociative sensor model (DAASM) based on deep learning framework. Proposed DAASM model comprises multiple hidden layers which are pretrained greedily in an unsupervised fashion under denoising autoencoder architecture. In order to improve robustness, dropout heuristic and domain specific data corruption processes are exercised during unsupervised pretraining phase. The proposed sensor model is trained and tested on sensor data from a PWR type nuclear power plant. Accuracy, autosensitivity, spillover, and sequential probability ratio test (SPRT) based fault detectability metrics are used for performance assessment and comparison with extensively reported five-layer AANN model by Kramer.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-20
    Description: A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-05-01
    Description: The study of the void reactivity variation in innovative BWR fuel assemblies is presented in this paper. The innovative assemblies are loaded with high enrichment fresh UO2 and MOX fuels. UO2 fuel enrichment is increased above existing design limitations for LWR fuels (〉5%). MOX fuel enrichment with fissile Pu content is established to achieve the same burnup level as that of high enrichment UO2 fuel. For the numerical analysis, the TRITON functional module of SCALE 6.1 code with the 238-group ENDF/B-VI cross section data library was applied. The investigation of the void reactivity feedback is performed in the entire 0–100% void fraction range. Higher values of void reactivity coefficient for assembly loaded with MOX fuel are found in comparison with values for assembly loaded with UO2 fuel. Moreover, coefficient values for MOX fuel are positive over 75% void fraction. The variation of the void reactivity coefficient is explained by the results of the decomposition analysis based on four-factor formula and neutron absorption reactions for main isotopes. Additionally, the impact of the moderation enhancement on the void reactivity coefficient was investigated for the innovative assembly with MOX fuel.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-05-05
    Description: In Canada, safe operation of CANDU (CANada Deuterium Uranium; it is a registered trademark of Atomic Energy of Canada Limited) reactors is supported by a full-scope program of nuclear safety research and development (R&D) in key technical areas. Key nuclear R&D programs, facilities, and expertise are maintained in order to address the unique features of the CANDU as well as generic technology areas common to CANDU and LWR (light water reactor). This paper presents an overview of the CANDU safety R&D which includes background, drivers, current status, challenges, and future directions. This overview of the Canadian nuclear safety R&D programs includes those currently conducted by the COG (CANDU Owners Group), AECL (Atomic Energy of Canada Limited), Candu Energy Inc., and the CNSC (Canadian Nuclear Safety Commission) and by universities via UNENE (University Network of Excellence in Nuclear Engineering) sponsorship. In particular, the nuclear safety R&D program related to the emerging CANDU ageing issues is discussed. The paper concludes by identifying directions for the future nuclear safety R&D.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-03-31
    Description: When a concrete structure is subjected to an impact, the material is subjected to high triaxial compressive stresses. Furthermore, the water saturation ratio in massive concrete structures may reach nearly 100% at the core, whereas the material dries quickly on the skin. The impact response of a massive concrete wall may thus depend on the state of water saturation in the material. This paper presents some triaxial tests performed at a maximum confining pressure of 600 MPa on concrete representative of a nuclear power plant containment building. Experimental results show the concrete constitutive behavior and its dependence on the water saturation ratio. It is observed that as the degree of saturation increases, a decrease in the volumetric strains as well as in the shear strength is observed. The coupled PRM constitutive model does not accurately reproduce the response of concrete specimens observed during the test. The differences between experimental and numerical results can be explained by both the influence of the saturation state of concrete and the effect of deviatoric stresses, which are not accurately taken into account. The PRM model was modified in order to improve the numerical prediction of concrete behavior under high stresses at various saturation states.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-04-04
    Description: In sodium-cooled fast reactors (SFR), grid plate is a critical component which is made of 316 L(N) SS. It is supported on core support structure. The grid plate supports the core subassemblies and maintains their verticality. Most of the components of SFR are made of 316 L(N)/304 L(N) SS and they are in contact with the liquid-metal sodium which acts as a coolant. The peak operating temperature in SFR is 550°C. However, the self-welding starts at 500°C. To avoid self-welding and galling, hardfacing of the grid plate has become necessary. Nickel based cobalt-free colmonoy 5 has been identified as the hardfacing material due to its lower dose rate by Plasma Transferred Arc Welding (PTAW). This paper is concerned with the measurement and investigations of the effects of the residual stress generated due to thermal cycling on a scale-down physical model of the grid plate. Finite element analysis of the hardfaced grid plate model is performed for obtaining residual stresses using elastoplastic analysis and hence the results are validated. The effects of the residual stresses due to thermal cycling on the hardfaced grid plate model are studied.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-12-31
    Description: As for Light Water Reactors (LWRs), one of the most challenging accidents for the future DEMOnstration power plant is the Loss of Coolant Accident, which can trigger the pressurization of the confinement structures and components. Hence, careful analyses have to be executed to demonstrate that the confinement barriers are able to withstand the pressure peak within design limits and the residual cooling capabilities of the Primary Heat Transfer System are sufficient to remove the decay heat. To do so, severe accident codes, as MELCOR, can be employed. In detail, the MELCOR code has been developed to cope also with fusion reactors, but unfortunately, these fusion versions are based on the old 1.8.x source code. On the contrary, for LWRs, the newest 2.1.x versions are continuously updated. Thanks to the new features introduced in these latest 2.1.x versions, the main phenomena occurring in the helium-cooled blanket concepts of DEMO can be simulated in a basic manner. For this purpose, several analyses during normal and accidental DEMO conditions have been executed. The aim of these analyses is to compare the results obtained with MELCOR 1.8.2 and MELCOR 2.1 in order to highlight the differences among the results of the main thermal-hydraulic parameters.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: A modified multiobjective self-adaptive differential evolution algorithm (MMOSADE) is presented in this paper to improve the accuracy of multiobjective optimization design in the nuclear power system. The performance of the MMOSADE is tested by the ZDT test function set and compared with classical evolutionary algorithms. The results indicate that MMOSADE has a better performance in convergence and diversity. Based on the MMOSADE, a multiobjective optimization design platform for the nuclear power system is proposed, and the application of which is carried out. The evaluation program of the PRHR-HX in AP1000 is developed, and its reliability is verified. The optimal design schemes of PHHR-HX are obtained by utilizing the multiobjective optimization design platform. The results show that the optimal design schemes can envelop the prototype design scheme. This conclusion proves that the optimization design platform proposed in this paper is effective and feasible.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: COMSOL Multiphysics has been used to conduct thermal-hydraulic analysis in multiple nuclear applications. The aim of this study is to benchmark the prediction accuracy of COMSOL Multiphysics in performing thermal-hydraulic analysis of TRIGA (Training, Research, Isotopes, General Atomics) reactors such as the Geological Survey TRIGA Reactor (GSTR) by comparing its predictions with RELAP5 (a widely used code in nuclear thermal-hydraulic analysis) results and experimental data. The GSTR type is Mark I with a full thermal power of 1 MW, and it resides at the Denver Federal Center (DFC) in Colorado. The numerical investigation of the present work is carried out by developing single-subchannel thermal-hydraulic models of the GSTR utilizing RELAP5 and COMSOL codes. The models estimate the temperatures (fuel, outer clad, and coolant) and water flow patterns in the core as well as fuel element powers at which void starts to form within the coolant subchannels. Then, these models’ predictions are quantitatively evaluated and compared with the measured data.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: A practical scale mechanical decladder that can slit spent nuclear fuel rod-cuts (hulls + pellets) of several tens of kg HM/batch is being developed to supply UO2 pellets to a voloxidation process. The mechanical decladder is an apparatus for separating and recovering fuel material and cladding tubes by horizontally slitting the cladding tube of a fuel rod and a defective irradiated fuel rod. In this study, we address the engineering design of the mechanical decladder for the pretesting of rod-cut slitting. To obtain the requirements of the mechanical decladder, we first manufactured a slitter for testing based on the decladding and shearing conditions of hulls and pellets. The performance test of the testing device for decladding was carried out using a 2-CUT blade module and a 3-CUT blade module. We evaluated the decladding methods for the mechanical decladder and selected the 3-CUT blade module based on the results. A buckling measurement instrument was used to perform a buckling verification test according to the length of a rod-cut and to determine decladder dimensions. The optimum decladding rod-cut length for buckling prevention was calculated. Furthermore, we analyzed the decladding mechanism for various slitting methods. Design/fabrication and preliminary tests of the practical scale mechanical decladder were also performed. For this purpose, we constructed the main mechanism by utilizing the SolidWorks modeling and analysis program and fabricated a new mechanical decladder. Based on the derived requirements, a mechanical decladder with three main modules was designed and fabricated for testing. Simulated rod-cuts of zircaloy were also manufactured to test the basic performance of the decladder, and a data acquisition system was constructed using RSC 232 to measure decladding force and velocity. In the basic test, the rod-cut was completely sectioned into three evenly spaced locations by the new mechanical decladder.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018
    Description: After the successful construction and operation experience of the 10 MW high-temperature gas-cooled reactor (HTR-10), a high-temperature gas-cooled pebble-bed modular (HTR-PM) demonstration plant is under construction in Shidao Bay, Rongcheng City, Shandong province, China. An online gross monitoring instrument has been designed and placed at the exit of the helium purification system (HPS) of HTR-PM and is used to detect the activity concentration in the primary circuit after purification. The source terms in the primary loop of HTR-PM and the helium purification process were described. The detailed configuration of the gross monitoring instrument was presented in detail. The Monte Carlo method was used to simulate the detection efficiency of the monitoring system. Since the actual source terms in the primary loop of HTR-PM may be different than the current design values, a sensitivity analysis of the detection efficiency was implemented based on different relative proportions of the nuclides. The accuracy and resolution of the NaI(Tl) detector were discussed as well.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018
