ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (977)
  • Hindawi  (977)
  • Institute of Electrical and Electronics Engineers (IEEE)
  • 2015-2019  (977)
  • 1990-1994
  • 1945-1949
  • International Journal of Aerospace Engineering  (405)
  • 97414
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (977)
  • Mathematics
  • Computer Science
Collection
  • Articles  (977)
Publisher
  • Hindawi  (977)
  • Institute of Electrical and Electronics Engineers (IEEE)
Years
Year
Topic
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (977)
  • Mathematics
  • Computer Science
  • 1
    Publication Date: 2015-06-05
    Description: The aim of this paper is the assessment of the capability of controllers based on the combined actuation of flaps and variable-stiffness devices to alleviate helicopter main rotor vibratory hub loads. Trailing-edge flaps are positioned at the rotor blade tip region, whereas variable-stiffness devices are located at the pitch link and at the blade root. Control laws are derived by an optimal control procedure based on the best trade-off between control effectiveness and control effort, under the constraint of satisfaction of the equations governing rotor blade aeroelastic response. The numerical investigation concerns the analysis of performance and robustness of the control techniques developed, through application to a four-bladed helicopter rotor in level flight. The identification of the most efficient control configuration is also attempted.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-12
    Description: A guidance and control strategy for a class of 2D trajectory correction fuze with fixed canards is developed in this paper. Firstly, correction control mechanism is researched through studying the deviation motion, the key point of which is the dynamic equilibrium angle. Phase lag of swerve response is the dominating factor for correction control, and formula is deduced with the Mach number as argument. Secondly, impact point deviation prediction based on perturbation theory is proposed, and the numerical solution and application method are introduced. Finally, guidance and control strategy is developed, and simulations to validate the strategy are conducted.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-18
    Description: The effect of air throttling on flame stabilization of an ethylene fueled scramjet combustor was investigated by numerical simulation and experiments in this paper. The results were obtained under the inflow condition with Mach number of 2.0, total temperature of 900 K, total pressure of 0.8 MPa, and total equivalence ratio of 0.5. The shock train generated by air throttling had a big effect on the flow structure of the scramjet combustor. Compared with the combustor without air throttling, the flow field with air throttling had a lower velocity and higher pressure, temperature, and vortices intensity. Air throttling was an effective way to achieve flame stabilization; the combustion in the combustor without air throttling was nearly blowout. In the experiment, the combustion was nearly blowout with air throttling location of 745 mm, and the fuel/air mixture in the combustor with air throttling location of 875 mm was burned intensively. It was important to choose the location and time sequence of air throttling for fuel ignition and flame stabilization. The numerical simulation results agreed well with experimental measurements.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-24
    Description: This study investigates the maximum gliding range problems of subsonic unpowered gliding vehicles and proposes an approximate optimal maximum range guidance scheme. First, the gliding flight path angle corresponding to constant dynamic pressure is derived. A lift-to-drag ratio inversely proportional to the dynamic pressure is then proven. On this basis, the calculation method of an optimal dynamic pressure (ODP) profile with a maximum throughout the flight is presented. A guidance scheme for tracking the ODP profile, which uses the flight path angle as control variable, is then designed. The maximum ranges of the unpowered gliding vehicle obtained by the proposed guidance scheme and pseudospectral method are compared. Results show that the guidance scheme provides an accurate approximation of the optimal results, and the errors are less than 2%. The proposed guidance scheme is easy to implement and is not influenced by wind compared with numerical schemes.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-01
    Description: Triangular grid reinforced by carbon fiber/epoxy (CF/EP) was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA) and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed under a bending load of 11000 N; the principal stress concentration was located at the loading region; and the cracks occurred on the interface top skin and triangular core. In addition, the ultimate stress bearing of the sandwich structure was 8828 N. The experimental results showed that the carbon fiber reinforced triangular grid was much stiffer and stronger than the honeycomb structure.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-22
    Description: This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV) as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-26