    Description: The assessment of hydrogen release, distribution, and mitigation measures in the containment of a nuclear power plant is increasingly based on code calculations. These calculations require state-of-the-art experiments to benchmark the codes against them. Two of these experiments are presented in this paper. These experiments were conducted in the PANDA facility (Switzerland) in the framework of the OECD/NEA HYMERES project. The experiments consider natural circulation flow in a two-room type containment where flow loops can form between the inner and the outer zones. During normal operation these zones are separated and in the case of an accident they become either connected by the opening of rupture disks, convective foils, and dampers or connected by bursting of doors and opening of other connections between compartments. For the experiments considered here one lower PANDA-vessel represents the steam generator (SG) tower and the inaccessible area whereas the other vessel represents the outer room area. The lower vessels are isolated from one another except for a small aperture that represents the damper. The two upper vessels—representing the containment dome—are connected to the lower vessels through tubes. The scenario consisted of four phases. In phase 1, a high steam mass flow rate was injected in the vessel representing the SG tower. After the relaxation phase 2, helium (representing hydrogen) was injected in the same vessel (phase 3). Finally in phase 4 no active interventions were done until the end of the test. Two tests were conducted to evaluate the developing helium transport by the natural circulation flow: one with and one without damper (by closing the aperture). The results showed that a two-room containment (TRC) mixing scenario can be well represented with the PANDA facility. It is found that, with the mixing damper open, a global natural circulation loop develops over all four vessels, whereas with closed damper the natural circulation loop is established only between the three vessels representing the inner zone and the upper dome. It is shown that the presence of the damper has a strong effect on the resulting helium content in the inner zone with 3 times less helium at the end of the test compared with the configuration without damper. The formation of a stable helium stratification in the upper vessels was observed in the presence of the open damper.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018
    Description: The LOCA (loss of coolant accident) is a kind of severe accident in the operation of PHWR (pressurized heavy water reactor) as well as other nuclear facilities, and possible cause of LOCA can be counted on the ballooning of pressure tube (PT) contacted to the outer calandria tube (CT) in the moderator system of CANDU-6 reactors. In the paper, we simulated the 150-kW experimental facility proposed by IAEA/ISCP, modeling the transient creeping behavior of pressurized tube heated with thermal radiation between the gaps of two concentric pipes. The outer boundary is simplified with a switched model that depends on the local temperature. With a multiphysical model supported by a commercial code, COMSOL multiphysics, the unsteady phenomena are simulated with models concerning various kinds of mechanics such as thermodynamics, nonlinear structural dynamics, and two-phase boiling heat transfer models.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018
    Description: BWRs are thus far the simplest energy systems to transform fission energy into electrical power. However, there are still many aspects in their operation that, under certain conditions, may induce BWR unstable behavior. The default indicator to study BWR unstable behavior is the Decay Ratio (DR). However, due to the fact that BWRs show very complex responses under instability and responses that may even be chaotic, the DR might not be a suitable choice to rely on to accommodate for such intricate behavior. In this work a novel methodology based on the Sample entropy (SampEn) and the noise-assisted multivariate empirical mode decomposition (NA-MEMD) is introduced. Such methodology was developed thinking for a real time-implementation of a stability monitor. The proposed methodology was tested with a set of signals that stem from several nuclear power plants in operation today that have experienced in the past unstable events, each one of a different nature.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: CIPS is a shift in the axial power towards the bottom half of the core, also known as axial offset anomaly (AOA), which results from the deposited of corrosion products during an operation. The main reason of CIPS is the solute particles especially boron compounds concentrated inside the porous deposit. The impact of CIPS is that the axial power distribution control may be more difficult and the shutdown margin can be decreased simultaneously. Besides, it also requires estimated critical condition (ECC) calculations to account for the effects of AOA. In this article, thermal-hydraulic subchannel code and boron deposit model have been combined to analyze the CIPS risk. The neutronics codes deal with the generation of homogenized neutron cross section as well as the calculation of local power factor. A simple rod assembly is analyzed with this combined method and simulation results are presented. Simulation results provide the boron hideout amount inside crud deposits and power shapes. The obtained results clearly show the power shape suppression in regions where crud deposits exist, which is a clear indication of CIPS phenomenon. And the CIPS effects on CHF have also been investigated. Result shows a margin of DNBR decrease in the crud case.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018
    Description: Vigorously developing nuclear power is the main development direction of current renewable energy. In the nuclear environment, in order to avoid nuclear radiation damage to maintenance personnel and improve the efficiency of nuclear reaction, it is necessary and urgent to realize automatic replacement of vulnerable parts in the electron gun. As the key equipment for the generation and control of nuclear reactions in nuclear reactors, electron guns have been widely used in nuclear power plants of traveling wave reactors. However, the “high-voltage conductive ring” in electron guns is a vulnerable part. It is likely to cause nuclear reactor accidents when the vulnerable part is damaged. Automatic replacement of vulnerable parts is an important part of the entire maintenance equipment. Considering the entire maintenance equipment and the working environment, an innovative design process for vulnerable parts replacement is established. Under the guidance of the process, in order to ensure the continuity of a series of maintenance actions, the technical contradiction resolution theory is first used to conduct the overall analysis of the general direction to obtain the design layout. Then, the contradiction resolution theory and the object-field model analysis are utilized to get and improve the detailed design of the device mechanism. The theory of TRIZ can help us to get the overall mechanical structure design that meets the engineering requirements. The device is designed with a replacement part adjustment scheme to ensure the completion of the maintenance actions. Furthermore, the design provides a solution to the possible jamming phenomenon in the automatic maintenance process and achieves the maximum use efficiency of the storage and replacement of vulnerable parts.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018
    Description: This study was carried out to examine the potential of antimony tri-iodide (SbI3) as a material for radiation detectors that operate at room temperature. SbI3 is a compound semiconductor with an AsI3-type crystal structure, high atomic number (Sb: 51, I: 53), high density (4.92 g/cm3), and a wide band-gap energy (2.2 eV). In addition, crystalline SbI3 is easy to grow by conventional crystal growth techniques from melting phase because the material exhibits a low melting point (171°C) and undergoes no phase transition in the range of its solid phase. In this study, SbI3 crystals were grown by the Bridgman method after synthesis of SbI3 from 99.9999% pure Sb and 99.999% pure I2. The grown crystals consisted of several large grains with red color and were confirmed to be single-phase crystals by X-ray diffraction analysis. SbI3 detectors with a simple planar structure were fabricated using the cleavage plates of the grown crystals, and the pulse-height spectra were recorded at room temperature using an 241Am alpha-particle (5.48 MeV) source. The detector showed response to the alpha-particle radiation.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: After the severe accident (SA) occurred at the Three-Miles Island Nuclear Power Plant (NPP), important efforts on the investigation of the different phenomena during this kind of accidents have been started. Several experimental campaigns investigating one phenomenon at time or the combination of two or more phenomena have been performed. Today, the Phébus experimental campaign is probably the most important activity on the evaluation of the coupling among different phenomena. Four out of five tests investigated the degradation of an intact Pressurized Water Reactor (PWR) fuel bundle and the subsequent transport of Fission Products (FP) and Structural Materials (SM) through the primary circuit and into the containment, while the fifth test was only the degradation of a bed of PWR fuel bundle debris. These tests were performed between 1990 and 2010 at the CEA Cadarache laboratories (France) in a 5000:1 scaled facility. The main four tests varied the employed control rod materials, the fuel burn-up, and the oxidizing conditions of the atmosphere (strongly or weakly). The outcomes of this experimental campaign created a solid base for the understanding of the involved phenomena and allowed the development of models and software codes capable of simulating the evolution of a SA in a real NPP. ASTEC and MELCOR were two of the main SA codes profiting from the results of this Phébus campaign. These two codes were further improved in the latest years to account for the findings obtained in more recent experimental campaigns. A continuous verification and validation work is then necessary to check how the newer code’s versions reproduce the tests performed in these older experimental campaigns such as Phébus one. The present work is intended to be the final step of a series of publications covering the activities carried out at University of Pisa with the ASTEC and the MELCOR SA codes on the four Phébus tests employing an intact PWR fuel bundle. Because of the complexity and the extent of these tests, only the containment aspects were considered in the precedent works, i.e., only the thermal-hydraulics transient and its coupling with the FP and SM behavior. Then, general conclusions based on the outcomes of these precedent works are summarized in this work.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: For sequentially collected data, this paper introduces a lag-one differencing method to estimate the random error standard deviation and then uses the estimate to calculate a change detection threshold in a moving window method to detect shifts in the short-term systematic error. Performance results on simulated and real data are presented. Fortunately, the impact of having to perform change detection on the estimated short-term systematic and random error variances is anticipated to be modest or small. The motivating example arises from facilities under nuclear safeguards agreements, where inspector data collected during International Atomic Energy Agency (IAEA) verifications are compared to corresponding operator data. The differences between the operator and inspector values are evaluated using an application of analysis of variance (ANOVA). Typically, it is assumed that short-term systematic errors change across inspection periods, so inspection periods form the groups used in the ANOVA. In some data sets, it appears that the short-term errors have changed at other times, so change detection methods could be used to detect the actual change times.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018