    Description: An Unmanned Aerial Vehicle (UAV) system and its aerial image analysis method are developed to evaluate the damage degree of earthquake area. Both the single-rotor and the six-rotor UAVs are used to capture the visible light image of ground targets. Five types of typical ground targets are considered for the damage degree evaluation: the building, the road, the mountain, the riverway, and the vegetation. When implementing the image analysis, first the Image Quality Evaluation Metrics (IQEMs), that is, the image contrast, the image blur, and the image noise, are used to assess the imaging definition. Second, once the image quality is qualified, the Gray Level Cooccurrence Matrix (GLCM) texture feature, the Tamura texture feature, and the Gabor wavelet texture feature are computed. Third, the Support Vector Machine (SVM) classifier is employed to evaluate the damage degree. Finally, a new damage degree evaluation (DDE) index is defined to assess the damage intensity of earthquake. Many experiment results have verified the correctness of proposed system and method.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-26
    Description: A smooth guidance law for intercepting a maneuvering target with impact angle constraints is documented based on the nonsingular fast terminal sliding mode control scheme and adaptive control scheme. Different from the traditional adaptive law which is used to estimate the unknown upper bound of the target acceleration, a new adaptive law is proposed to estimate the square of target acceleration bound, which avoids the use of the nonsmooth signum function and therefore ensures the smoothness of the guidance law. The finite time convergence of the guidance system is guaranteed based on the Lyapunov method and the finite time theory. Simulation results indicate that under the proposed guidance law the missile can intercept the target with a better accuracy at a desired impact angle in a shorter time with a completely smooth guidance command compared with the existing adaptive fast terminal sliding mode guidance laws, which shows the superiority of this method.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-29
    Description: Atomic clock is the core component of navigation satellite payload, playing a decisive role in the realization of positioning function. So the monitoring for anomalies of the satellite atomic clock is very important. In this paper, a complete autonomous monitoring method for the satellite clock is put forward, which is, respectively, based on Phase-Locked Loop (PLL) and statistical principle. Our methods focus on anomalies in satellite clock such as phase and frequency jumping, instantaneous deterioration, stability deterioration, and frequency drift-rate anomaly. Now, method based on PLL has been used successfully in China’s newest BeiDou navigation satellite.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-01
    Description: The paper deals with the multiple gravity assist trajectories design. In order to improve the performance of the heuristic algorithms, such as differential evolution algorithm, in multiple gravity assist trajectories design optimization, a method combining BFS (breadth-first search) and EP_DE (differential evolution algorithm based on search space exploring and principal component analysis) is proposed. In this method, firstly find the possible multiple gravity assist planet sequences with pruning based BFS and use standard differential evolution algorithm to judge the possibility of all the possible trajectories. Then select the better ones from all the possible solutions. Finally, use EP_DE which will be introduced in this paper to find an optimal decision vector of spacecraft transfer time schedule (launch window and transfer duration) for each selected planet sequence. In this paper, several cases are presented to prove the efficiency of the method proposed.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-08-03
    Description: Steady glide trajectory optimization for high lift-to-drag ratio reentry vehicle is a challenge because of weakly damped trajectory oscillation. This paper aims at providing a steady glide trajectory using numerical optimal method. A new steady glide dynamic modeling is formulated via extending a trajectory-oscillation suppressing scheme into the three-dimensional reentry dynamics with a spherical and rotating Earth. This scheme comprehensively considers all factors acting on the flight path angle and suppresses the trajectory oscillation by regulating the vertical acceleration in negative feedback form and keeping the lateral acceleration invariant. Then, a study on steady glide trajectory optimization is carried out based on this modeling and pseudospectral method. Two examples with and without bank reversal are taken to evaluate the performance and applicability of the new method. A comparison with the traditional method is also provided to demonstrate its superior performance. Finally, the feasibility of the pseudospectral solution is verified by comparing the optimal trajectory with integral trajectory. The results show that this method not only is capable of addressing the case which the traditional method cannot solve but also significantly improves the computational efficiency. More importantly, it provides more stable and safe optimal steady glide trajectory with high precision.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-06-23
    Description: Random disturbance factors would lead to the variation of target acquisition point during the long distance flight. To acquire a high target acquisition probability and improve the impact precision, missiles should be guided to an appropriate target acquisition position with certain attitude angles and line-of-sight (LOS) angle rate. This paper has presented a new midcourse guidance law considering the influences of random disturbances, detection distance restraint, and target acquisition probability with Monte Carlo simulation. Detailed analyses of the impact points on the ground and the random distribution of the target acquisition position in the 3D space are given to get the appropriate attitude angles and the end position for the midcourse guidance. Then, a new formulation biased proportional navigation (BPN) guidance law with angular constraint and LOS angle rate control has been derived to ensure the tracking ability when attacking the maneuvering target. Numerical simulations demonstrates that, compared with the proportional navigation guidance (PNG) law and the near-optimal spatial midcourse guidance (NSMG) law, BPN guidance law demonstrates satisfactory performances and can meet both the midcourse terminal angular constraint and the LOS angle rate requirement.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-06-23
    Description: This paper presents a study of transonic wings whose planform shape is curved. Using fluid structure interaction analyses, the dynamic instability conditions were investigated by including the effects of the transonic flow field around oscillating wings. To compare the dynamic aeroelastic characteristics of the curved wing configuration, numerical analyses were carried out on a conventional swept wing and on a curved planform wing. The results confirm that, for a curved planform wing, the dynamic instability condition occurs at higher flight speed if compared to a traditional swept wing with similar profiles, aspect ratio, angle of sweep at root, similar structural layout, and similar mass. A curved wing lifting system could thus improve the performances of future aircrafts.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-06-20
    Description: Flutter characteristics of cantilever rectangular flexible plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5 × 125 × 1000 mm in dimension, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (-method and -method) of ZAERO© is also done. It is seen that the -method gives a closer result than the other one. However, -method results are on a conservative side and it is better to use conservative results, namely, -method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-05-13
    Description: The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs) to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-07-14
    Description: An experimental analysis of Global Positioning System (GPS) flight data collected onboard a Small Unmanned Aerial Vehicle (SUAV) is conducted in order to demonstrate that postprocessed kinematic Precise Point Positioning (PPP) solutions with precisions approximately 6 cm 3D Residual Sum of Squares (RSOS) can be obtained on SUAVs that have short duration flights with limited observational periods (i.e., only ~≤5 minutes of data). This is a significant result for the UAV flight testing community because an important and relevant benefit of the PPP technique over traditional Differential GPS (DGPS) techniques, such as Real-Time Kinematic (RTK), is that there is no requirement for maintaining a short baseline separation to a differential GNSS reference station. Because SUAVs are an attractive platform for applications such as aerial surveying, precision agriculture, and remote sensing, this paper offers an experimental evaluation of kinematic PPP estimation strategies using SUAV platform data. In particular, an analysis is presented in which the position solutions that are obtained from postprocessing recorded UAV flight data with various PPP software and strategies are compared to solutions that were obtained using traditional double-differenced ambiguity fixed carrier-phase Differential GPS (CP-DGPS). This offers valuable insight to assist designers of SUAV navigation systems whose applications require precise positioning.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-07-21
    Description: Dynamics modeling and control problem of a two-link manipulator mounted on a spacecraft (so-called carrier) freely flying around a space target on earth’s circular orbit is studied in the paper. The influence of the carrier’s relative movement on its manipulator is considered in dynamics modeling; nevertheless, that of the manipulator on its carrier is neglected with the assumption that the mass and inertia moment of the manipulator is far less than that of the carrier. Meanwhile, we suppose that the attitude control system of the carrier guarantees its side on which the manipulator is mounted points accurately always the space target during approaching operation. The ideal constraint forces can be out of consideration in dynamics modeling as Kane method is used. The path functions of the manipulator’s end-effector approaching the space target as well as the manipulator’s joints control torque functions are programmed to meet the soft touch requirement that the end-effector’s relative velocity to the space target is zero at touch moment. Numerical simulation validation is conducted finally.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-07-26