    Description: This paper presents capacity of the passive decay heat removal system (DHRS) operated under the natural circulation conditions to remove decay heat inside the main vessel of the Lead-bismuth eutectic cooled Fast Reactor (LFR). The motivation of this research is to improve the inherent safety of the LFR based on the China Accelerator Driven System (ADS) engineering project. Usually the plant is damaged due to the failure of the main pumps and the main heat exchangers under the Station Blackout (SBO). To prevent this accident, we proposed the DHRS based on the diathermic oil cooling for the LFR. The behavior of the DHRS and the plant was simulated using the CFD code STAR CCM+ using LFR with DHRS. The purpose of this analysis is to evaluate the heat exchange capacity of the DHRS and is to provide the reference for structural improvement and experimental design. The results show that the stable natural circulations are established in both the main vessel and the DHRS. During the decay process, the heat exchange power is above the core decay heat power. In addition, in-core decay heat and heat storage inside the main vessel are efficiently removed. All the thermal-hydraulics parameters are within a safe range. Moreover, the highest temperature occurs at the upper surface of the core. A swirl occurs at the corner of the lateral core surface and some improvements should be considered. And the natural circulation driving force can be further increased by reducing the loop resistance or increasing the natural circulation height based on the present design scenario to enhance the heat exchange effect.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018
    Description: Source term analysis is important in the design and safety analysis of advanced nuclear reactor and also provides a radiation safety analysis basis for Modular High-Temperature Gas-Cooled Reactor (HTR). High-Temperature Gas-Cooled Reactor-Pebble-bed Modules (HTR-PM) design by China is a typical Gen-IV and due to different safety concepts and systems, the implements of source term analysis in light water reactors are not entirely applicable to HTR-PM. To solve this problem, HTR-PM Source Term Analysis Code (HTR-STAC) has been developed and related V&V has been finished. HTR-STAC consists of five units, including LOOP (Primary Circuit Source Term Analysis Code), NORMAL (Normal Condition Airborne Source Term Analysis Code), ARCC (Accident Release Category Calculation code), CARBON (C-14 Source Term Analysis Code), and TRUM (Tritium Source Term Analysis Code). LOOP and NORMAL may be used as calculating primary circuit coolant radioactivity and the release of airborne radioactivity to the environment under normal operating conditions of HTR-PM, respectively. The code ARCC composed of several source term analysis programs in the different typical accidents scenario, including SGTR (Steam Generator Tube Rupture), LOCA (Loss of Coolant Accident), and the Transient Process, is compiled based on the results given by LOOP and NORMAL. CARBON and TRUM are developed to calculate the productions of C-14 and H-3 through a different mechanism. Furthermore, the V&V has been performed and show some positive results.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018
    Description: A 2 inch, cold-leg loss-of-coolant accident (LOCA) in a 900 MWe generic Western PWR was simulated using ASTEC 2.1.1 and MAAP 5.02. The progression of the accident predicted by the two codes up to the time of vessel failure is compared. It includes the primary system depressurization, accumulator discharge, core heat-up, hydrogen generation, core relocation to lower plenum, and lower head breach. The purpose of the code comparison exercise is to identify modelling differences between the two codes and the user choices affecting the results. The two codes predict similar primary system depressurization behaviour until the accumulation injection, confirming similar break flow and primary system thermal-hydraulic response calculations between the two codes. The choice of the accumulator gas expansion model, either isentropic or isothermal, affects the rate and total amount of coolant injected and thereby determines whether the core is quenched or overheated and attains a noncoolable geometry during reflooding. A sensitivity case was additionally simulated by each code to allow comparisons to be made with either accumulator gas expansion models. The two codes predict similar amount of in-vessel hydrogen generated and core quench status for a given accumulator gas expansion model. ASTEC predicts much larger initial core relocation to lower plenum leading to an earlier vessel failure time. MAAP predicts more gradual core relocation to lower plenum, prolonging the lower plenum debris bed heat-up and time to vessel failure. Beside the effect of the code user in conducting severe accident simulations, some discrepancies are found in the modelling approaches in each code. The biggest differences are found in the in-vessel melt progression and relocation into the lower plenum, which deserve further research to reduce the uncertainties.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: This study presents the time-dependent analyses of transmutations of long-lived fission products (LLFPs) and medium-lived fission products (MLFPs) occurring in thermal reactors in a conceptual helium gas-cooled accelerator-driven system (ADS). In accordance with this purpose, the CANDU-37 and PWR 15 × 15 spent fuels are separately considered. The ADS consists of LBE-spallation neutron target, subcritical fuel zone, and graphite reflector zone. While the considered ADS is fueled with the spent nuclear fuels extracted from each thermal reactor without the use of additional fuel, fission products extracted from same thermal reactor are also placed into transmutation zone in graphite reflector zone. The LLFP transmutation performance of the modified ADS is analyzed by considering three different spent fuels extracted from the thermal reactors. Spent fuels are extracted from CANDU-37 in case A, from PWR-15 × 15 in case B, and from CANDU-37 fueled with mixture of PWR 15 × 15 spent fuel and 46% ThO2 in case C. The LBE target is bombard with protons of 1000 MeV. The proton beam power is assumed as 20 MW, which corresponds to 1.24828·1017 protons per second. MCNPX 2.7 and CINDER 90 computer codes are used for the time-dependent burn calculations. The ADS is operated under subcritical mode until the value of keff increases to 0.984, and the maximum operation times are obtained as 3400, 3270, and 5040 days according to the spent fuel cases of A, B, and C, respectively. The calculations bring out that in the modified ADS, LLFPs and MLFPs, which are extracted from thermal reactors, can be transformed to stable isotopes in significant amounts along with energy production.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: Thermal reactors have been considered as interim solution for transmutation of minor actinides recycled from spent nuclear fuel. Various studies have been performed in recent decades to realize this possibility. This paper presents the neutronic feasibility study on transmutation of minor actinides as burnable poison in the VVER-1000 LEU (low enriched uranium) fuel assembly. The VVER-1000 LEU fuel assembly was modeled using the SRAC code system, and the SRAC calculation model was verified against the MCNP6 calculations and the available published benchmark data. Two models of minor actinide loading in the LEU fuel assembly have been investigated: homogeneous mixing in the UGD (Uranium-Gadolinium) pins and coating a thin layer to the UGD pins. The consequent negative reactivity insertion by minor actinides was compensated by reducing the gadolinium content and boron concentration. The reactivity of the LEU assembly versus burnup and the transmutation of minor actinide nuclides were examined in comparison with the reference case. The results demonstrate that transmutation of minor actinides as burnable poison in the VVER-1000 reactor is feasible as minor actinides could partially replace the functions of gadolinium and boric acid for excess reactivity control.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: As key equipment in nuclear power plant, the reactor power control system is adopted to strictly control and regulate the reactor power of a PWR (pressurized water reactor) in a nuclear power plant. A well-optimized predictive control algorithm based on SDMC (stepped dynamic matrix controller) is developed and introduced in this paper and applied to the power regulation of a reactor power model. In addition, the test and verification of this application is conducted by two different methods and devices: the virtual verification platform and the physical DCS (digital control system). The result of the verification suggests that the application of SDMC gains a better performance in the maximum dynamic deviation, adjustment time, overshoot, and so on.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-06-18
    Description: Chinese large-capacity advanced PWR under construction in China is a new and indispensable reactor type in the developing process of NPP fields. At the same time of NPP construction, accident sequences prediction and operators training are in progress. Since there are some possible events such as feedwater pumps trip in secondary circuit may lead to severe accident in NPP, training simulators and engineering simulators of CI are necessary. And, with an increasing proportion of nuclear power in China, NPP will participate in regulating peak load in power network, which requires accuracy calculation and control of secondary circuit. In order to achieve real-time and full scope simulation in the power change transient and accident scenarios, RELAP5/MOD 3.4 code has been adopted to model the secondary circuit for its advantage of high calculation accuracy. This paper describes the model of steady state and turbine load transient from 100% to 40% of secondary circuit using RELAP5 and provides a reasonable equivalent method to solve the calculation divergence problem caused by dramatic two-phase condition change while guaranteeing the heat transfer efficiency. The validation of the parameters shows that all the errors between the calculation values and design values are reasonable and acceptable.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-06
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-27
    Description: RELAP5 is a system thermal-hydraulic code that is used to perform safety analysis on nuclear reactors. Since the code is based on steady state, two-phase flow regime maps, there is a concern that RELAP5 may provide significant errors for rapid transient conditions. In this work, the capability of RELAP5 code to predict the oscillatory behavior of a natural circulation driven, two-phase flow at low pressure is investigated. The simulations are compared with a series of experiments that were performed in the CIRCUS-IV facility at the Delft University of Technology. For this purpose, we developed a procedure for calibration of the input and code validation. The procedure employs (i) multiple parameters measured in different regimes, (ii) independent consideration of the subsections of the loop, and (iii) assessment of importance of the uncertain input parameters. We found that predicted system parameters are less sensitive to variations of the uncertain input and boundary conditions in high frequency oscillations regime. It is shown that calculation results overlap experimental values, except for the high frequency oscillations regime where the maximum inlet flow rate was overestimated. This finding agrees with the idea that steady state, two-phase flow regime maps might be one of the possible reasons for the discrepancy in case of rapid transients in two-phase systems.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-06-12