    Description: Generally, the overall performance of scramjet combustor is greatly impacted by the fuel distribution scheme. The current paper mainly conducted a comprehensive parametric study of the impact of fuel distribution on the overall performance of a kerosene-based scramjet combustor. Herein, a 3D supersonic combustor with a recessed cavity and four injection orifices was taken into consideration. The combustor’s performance was analyzed by 3D RANS model. The fuel equivalence ratio for each injection port was taken as the design variables. And the combustion efficiency, the total pressure recovery coefficient, and the drag coefficient were chosen as the objective functions. Some novel data mining methods including DOE technique, Kriging approximation model, interaction analysis, and main effects analysis methods were employed to conduct the parametric study. The distributed fuel injection scheme was optimized by nondominated sorting genetic algorithm. The results show that three objective functions were remarkably affected by both of the total fuel equivalence ratio and the fuel distribution scheme. The objective functions cannot reach the optimal solution at the same time, and there must be a tradeoff among the objective functions.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-28
    Description: System Wide Information Management (SWIM), as envisioned by the Single European Sky Air Traffic Management Research (SESAR) program, is the application of service oriented architectures to the air traffic management domain. Service oriented architectures are widely deployed in business and finance but usually tied to one specific technological implementation. SWIM goes one step further by defining only the semantic layer of the application integration and leaving the implementation of the communication layer open to the implementer. The shift from legacy communication patterns to SWIM is fundamental for the expected evolution of air traffic management in the next decades. However, the air traffic management simulators currently in use do not reflect this yet. SWIM compliance is defined by semantic compatibility to the Air Traffic Management Information Reference Model (AIRM) and a SWIM service may implement one or more communication profiles, which specify a communication layer implementation. This work proposes a SWIM-compliant communication profile suitable to integrate SWIM-compliant tools into human-in-the-loop simulations for air traffic management research. We achieve this objective by implementing a SWIM communication profile using XML-based multicast messaging and extending the message format to support distributed human-in-the-loop simulations. We demonstrate our method by the evaluation of Hamburg Airport operations.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-05-01
    Description: The linearized Euler equations (LEEs) solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN) configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-05-06
    Description: A joint communication and ranging system would constitute a unique platform for future weapon platform or intelligent transportation system to affect the essential tasks of Identification Friend or Foe (IFF) system and location sharing services, in terms of both spectrum efficiency and cost effectiveness. In this paper, the design of efficient modulation system which is suitable for simultaneously performing both data transmission and range measurement is proposed. The approach is based on extended binary phase shift keying (EBPSK) or -ary Position Phase Shift Keying (MPPSK) modulated waveforms utilized in digital communication. In particular, requirements that allow for employing such signals for range measurements are investigated. Also, Constant False Alarm Rate (CFAR) target detection performances of the new proposed system are discussed when target velocity and time delay take different values. Moreover, Doppler tolerance range of impacting filter for demodulating EBPSK/MPPSK pulse signal at 10 GHz is considered. In addition to theoretical considerations, the paper presents simulations and measurement results of the new systems, demonstrating the high spectral utilization of integrated communication and ranging applications.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-12-31
    Description: The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-01-01
    Description: An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-03-09