    Description: As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC) of steel containment vessel (CV) must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-07-01
    Description: Spent fuel rack is the key equipment for the storage of spent fuel after refueling. In order to investigate the performance of the spent fuel rack under the earthquake, the phenomena including sliding, collision, and overturning of the spent fuel rack were studied. An FEM model of spent fuel rack is built to simulate the transient response under seismic loading regarding fluid-structure interaction by ANSYS. Based on D’Alambert’s principle, the equilibriums of force and momentum were established to obtain the critical sliding and overturning accelerations. Then 5 characteristic transient loadings which were designed based on the critical sliding and overturning accelerations were applied to the rack FEM model. Finally, the transient displacement and impact force response of rack with different gap sizes and the supporting leg friction coefficients were analyzed. The result proves the FEM model is applicable for seismic response of spent fuel rack. This paper can guide the design of the future’s fluid-structure interaction experiment for spent fuel rack.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-08-11
    Description: In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs), which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-08-30
    Description: Falling water film on an inclined plane is studied by shadowgraphy. The ranges of inclination angle and the film Reynolds number are, respectively, up to 21° and 60. Water is used as working fluid. The scenario of wave regime evolution is identified as three distinctive regimes, namely, initial quiescent smooth film flow, two-dimensional regular solitary wave pattern riding on film flow, and three-dimensional irregular wave pattern. Three characteristic parameters of two-dimensional solitary wave pattern, namely, inception length, primary pulse spacing, and propagation velocity, are examined, which are significant in engineering applications for estimation of heat and mass transfer on film flow. The present experimental data are well in agreement with the Koizumi correlations, the deviation from which is limited to 20% and 15%, respectively, for primary pulse spacing and propagation velocity. Through the scrutiny of the present experimental observation, it is concluded that wave evolution on film flow at the moderate Reynolds number is controlled by gravity and drag and the Rayleigh-Taylor instability that occurred on the steep front of primary pulse triggers the disintegration of continuous two-dimensional regular solitary wave pattern into three-dimensional irregular wave pattern.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-12-18
    Description: This paper presents the measurements of thoron and the progeny in fifteen buildings in Kufa Technical Institute, Iraq, from June 2015 to April 2015 using RAD-7 detectors. Also, annual effective dose rate was calculated in all buildings under study. The thoron concentration varies from  Bq/m3 to  Bq/m3 with an average  Bq/m3. The concentration of thoron daughters was found to vary from 0.14 mWL to 1.44 mWL with an average  mWL. The annual effective doses due to thoron mainly vary from 0.042 mSv/y to 0.81 mSv/y with an average  mSv/y. The preliminary results in this study indicate that they may be suitable for evaluating the indoor 220Rn and its progeny concentrations whenever the public exposure to 220Rn and its progeny is taken into account. During this survey, the continuous difficulty in measuring thoron was also pointed out, due to its short half-life and faults in the measuring system.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-06-13
    Description: There is a large water storage tank installed at the top of containment of AP1000, which can supply the passive cooling. In the extreme condition, sloshing of the free surface in the tank may impact on the roof under long-period earthquake. For the safety assessment of structure, it is necessary to calculate the impact pressure caused by water sloshing. Since the behavior of sloshing impacted on the roof is involved into a strong nonlinear phenomenon, it is a little difficult to calculate such pressure by theoretical or numerical method currently. But it is applicable to calculate the height of sloshing in a tank without roof. In the present paper, a simplified method was proposed to calculate the impact pressure using the sloshing wave height, in which we first marked the position of the height of roof, then produced sloshing in the tank without roof and recorded the maximum wave height, and finally regarded approximately the difference between maximum wave height and roof height as the impact pressure head. We also designed an experiment to verify this method. The experimental result showed that this method overpredicted the impact pressure with a certain error of no more than 35%. By the experiment, we conclude that this method is conservative and applicable for the engineering design.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-06-08
    Description: Long-term immersion was adopted to explore the damage deterioration and mechanical properties of granite under different chemical solutions. Here, granite was selected as the candidate of parent rocks for nuclear waste storage. The physical and mechanical properties of variation regularity immersed in various chemical solutions were analyzed. Meanwhile, the damage variable based on the variation in porosity was used in the quantitative analysis of chemical damage deterioration degree. Experimental results show that granite has a significant weakening tendency after chemical corrosion. The fracture toughness , splitting tensile strength, and compressive strength all demonstrate the same deteriorating trend with chemical corrosion time. However, a difference exists in the deterioration degree of the mechanical parameters; that is, the deterioration degree of fracture toughness is the greatest followed by those of splitting tensile strength and compressive strength, which are relatively smaller. Strong acid solutions may aggravate chemical damage deterioration in granite. By contrast, strong alkaline solutions have a certain inhibiting effect on chemical damage deterioration. The chemical solutions that feature various compositions may have different effects on chemical damage degree; that is, ions have a greater effect on the chemical damage in granite than ions.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-06-07
    Description: The acceptable accuracy for simulation of severe accident scenarios in containments of nuclear power plants is required to investigate the consequences of severe accidents and effectiveness of potential counter measures. For this purpose, the actual capability of CFX tool and COCOSYS code is assessed in prototypical geometries for simplified physical process-plume (due to a heat source) under adiabatic and convection boundary condition, respectively. Results of the comparison under adiabatic boundary condition show that good agreement is obtained among the analytical solution, COCOSYS prediction, and CFX prediction for zone temperature. The general trend of the temperature distribution along the vertical direction predicted by COCOSYS agrees with the CFX prediction except in dome, and this phenomenon is predicted well by CFX and failed to be reproduced by COCOSYS. Both COCOSYS and CFX indicate that there is no temperature stratification inside dome. CFX prediction shows that temperature stratification area occurs beneath the dome and away from the heat source. Temperature stratification area under adiabatic boundary condition is bigger than that under convection boundary condition. The results indicate that the average temperature inside containment predicted with COCOSYS model is overestimated under adiabatic boundary condition, while it is underestimated under convection boundary condition compared to CFX prediction.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-06-07
    Description: Two tests related to a new safety system for a pressurized water reactor were performed with the ROSA/LSTF (rig of safety assessment/large scale test facility). The tests simulated cold leg small-break loss-of-coolant accidents with 2-inch diameter break using an early steam generator (SG) secondary-side depressurization with or without release of nitrogen gas dissolved in accumulator (ACC) water. The SG depressurization was initiated by fully opening the depressurization valves in both SGs immediately after a safety injection signal. The pressure difference between the primary and SG secondary sides after the actuation of ACC system was larger in the test with the dissolved gas release than that in the test without the dissolved gas release. No core uncovery and heatup took place because of the ACC coolant injection and two-phase natural circulation. Long-term core cooling was ensured by the actuation of low-pressure injection system. The RELAP5 code predicted most of the overall trends of the major thermal-hydraulic responses after adjusting a break discharge coefficient for two-phase discharge flow under the assumption of releasing all the dissolved gas at the vessel upper plenum.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-06-01
    Description: A neural network-direct inverse control (NN-DIC) has been simulated to automatically control the power level of nuclear reactors. This method has been tested on an Indonesian pool type multipurpose reactor, namely, Reaktor Serba Guna-GA Siwabessy (RSG-GAS). The result confirmed that this method still cannot minimize errors and shorten the learning process time. A new method is therefore needed which will improve the performance of the DIC. The objective of this study is to develop a particle swarm optimization-based direct inverse control (PSO-DIC) to overcome the weaknesses of the NN-DIC. In the proposed PSO-DIC, the PSO algorithm is integrated into the DIC technique to train the weights of the DIC controller. This integration is able to accelerate the learning process. To improve the performance of the system identification, a backpropagation (BP) algorithm is introduced into the PSO algorithm. To show the feasibility and effectiveness of this proposed PSO-DIC technique, a case study on power level control of RSG-GAS is performed. The simulation results confirm that the PSO-DIC has better performance than NN-DIC. The new developed PSO-DIC has smaller steady-state error and less overshoot and oscillation.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-08-25
    Description: The effect of BWR fuel assembly 3D model on void reactivity coefficient (VRC) estimation is investigated. VRC values were calculated for different BWR assembly models applying deterministic T-NEWT and Monte Carlo KENO-VI functional modules of SCALE 6.1 code package. The difference between deterministic T-NEWT and Monte Carlo KENO-VI simulations is negligible (0.18 pcm/%). The influence of the assumed more detailed coolant density profile was estimated as well. VRC increases with the application of a larger number of coolant density values across fuel assembly height. It was shown that the coolant density profile described by 6 values per height could be considered sufficient from prospect of VRC estimation, as a more detailed density profile has impact below 1% on total assembly void effects. VRC values were decomposed to values for individual nodes and isotopes, since decomposition provides useful insights to describe the overall behaviour of VRC in detail.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-05-26
    Description: Heat transfer characteristics of fuel assemblies for a high flux research reactor with a neutron trap are numerically investigated in this study. Single-phase turbulence flow is calculated by a commercial code, FLUENT, where the computational objective covers standard and control fuel assemblies. The simulation is carried out with an inlet coolant velocity varying from 4.5 m/s to 7.5 m/s in hot assemblies. The results indicate that the cladding temperature is always lower than the saturation temperature in the calculated ranges. The temperature rise in the control fuel assembly is smaller than that of the standard fuel assembly. Additionally, the assembly with a hot spot is specially studied, and the safety of the research reactor is also approved.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-05-21