    Description: There are a number of volunteer and statutory organizations who are capable of conducting an emergency response using helicopters. Rescue operations require a rapidly deployable high bandwidth network to coordinate necessary relief efforts between rescue teams on the ground and helicopters. Due to massive destruction and loss of services, ordinary communication infrastructures may collapse in these situations. Consequently, information exchange becomes one of the major challenges in these circumstances. Helicopters can be also employed for providing many services in rugged environments, military applications, and aerial photography. Ad hoc network can be used to provide alternative communication link between a set of helicopters, particularly in case of significant amount of data required to be shared. This paper addresses the ability of using ad hoc networks to support the communication between a set of helicopters. A simplified network structure model is presented and extensively discussed. Furthermore, a streamlined routing algorithm is proposed. Comprehensive simulations are conducted to evaluate the proposed routing algorithm.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: This paper proposes a lunar night survival method for small rovers using an MLI (Multilayer Insulation) curtain system for long-term missions. Until recently, it was difficult to install RHU (Radioisotope Heating Units) or other temperature maintenance devices on small lunar rovers to enable lunar night survival, and so such rovers could only perform short two-week missions. Thermal analysis results show that small rovers could survive during lunar nights by moving into a shelter located inside the MLI curtain of the lander without mounting temperature maintenance devices. In order to enhance the feasibility of the MLI curtain system, we also propose ideas of a double-layer MLI and a rover configuration without solar cells.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: Launch vehicles suffer from severe base heating during ascents. To predict launch vehicle base heat flux, the computational fluid dynamics (CFD) tools are widely used. The selection of the turbulence model determines the numerical simulation results of launch vehicle base heating, which may instruct the thermal protection design for the launch vehicle base. To assess performances, several Reynolds-averaged turbulence models have been investigated for the base heating simulation based on a four-nozzle launch vehicle model. The finite-rate chemistry model was used for afterburning. The results showed that all the turbulence models have provided nearly identical mean flow properties at the nozzle exit. Menter’s baseline (BSL) and shear stress transport (SST) models have estimated the highest collision pressure and have best predicted base heat flux compared to the experiment. The Spalart-Allmaras (SA) model and the renormalization group (RNG) model have performed best in temperature estimation, respectively, in around and . The realizable (RKE) model has underestimated the reverse flow and failed to correctly reflect the recirculation in the base region, thus poorly predicted base heating. Among all the investigated turbulence models, the BSL and SST models are more suitable for launch vehicle base heating simulation.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: The purpose of this paper is to solve the problem of controlling of the quadrotor exposed to external constant disturbances. The quadrotor system is partitioned into two parts: the attitude subsystem and the position subsystem. A new robust integral terminal sliding mode control law (RITSMC) is designed for stabilizing the inner loop and the quick tracking of the right desired values of the Euler angles. To estimate the disturbance displayed on the -axis and to control the altitude position subsystem, an adaptive backstepping technique is proposed, while the horizontal position subsystem is controlled using the backstepping approach. The stability of the quadrotor subsystems is guaranteed by the Lyapunov theory. The effectiveness of the proposed methods is clearly comprehended through the obtained results of the various simulations effectuated on MATLAB/Simulink, and a comparison with another technique is presented.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: Abrupt changes in wind velocities over small distances in a lateral or vertical direction can produce wind shear which is known to have serious effects upon the performance of an aircraft. Brought about by large-scale changes in the atmospheric conditions, it is a three-dimensional flow phenomenon imposing severe velocity gradients on an aircraft from all possible directions. While it would be difficult to model an instantaneous velocity gradient in a lateral plane, a vortical flow impinging from the sides which represents a wind shear in a vertical direction is imposed on a forward-moving aircraft to investigate the effect on the aerodynamic performance. The maximum shear wind speed from the side was fixed at 0.3 times the forward velocity. After due validations under no-wind shear conditions on simpler half-reflection plane models, a BGK airfoil-based full 3D wing and the ONERA M6 3D wing model were selected for preliminary studies. The investigation was concluded using the ARA M100 wing-fuselage model.