    Description: The aim is to analyse the neutron spectrum influence in a hybrid system ADS-fission inducing transuranics (TRUs) transmutation. A simple model consisting of an Accelerator-Driven Subcritical (ADS) system containing spallation target, moderator or coolant, and spheres of actinides, “fuel,” at different locations in the system was modelled. The simulation was performed using the MCNPX 2.6.0 particles transport code evaluating capture and fission reactions, as well as the burnup of actinides. The goal is to examine the behaviour and influences of the hard neutron spectrum from spallation reactions in the transmutation, without the contribution or interference of multiplier subcritical medium, and compare the results with those obtained from the neutron fission spectrum. The results show that the transmutation efficiency is independent of the spallation target material used, and the neutrons spectrum from spallation does not contribute to increased rates of actinides transmutation even in the vicinity of the target.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-04-20
    Description: Assembly sequence planning (ASP) of remote handling maintenance in radioactive environment is a combinatorial optimization problem. This study proposes an improved shuffled frog leaping algorithm (SFLA) for the combinatorial optimization problem of ASP. An ASP experiment is conducted to verify the feasibility and stability of the improved SFLA. Simultaneously, the improved SFLA is compared with SFLA, genetic algorithm, particle swarm optimization, and adaptive mutation particle swarm optimization in terms of efficiency and capability of locating the best global assembly sequence. Experiment results show that the proposed algorithm exhibits outstanding performance in solving the ASP problem. The application of the proposed algorithm should increase the level of ASP in a radioactive environment.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-04-29
    Description: The current neutronics design methodology of CANDU-PHWRs based on the two-step calculations requires determining not only homogenized two-group constants for ordinary fuel bundle lattice cells by the WIMS-AECL lattice cell code but also incremental two-group constants arising from the penetration of control devices into the fuel bundle cells by a supercell analysis code like MULTICELL or DRAGON. As an alternative way to generate the two-group constants necessary for the CANDU-PHWR core analysis, this paper proposes utilizing a B1 theory augmented Monte Carlo (MC) few-group constant generation method (B1 MC method) which has been devised for the PWR fuel assembly analysis method. To examine the applicability of the B1 MC method for the CANDU 6 core analysis, the fuel bundle cell and supercell calculations are performed using it to obtain the two-group constants. By showing that the two-group constants from the B1 MC method agree well with those from WIMS-AECL and that core neutronics calculations for hypothetical CANDU 6 cores by a deterministic diffusion theory code SCAN with B1 MC method generated two-group constants also agree well with whole core MC analyses, it is concluded that the B1 MC method is well qualified for both fuel bundle cell and supercell analyses.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-04-29
    Description: The role of nuclear energy is to supply electric power on a stable basis to meet increasing demands, reduce carbon dioxide emissions, and maintain stable electric power costs while ensuring safety. The Fukushima accident taught us many lessons for creating safer nuclear power plants. Considering the design of systems, the areas of weakness at the Fukushima nuclear power plants can be divided into three categories: plant protection, electricity supply, and cooling of the nuclear fuel. In this paper, focusing on these three areas, the lessons learned are proposed and applied for pressurized heavy water reactors. Firstly, hard protection against external risks ensures the integrity of components and systems such that they can perform their original functions. Secondly, additional emergency power supply systems for electrical redundancy and diversity can improve the response capabilities for an accident by increasing the availability of active components. Thirdly, cooling for removing decay heat can be augmented by adopting diverse safety systems derived from other types of reactors. This study is expected to contribute to the safety enhancement of pressurized heavy water reactors by applying design changes based on the lessons learned from the Fukushima accident.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-04-29
    Description: In order to simulate the CANDU-6 moderator circulation phenomena during steady state operating and accident conditions, a scaled-down moderator test facility has been constructed at Korea Atomic Energy Institute (KAERI). In the present work an experiment using a 1/40 scaled-down moderator tank has been performed to identify the potential problems of the flow visualization and measurement in the scaled-down moderator test facility. With a transparent moderator tank model, a flow field is visualized with a particle image velocimetry (PIV) technique under an isothermal state, and the temperature field is measured using a laser induced fluorescence (LIF) technique. A preliminary CFD analysis is also performed to find out the flow, thermal, and heating boundary conditions with which the various flow patterns expected in the prototype CANDU-6 moderator tank can be reproduced in the experiment.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-04-29
    Description: A standard 37-element fuel bundle (37S fuel bundle) has been used in commercial CANDU reactors for over 40 years as a reference fuel bundle. Most CHF of a 37S fuel bundle have occurred at the elements arranged in the inner pitch circle for high flows and at the elements arranged in the outer pitch circle for low flows. It should be noted that a 37S fuel bundle has a relatively small flow area and high flow resistance at the peripheral subchannels of its center element compared to the other subchannels. The configuration of a fuel bundle is one of the important factors affecting the local CHF occurrence. Considering the CHF characteristics of a 37S fuel bundle in terms of CHF enhancement, there can be two approaches to enlarge the flow areas of the peripheral subchannels of a center element in order to enhance CHF of a 37S fuel bundle. To increase the center subchannel areas, one approach is the reduction of the diameter of a center element, and the other is an increase of the inner pitch circle. The former can increase the total flow area of a fuel bundle and redistributes the power density of all fuel elements as well as the CHF. On the other hand, the latter can reduce the gap between the elements located in the middle and inner pitch circles owing to the increasing inner pitch circle. This can also affect the enthalpy redistribution of the fuel bundle and finally enhance CHF or dry-out power. In this study, the above two approaches, which are proposed to enlarge the flow areas of the center subchannels, were considered to investigate the impact of the flow area changes of the center subchannels on the CHF enhancement as well as the thermal characteristics by applying a subchannel analysis method.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-04-29
    Description: This paper illustrates the application of a severe accident analysis computer program to the uncertainty analysis of molten corium-concrete interaction (MCCI) phenomena in cases of severe accidents in CANDU6 type plant. The potential hazard of MCCI is a failure of the reactor building owing to the possibility of a calandria vault floor melt-through even though the containment filtered vent system is operated. Meanwhile, the MCCI still has large uncertainties in several phenomena such as a melt spreading area and the extent of water ingression into a continuous debris layer. The purpose of this study is to evaluate the MCCI in the calandria vault floor via an uncertainty analysis using the ISAAC program for the CANDU6.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-04-29
    Description: To verify the periodic boundary condition (PBC) treatment which was implemented in a TRI-angle elements induced numerical analyzer (TRIAINA), the pressure tube creep problem is chosen and examined with three cases of normal, 2.5% creep, and 5.0% creep on the aspects of the multiplication factor and relative pin power. The McCARD code is used for the homogenized group constants generation. It is shown that the differences are nearly negligible for the pressure tube creep problem.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-06-26
    Description: Investigation of the properties of neutron noise induced by localized perturbations in a sodium-cooled fast reactor has been performed using a multigroup neutron noise simulator. Three representations of the noise source associated with the perturbations of absorption, fission, and scattering cross sections, respectively, were assumed to be located at the first fuel ring around the central assembly. The energy- and space-dependent noise, that is, the amplitude and the phase, was calculated in a wide range of frequencies, for example, 0.1–100 Hz. The results show that in the important energy range (〉1.0 keV) where the noise amplitude is significant the phase is almost constant with energy at the calculated frequencies despite the source types. At low frequencies, the variation of the phase is negligibly small at a large distance from the source. The perturbation in several fast groups has a significant contribution and dominates the amplitude and the phase of the induced noise.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-06-08
    Description: Based on the requirements for remote handling maintenance (RHM) of China Spallation Neutron Source (CSNS) multilayered pipes, pipes cutting tests were performed under remote handling maintenance conditions. In this study, the results were obtained from different cutting directions and supporting intensities of pipe baseplates comparisons: When enough power was provided and the blade gripper did not slip, the cutting direction had little impact on the cutting capacity but more on the fault surface; the clearance between the blades caused the rotating torque; for remote handling maintenance, good horizontal support of the long-handled lever of the hydraulic cutter was required. Significant conclusions were made for multilayered pipe cutting that are crucial for auxiliary tools development for remote handling maintenance.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-01-22
    Description: This paper presents first results of the INPRO Collaborative Project on Key Indicators for Innovative Nuclear Energy Systems, which has the objective to develop guidance and tools for comparative evaluation of the status, prospects, benefits, and risks associated with development of innovative nuclear technologies for a more distant future. Presented results illustrate expedience of application of the multicriteria decision analysis methods, which are able to provide the added value to comparative assessment of nuclear energy systems. First, the paper presents a short review of the multicriteria decision analysis methods appropriate to support judgment aggregation within comparative evaluations of nuclear energy systems based on key indicators and highlights the methodology to perform such assessments. Second, a set of key indicators elaborated in the INPRO Collaborative Project on Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle (GAINS) were evaluated for comparative evaluation of nuclear energy system evolution scenarios. Third, a numerical example is presented of application of the selected key indicators, methods, and tools for judgment aggregation in comparative assessment of the GAINS nuclear energy systems.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-02-02