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: A computational-based investigation has been carried out to examine the heat transfer effects of normal and tangential blowing on blunt surfaces exposed to high Mach number flows. Experimental results from such studies where a controlled outflow is imposed upon a surface under hypersonic conditions are few and far between. Simple 3D axisymmetric configurations supporting flat front surfaces suited to accommodate uniform frontal flow or round-nosed conical bodies with a stepped shoulder to provide uniform parallel flow to the conical surface were selected from a NASA experiment for validation purposes. Uniform outflow of 0.55 to 1.0 kg/s was applied in the presence of the prevailing free stream of to assess the extent of heat transfer rate alleviation. The numerical simulation confirmed the experiment that the application of outflow in both cases leads to the surface heat transfer relief.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: The tilt-rotor aircraft has often been proposed as a means to increase the maximum speed of the conventional helicopter. The tilt-rotor aircraft consists of three primary flight modes that are the helicopter flight mode in low forward speed flight, airplane flight mode in high forward speed flight, and conversion flight mode. The aim of this paper is to develop a nonlinear flight dynamics mathematical modeling method of tilt-rotor aircraft and investigate the dynamic stability characteristics of tilt-rotor aircraft. First, a nonlinear tilt-rotor aircraft flight dynamics model is developed. The trim and linearized results are present to verify the model. Then, using a numerical differentiation technique, the dynamic stability of the tilt-rotor aircraft is assessed. The results show that the flight speed and nacelle angle would affect the magnitude and the trend of the aerodynamic derivatives. The damping of the pitch short period mode and the Dutch roll mode is insensitive to flight speed while they could be affected by nacelle angle. In all flight modes, as flight speed increases, the natural modes become more stable.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: Propellants or combustion products can reach high pressures and temperatures in advanced or conventional propulsion systems. Variations in flow properties and the effects of real gases along a nozzle can become significant and influence the calculation of propulsion and thermodynamic parameters used in performance analysis and design of rockets. This work derives new analytical solutions for propulsion parameters, considering gases obeying the van der Waals equation of state with specific heats varying with pressure and temperature. Steady isentropic one-dimensional flows through a nozzle are assumed for the determination of specific impulse, characteristic velocity, thrust coefficient, critical flow constant, and exit and throat flow properties of He, H2, N2, H2O, and CO2 gases. Errors of ideal gas solutions for calorically perfect and thermally perfect gases are determined with respect to van der Waals gases, for chamber temperatures varying from 1000 to 4000 K and chamber pressures from 5 to 35 MPa. The effects of covolumes and intermolecular attraction forces on flow and propulsion parameters are analyzed.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: The minimum time interception problem with a tangent impulse whose direction is the same as the satellite’s velocity direction is studied based on the relative motion equations of elliptical orbits by the combination of analytical, numerical, and optimization methods. Firstly, the feasible domain of the true anomaly of the target under the fixed impulse point is given, and the interception solution is transformed into a univariate function only with respect to the target true anomaly by using the relative motion equation. On the basis of the above, the numerical solution of the function is obtained by the combination of incremental search and the false position method. Secondly, considering the initial drift when the impulse point is freely selected, the genetic algorithm-sequential quadratic programming (GA-SQP) combination optimization method is used to obtain the minimum time interception solution under the tangent impulse in a target motion cycle. Thirdly, under the high-precision orbit prediction (HPOP) model, the Nelder-Mead simplex method is used to optimize the impulse velocity and transfer time to obtain the accurate interception solution. Lastly, the effectiveness of the proposed method is verified by simulation examples.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: The nickel-based superalloy GH3128 with high plasticity, high long-lasting creep strength, good resistance to oxidation and stamping, and good welding performance is widely used in aircraft engine heat shields. The many holes that need to be machined on the heat shield are not only small in diameter but also dense, and GH3128 as a typical hard-to-process material has the problems of large cutting force, high cutting temperature, and serious hardening. Therefore, poor dimensional accuracy and residual burrs have become the main factors that limit the processing efficiency and processing quality. So, a novel combination of manufacturing processes was proposed. Firstly, laser cutting technology was used to process the base hole in a GH3128 plate, followed by reaming, and finally, using a magnetic abrasive finishing effector to remove burrs formed during the first two steps. The whole drilling process of the heat shields fully meets the requirements of the technical parameters. This study provides new reference for manufacturing the holes of a heat shield and other similar porous parts.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018