    Description: Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR) has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-02-19
    Description: Huge water storage tank on the top of many buildings may affect the safety of the structure caused by fluid-structure interaction (FSI) under the earthquake. AP1000 passive containment cooling system water storage tank (PCCWST) placed at the top of shield building is a key component to ensure the safety of nuclear facilities. Under seismic loading, water will impact the wall of PCCWST, which may pose a threat to the integrity of the shield building. In the present study, an FE model of AP1000 shield building is built for the modal and transient seismic analysis considering the FSI. Six different water levels in PCCWST were discussed by comparing the modal frequency, seismic acceleration response, and von Mises stress distribution. The results show the maximum von Mises stress emerges at the joint of shield building roof and water around the air inlet. However, the maximum von Mises stress is below the yield strength of reinforced concrete. The results may provide a reference for design of the AP1000 and CAP1400 in the future.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-02-11
    Description: Literature review was performed for the molten salt oxidation technology in order to collect all available scientific and engineering information for further use of this technology in nuclear applications. This report provides a summary of a review of scientific and engineering literature on MSO treatment of a wide variety of radioactive wastes, organic compound gasification, and related studies such as radioactive spent salt processing that was found important for further development of the MSO technology in the nuclear field for radioactive waste treatment. Miscellaneous nonnuclear uses of molten salts, such as converting carbon monoxide to carbon dioxide, are not discussed.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-02-12
    Description: This study developed a noncontact fiber-optic temperature sensor that can be installed in a spent nuclear fuel pool. This fiber-optic temperature sensor was fabricated using an infrared optical fiber to transmit the infrared light emitted from water at a certain temperature. To minimize the decrease in the detection efficiency of the fiber-optic temperature sensor due to vapor generation, its surface was coated by spraying an antifog solution and drying several times. The measurement data of the fiber-optic temperature sensor was almost linear in the range of 30~70°C. This sensor could be used as an auxiliary temperature monitoring system in a spent nuclear fuel pool.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-01-27
    Description: During operation in the sea the reactor natural circulation behaviors are affected by ship rolling motion. The development of an analysis code and the natural circulation behaviors of a reactor simulator under rolling motion are described in this paper. In the case of rolling motion, the primary coolant flow rates in the hot legs and heating channels oscillated periodically, and the amplitude of flow rate oscillation was in direct proportion to rolling amplitude, but in inverse proportion to rolling period. The total mass flow rate also oscillated with half the rolling period, and the average total mass flow rate was less than that in steady state. In the natural circulation under a rolling motion, the flow rate oscillations in the hot legs were controlled by the tangential force; however, the mass flow rate oscillations in the total natural circulation and the heating channels were a result of the combined action of the change of inclination angle, flow resistance, and the extra force arising from the rolling motion. The extra tangential force brought about intense flow rate oscillations in the hot legs, which resulted in increasing total flow resistance; however the extra centrifugal force played a role in increasing thermal driving head.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-01-27
    Description: Low pressure reactor is a small size advanced reactor with power of 180 MWt, which is under development at Nuclear Power Institute of China. In order to assess the ability and feasibility of passive safety system, several tests have been implemented on the passive safety system (PSS) test facility. During the LOCA and SBO accident, the adequate core cooling is provided by the performance of passive safety system. In addition the best-estimate thermal hydraulic code, CATHARE V2.1, has been assessed against cold leg LOCA test. The calculation results show that CATHARE is in a satisfactory agreement with the test for the steady state and transient test.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-07-02
    Description: In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-04-24
    Description: Gear and bearing play an important role as key components of rotating machinery power transmission systems in nuclear power plants. Their state conditions are very important for safety and normal operation of entire nuclear power plant. Vibration based condition monitoring is more complicated for the gear and bearing of planetary gearbox than those of fixed-axis gearbox. Many theoretical and engineering challenges in planetary gearbox fault diagnosis have not yet been resolved which are of great importance for nuclear power plants. A detailed vibration condition monitoring review of planetary gearbox used in nuclear power plants is conducted in this paper. A new fault diagnosis method of planetary gearbox gears is proposed. Bearing fault data, bearing simulation data, and gear fault data are used to test the new method. Signals preprocessed using dilation-erosion gradient filter and fast Fourier transform for fault information extraction. The length of structuring element (SE) of dilation-erosion gradient filter is optimized by alpha stable distribution. Method experimental verification confirmed that parameter alpha is superior compared to kurtosis since it can reflect the form of entire signal and it cannot be influenced by noise similar to impulse.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-09-14
    Description: The 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10) is the first High Temperature Gas-Cooled Reactor in China. With the objective of raising the reactor power from 30% to 100% rated power, the power ascension test was planned and performed in January 2003. The test results verified the practicability and validity of the HTR-10 power regulation methods. In this study, the power ascension process is preliminarily simulated using the THERMIX code. The code satisfactorily reproduces the reactor transient parameters, including the reactor power, the primary helium pressure, and the primary helium outlet temperature. Reactor internals temperatures are also calculated and compared with the test values recorded by a number of thermocouples. THERMIX correctly simulates the temperature variation tendency for different measuring points, with good to fair agreement between the calculated temperatures and the measured ones. Based on the comparison results, the THERMIX simulation capability for the HTR-10 dynamic characteristics during the power ascension process can be demonstrated. With respect to the reactor safety features, it is of utmost importance that the maximum fuel center temperature during the test process is always much lower than the fuel temperature limit of 1620°C.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-10-06
    Description: In an open-pool type research reactor, the primary cooling system can be designed to have a downward flow inside the core during normal operation because of the plate type fuel geometry. There is a flow inversion inside the core from the downward flow by the inertia force of the primary coolant to the upward flow by the natural circulation when the pump is turned off. To delay the flow inversion time, an innovative passive system with pump flywheel and GCCT is developed to remove the residual heat. Before the primary cooling pump starts up, the water level of the GCCT is the same as that of the reactor pool. During the primary cooling pump operation, the water in the GCCT is moved into the reactor pool because of the pump suction head. After the pump stops, the potential head generates a downward flow inside the core by moving the water from the reactor pool to the GCCT and removes the residual heat. When the water levels of the two pools are the same again, the core flow has an inversion of the flow direction, and natural circulation is developed through the flap valves.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-11-30
    Description: In earlier study we have demonstrated that RELAP5 can predict flow instability parameters (flow rate, oscillation period, temperature, and pressure) in single channel tests in CIRCUS-IV facility. The main goals of this work are to (i) validate RELAP5 and TRACE capabilities in prediction of two-phase flow instability and flow regimes and (ii) assess the effect of improvement in flow regime identification on code predictions. Most of the results of RELAP5 and TRACE calculation are in reasonable agreement with experimental data from CIRCUS-IV. However, both codes misidentified instantaneous flow regimes which were observed in the test with high speed camera. One of the reasons for the incorrect identification of the flow regimes is the small tube flow regime transition model in RELAP5 and the combined bubbly-slug flow regime in TRACE. We found that calculation results are sensitive to flow regime boundaries of RELAP5 which were modified in order to match the experimental data on flow regimes. Although the flow regime became closer to the experimental one, other predicted thermal hydraulic parameters showed larger discrepancy with the experimental data than with the base case calculations where flow regimes were misidentified.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-11-30
    Description: According to the mechanism analysis and simulation of power control system of MSHIM in AP1000, a modified MSHIM (Mechanical Shim) control strategy is presented, which employs the error between the reactor coolant average temperature and its reference value as the unique control signal with a P-controller added. The modified MSHIM control strategy is verified by simulations of three typical working conditions. The results show that the modified power control system satisfies the needs of reactor core power control and power distribution control. The conclusions have reference value for the engineering practice.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-01-19
    Description: The impact of thermal agitation on Doppler coefficient for Gd-bearing fuel was analyzed. It was found through the analysis that the impact increases when a small amount of Gd2O3 is added to pure UO2 fuel although the impact decreases for a large amount of Gd2O3. This tendency was discussed with the usage of simplified expression for the difference of Doppler coefficient. The simplified expression was used to consider the tendency, and it was revealed that the tendency mainly comes from the rapid decrement of multiplication factor and the relatively slow decrement of the magnitude of sensitivity coefficient of U-238 capture cross section at low Gd2O3 concentration. Similar tendency which shows a maximum impact on Doppler coefficient at interior concentration is expected for other UO2 fuel with a slight content of strong absorber. This indicates that Doppler coefficient of UO2 fuel system with low content of strong absorber should be analyzed carefully by considering thermal agitation in epithermal range.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-12-09
    Description: A method of measuring the efficiency of converting nuclear energy into optical energy was developed based on correlations between intensities of the research line and the nitrogen second positive system in an Ar-N2 mixture. In addition, the values of the coefficient of the conversion of nuclear energy into radiation at the lines of a Hg triplet in mixtures of Хе-Hg and Kr-Hg were determined. The values measured correspond to a selectiveness of pumping of 73S1 that was close to 1 ().
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: In this study, we first examined the sorption of Pd on MX-80 in Na-Ca-ClO4 solution as a function of (3–9) and ionic strength (0.1 M–4 M) and confirmed that the experimentally derived values could be fitted by a 2-site protolysis nonelectrostatic surface complexation and cation exchange (2SPNE SC/CE) model using three binary surface complexation constants previously estimated. Then, we investigated the sorption of Pd on MX-80 in Na-Ca-Cl-ClO4 solution as a function of (3–9) and molar concentration ratio (0–∞) at the ionic strength = 4 M. We found that the sorption of Pd on MX-80 in Na-Ca-Cl-ClO4 solution could be simulated only by the three binary and one ternary surface complexations (). This suggests that the contribution of other ternary surface complexations such as ≡S-OH ≡ ( = 1, 2 and 3) to Pd sorption in Na-Ca-Cl-ClO4 solution with ionic strength = 4 M was negligibly small.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: To ensure that the outside dose rate of waste package is below the limitation of national laws and regulations, based on the standard 200L drum, a new drum with inner shielding was proposed for intermediate-level radioactive waste (ILW) storage. For comparison, FLUKA and QAD-CGA were used to verify the shielding design of the ILW storage drums produced in INET with multiple inner shielding layers. The flux and dose were calculated and analyzed for four different cases. In QAD-CGA calculation, it was found that different buildup factors can lead to the considerably different results. A weighted algorithm was proposed to correct QAD-CGA for multilayer shielding cases. In FLUKA calculation, parameter optimization and tailored variance reduction technique (VRT) were used. Quantitative efficiency evaluation of different FLUKA settings using the FOM factor was carried out. The differences in the calculated dose rates results between the FLUKA and QAD-CGA programs are within one order of magnitude. The results of QAD-CGA are generally higher than those of FLUKA. The analysis shows that appropriate corrections in QAD-CGA can make the trend of the calculation results more consistent with the theory. In FLUKA calculation, with optimized setting and VRT adopted, the calculation efficiency can be improved more than 20 times. The results of this study provide not only suggestions for the design of the ILW storage drums but also useful references for other similar work.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: Reactor pressure vessel (RPV) support is a key safety facility which is categorized as Class 1 in the ASME nuclear safety design. The temperature distribution of RPV support is one of the key considerations for the concrete safety contacting with the bottom of the support. So it is necessary for accurate evaluation on the temperature field characteristics of RPV support, especially the bottom of support. This paper investigates the temperature field characteristics of modified RPV support which will be applied to a large advanced pressurized water reactor. A support entity is manufactured in a ratio of 1:1, and its temperature distribution is measured under simulated reactor operating conditions. Numerical simulation is also used to validate the results by the developed CFD model. The results show that under the operating conditions, of which the inlet cooling air temperature is 35.35°C and the velocity is 6.25 m/s, the temperature distribution of modified RPV support bottom is uneven, and the highest temperature is around 38°C, which is much lower than the demanding design temperature 93.3°C. Therefore, the design of the modified RPV support is reliable. In addition, the results of numerical simulation agree well with the experimental results with the error less than ±4°C, which ensures the reliability of the conclusion. The effects of inlet cooling air temperature and velocity on the RPV support temperature distribution are further studied. Both the temperature decrease and velocity increase can reduce the RPV support temperature. But the effect of inlet cooling air temperature is more obvious than inlet cooling air velocity. So the best way to improve air cooling capacity is to decrease the support inlet cooling air temperature. The results can provide a good guidance to the design of RPV support for the subsequent large advanced pressurized water reactor.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: For most of the remote maintenance activities of equipment in a hot cell, replacing breakdown modules is preferred over in situ repair because of insufficient space in the cell and the limited operability of remote handling tools. In such cases, the maintenance operation can be decomposed into transport of the new modules to the failed equipment, replacement of the broken modules with new ones, and then transport of the broken parts to the reserved space for further repair or disposal. In this respect, transfer is the most basic operation during remote maintenance, which is also true for the maintenance of pyroprocessing equipment. Hence, this paper proposes a maintenance automation framework for automated pyroprocessing equipment from the standpoint of module transfer. For the maintenance automation framework, maintenance-related functions and events are defined, and they are integrated with the pyroprocess automation framework. The proposed framework is verified by a case study on the maintenance of a large module through a hardware-in-the-loop simulation.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: The stability of W against U, rare-earth (RE) elements, Cd, and various chlorides was evaluated by melting and distillation testing. Three runs were performed with a W crucible to examine its reactivity: (i) RE melting by induction heating, (ii) salt distillation test of U-dendrite and various chlorides, and (iii) Cd distillation test from U–Cd alloy. The W crucible remained stable after the RE melting test using induction melting, exhibiting its applicability for induction heating systems. The salt distillation test with the W crucible at 1050°C exhibited the stability of W against U and various chlorides, showing no interaction. The Cd distillation test with the W crucible at 500°C showed that the crucible was very stable against Cd, maintaining a shiny surface. These results reveal that the W crucible is stable under operation conditions for both salt and Cd distillation, suggesting the high potential utility of W as a crucible material for application in cathode processes in pyroprocessing.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: The Critical Heat Flux (CHF) prediction under high pressure condition, even close to the vicinity of the critical pressure of water, is an important issue. Although there are many empirical CHF correlations, most of them have covered the pressure under 15MPa. In this study, based on the CHF experiment database of upflow boiling in vertical round tube from 15MPa to the vicinity of the critical pressure of water, the Katto, Bowring, Hall-Mudawar, Alekseev correlations, and Groeneveld LUT-2006 are comparatively studied. With an error analysis of the predicted CHF to the experiment database, the prediction capability and the applicability of these correlations are evaluated and the parametric trends of CHF varying with pressure from 15MPa to critical pressure are proposed. Simultaneously, according to the characteristics of Departure from Nucleate Boiling (DNB) type CHF under high pressure condition, the constitutive correlations of Weisman & Pei model are proposed. The prediction results of three entrainment and deposition correlations of Kataoka, Celata, and Hewitt corresponding to the Dry-Out (DO) type CHF are analyzed. Based on the two improved models above, a comprehensive CHF mechanistic model under high pressure condition combining the DNB and DO type CHF is established. The verification based on the experiment database of upflow boiling in vertical round tube and the parametric trends analysis of CHF varying with thermal-hydraulic and geometric parameters are carried out. Findings of this study have a positive effect on further development of CHF prediction method for universal CHF mechanism, especially under high pressure region.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: Because a pool scrubbing is important for reducing radioactive aerosols to the environment for a nuclear reactor in a severe accident situation, many researches have been performed. However, decontamination factor (DF) dependence on aerosol concentration was seldom considered in an aerosol number concentration with limited aerosol coagulation. To investigate an existence of DF dependence on the concentration, DF in a pool scrubbing with 2.4 m water submergence was derived from aerosol measurements by light scattering aerosol spectrometers. It was observed that DF increased monotonically with decreasing particle number concentration in a constant thermohydraulic condition: a gradual increase from 10 to 32 in the range of 1.3×1011 - 8.0×1011/m3 at the inlet and a significant increase from 32 to 77 in the range of 3.6×1010 - 1.3×1011/m3. Two validation experiments were conducted in the range with the gradual DF increase to confirm whether the DF dependence is a real pool scrubbing phenomenon. In addition, characteristics of the DF dependence in different water submergences were investigated experimentally. It was found that the DF dependence became more significant in higher water submergence. Significant DF dependence was observed in the condition of the water submergence higher than 1.6 m and the inlet particle number concentration less than around 1×1011 /m3. It is recommended to perform further analysis for the DF dependence mainly in such condition since it could make a difference to both experiment and model of the pool scrubbing.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-02-24
    Description: The decommissioning of nuclear facilities requires adequate planning and demonstration that dismantling and decontamination activities can be conducted safely. Existing safety standards require that an appropriate safety assessment be performed to support the decommissioning plan for each facility (International Atomic Energy Agency, 2006). This paper presents safety assessment approach used in Lithuania during the development of the first dismantling and decontamination project for Ignalina NPP. The paper will mainly focus on the identification and assessment of the hazards raised due to dismantling and decontamination activities at Ignalina Nuclear Power Plant and on the assessment of the nonradiological and radiological consequences of the indicated most dangerous initiating event. The drop of heavy item was indicated as one of most dangerous initiating events for the discussed Ignalina Nuclear Power Plant dismantling and decontamination project. For the analysis of the nonradiological impact the finite element model for the load drop force calculation was developed. The radiological impact was evaluated in those accident cases which would lead to the worst radiological consequences. The assessments results show that structural integrity of the building and supporting columns of building structures will be maintained and radiological consequences are lower than the annual regulatory operator dose limit.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-04-06
    Description: On the basis of the condition for nuclear burning wave existence in the neutron-multiplying media (U-Pu and Th-U cycles) we show the possibility of surmounting the so-called dpa-parameter problem and suggest an algorithm of the optimal nuclear burning wave mode adjustment, which is supposed to yield the wave parameters (fluence/neutron flux, width and speed of nuclear burning wave) that satisfy the dpa-condition associated with the tolerable level of the reactor materials radioactive stability, in particular that of the cladding materials. It is shown for the first time that the capture and fission cross sections of 238U and 239Pu increase with temperature within 1000–3000 K range, which under certain conditions may lead to a global loss of the nuclear burning wave stability. Some variants of the possible stability loss due to the so-called blow-up modes (anomalous nuclear fuel temperature and neutron flow evolution) are discussed and are found to possibly become a reason for a trivial violation of the traveling wave reactor internal safety.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-01-15
    Description: Studies on local fuel-coolant interactions (FCI) in a molten pool are important for the analyses of severe accidents that could occur for sodium-cooled fast reactors (SFRs). To clarify the mechanisms underlying this interaction, in recent years, several experimental tests, with comparatively larger difference in coolant volumes, were conducted at the Japan Atomic Energy Agency by delivering a given quantity of water into a molten pool formed with a low-melting-point alloy. In this study, to further understand this interaction, interaction characteristics including the pressure buildup as well as mechanical energy release and its conversion efficiency are investigated using the SIMMER-III, an advanced fast reactor safety analysis code. It is found that the SIMMER-III code not only reasonably simulates the transient pressure and temperature variations during local FCIs, but also supports the limited tendency of pressurization and resultant mechanical energy release as observed from experiments when the volume of water delivered into the pool increases. The performed analyses also suggest that the most probable reason leading to such limited tendency should be primarily due to an isolation effect of vapor bubbles generated at the water-melt interface.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: For the proposed novel procedure of immobilizing HLW with magnesium potassium phosphate cement (MKPC), Fe2O3 was added as a modifying agent to verify its effect on the solidification form and the immobilization of the radioactive nuclide. The results show that Fe2O3 is inert during the hydration reaction. It slows down the hydration reaction and lowers the heat release rate of the MKPC system, leading to a 3°C-5°C drop in the mixture temperature during hydration. Early comprehensive strength of Fe2O3 containing samples decreased slightly while the long-term strength remained unchanged. For the sintering process, Fe2O3 played a positive role, lowering the melting point and aiding the formation of ceramic structure. CsFe(PO4)2, or CsFePO4, was generated by sintering at 900°C. These products together with the ceramic structure and absorption benefit the immobilization of Cs+. The optimal sintering temperature for heat treatment is 900°C; it makes the solidification form a fired ceramic-like structure.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: Evaluation of aerosol deposition in the containment vessel is an important step for the assessment of radioactive material release to the environment. ART Mod 2 is a calculation code that is used for evaluation of aerosol deposition in the containment vessel. The authors modified aerosol deposition models of ART Mod 2, namely, gravitational settling model, Brownian diffusion model, diffusiophoresis model, and thermophoresis model in order to increase potential of capturing the deposition phenomena. This study aims to compare the simulated results of modified ART Mod 2 with aerosol deposition of cesium compounds in the containment vessel of Phébus FPT3 experiment, in order to validate modified ART Mod 2 code. It is found that aerosol deposition using modified ART Mod 2 agrees with Phébus FPT3. Prediction of Brownian diffusion is significantly improved due to the consideration of turbulent damping process. Cesium mass flow rate and aerosol size are factors that can significantly influence the uncertainty of the results. When conditions of single volumes are carefully selected to match those of the Phébus FPT3 experiment, modified ART Mod 2 can predict aerosol deposition in Phébus FPT3 with relative accuracy.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: The management of spent nuclear fuel assemblies of nuclear reactors is a priority subject among member states of the International Atomic Energy Agency. For the majority of these countries, the destination of such fuel assemblies is a decision that is yet to be made and the “wait-and-see” policy is thus adopted by them. In this case, the irradiated fuel is stored in on-site spent fuel pools until the power plant is decommissioned or, when there is no more racking space in the pool, they are stored in intermediate storage facilities, which can be another pool or dry storage systems, until the final decision is made. The objective of this study is to propose a methodology that, using optimization algorithms, determines the ideal time for removal of the fuel assemblies from the spent fuel pool and to place them into dry casks for intermediate storage. In this scenario, the methodology allows for the optimal dimensioning of the designed spent fuel pools and the casks’ characteristics, thus reducing the final costs for purchasing new Nuclear Power Plants (NPP), as the size and safety features of the pool could be reduced and dry casks, that would be needed anyway after the decommissioning of the plant, could be purchased with optimal costs. To demonstrate the steps involved in the proposed methodology, an example is given, one which uses the Monte Carlo N-Particle code (MCNP) to calculate the shielding requirements for a simplified model of a concrete dry cask. From the given example, it is possible to see that, using real-life data, the proposed methodology can become a valuable tool to help making nuclear energy a more attractive choice costwise.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: Nordic Boiling Water Reactors (BWRs) employ ex-vessel debris coolability as a severe accident management strategy (SAM). Core melt is released into a deep pool of water where formation of noncoolable debris bed and ex-vessel steam explosion can pose credible threats to containment integrity. Success of the strategy depends on the scenario of melt release from the vessel that determines the melt-coolant interaction phenomena. The melt release conditions are determined by the in-vessel phase of severe accident progression. Specifically, properties of debris relocated into the lower plenum have influence on the vessel failure and melt release mode. In this work we use MELCOR code for prediction of the relocated debris. Over the years, many code modifications have been made to improve prediction of severe accident progression in light-water reactors. The main objective of this work is to evaluate the effect of models and best practices in different versions of MELCOR code on the in-vessel phase of different accident progression scenarios in Nordic BWR. The results of the analysis show that the MELCOR code versions 1.86 and 2.1 generate qualitatively similar results. Significant discrepancy in the timing of the core support failure and relocated debris mass in the MELCOR 2.2 compared to the MELCOR 1.86 and 2.1 has been found for a domain of scenarios with delayed time of depressurization. The discrepancies in the results can be explained by the changes in the modeling of degradation of the core components and changes in the Lipinski dryout model in MELCOR 2.2.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: The analysis of the thermal condition of spent FA (fuel assembly) of BN-350 reactor in a six-place cask for dry storage is presented. Simulation of the thermal condition of the cask is conducted with finite elements method using ANSYS software. Calculations of fuel temperature, fuel cladding, and assembly structural elements are the part of the safety analysis for storage of spent FA. In conclusion, the results of the thermal calculations in the cases of filling cask with argon and atmospheric air are given when the thickness of the insulation cask with concrete is 0.5 and 1 m. As a result of the calculated studies, the parameters of SNF (spent nuclear fuel) storage are determined, under which the fuel temperatures will have minimum and maximum values.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: There are results of long-term thermal aging of samples of irradiated and nonirradiated FA jacket and nonirradiated fuel element cladding at a temperature range from 300 to 550°C in argon, to 600°C in air. Materials have been studied before and after thermal tests. The forecast estimation of expected corrosion damage of barrier material at the radionuclide release from spent fuel assemblies of BN-350 reactor into environment during dry storage for 50 years was carried out.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: Two-phase flow instability may occur in nuclear reactor systems, which is often accompanied by periodic fluctuation in fluid flow rate. In this study, bubble rising and coalescence characteristics under inlet flow pulsation condition are analyzed based on the MPS-MAFL method. To begin with, the single bubble rising behavior under flow pulsation condition was simulated. The simulation results show that the bubble shape and rising velocity fluctuate periodically as same as the inlet flow rate. Additionally, the bubble pairs’ coalescence behavior under flow pulsation condition was simulated and compared with static condition results. It is found that the coalescence time of bubble pairs slightly increased under the pulsation condition, and then the bubbles will continue to pulsate with almost the same period as the inlet flow rate after coalescence. In view of these facts, this study could offer theory support and method basis to a better understanding of the two-phase flow configuration under flow pulsation condition.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...