    Description: To improve simulations of the flame and pressure wave propagation process and investigate the combustion characteristics of a wave rotor combustor (WRC), direct relation graphs with error propagation (DRGEP), quasi-steady-state assumption (QSSA), and sensitivity analysis were used to establish a reduced reaction mechanism comprised of 23 species and 55 elementary reactions, based on the LLNL N-Butane mechanism. The reduced reaction mechanism of ethylene was combined with an eddy dissipation concept (EDC) model to simulate the flame propagation characteristics in a simplified WRC channel. The effects of spoilers with different blockage ratios and hot-jets of different species on combustion characteristics of flame propagation and pressure rise in the WRC channel were investigated. When the heated inert air was used as hot-jet, the ignition delay time of WRC would increase, which indicated that the activity of the burned gas from the hot-jet igniter would affect the ignition delay time. The spoiler facilitates the coupling of flame and shock waves to reduce the coupling time and distance. With the blockage ratio of the spoiler increasing, the coupling time and distance would be reduced.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018
    Description: The fan wing aircraft is a new concept based on a new principle, especially its wing which is based on a unique aerodynamic principle. A fan wing can simultaneously generate lift and thrust. In order to further improve its aerodynamic characteristics without changing its basic geometric parameters, two fan wings are installed along the longitudinal body, which is the composition of a tandem fan wing aircraft. Through numerical simulation, the lift and thrust of the fan wings were calculated with the distance, height, and installation angle of the front and rear fan wings changed, and the aerodynamic characteristic interaction rule between the front and rear fan wings was analyzed. In addition, the wind test model of a tandem fan wing was designed, and the results of the wind tunnel test and numerical calculation results were compared to verify the preliminary setup. The results show that at a certain height, distance, and installation angle, aerodynamic characteristics of a tandem fan wing have more advantages compared to the single fan wing. Therefore, the tandem fan wing aircraft’s advantages have good prospects for development and application.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018
    Description: A lunar lander is exposed to extreme lunar thermal environments with a nighttime of 14.75 earth days. Thus, a proper thermal design is an important task to guarantee a successful lunar mission. This paper describes a preliminary thermal design and analysis results of a lunar lander to ensure its survivability during lunar night. The effectiveness of the thermal designs of a lunar lander with various thermal hardwares was numerically investigated according to the landing candidate areas to determine which design is the most feasible for night survival. In addition, we analyzed the mechanical safety of the solder joint of electronic components in accordance with the operating temperature range, because it is an important factor for reducing the system power budget during night survival.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: In the present work, the aerodynamic shape design of an advanced high-lift system for a natural laminar flow (NLF) wing, based on the combination of a morphing droop nose and a single slot trailing edge flap, is presented. The paper presents both the aerodynamic design and optimization of the NLF wing and the high-lift configuration considering the mutual effects of both flap devices. Concerning the morphing droop nose (DN), after defining the parameterization techniques adopted to describe the geometry in terms of morphing shape and flap settings, the external configuration is obtained by an aerodynamic shape optimization procedure able to meet geometrical constraints and the skin structural requirements due to the morphing. The final performance assessment of the three-dimensional high-lift configurations is performed by high-fidelity aerodynamic analyses. The design procedure is applied to a twin-prop regional aircraft equipped with a natural laminar flow wing. The morphing droop nose is compatible with an NLF wing that requires the continuity of the skin and, at the same time, extends the possibilities to improve the performances of the class of regional aircraft which usually are not equipped with conventional leading edge devices. Additionally, the morphing technology applied to the flap allows the design of a tracking system fully integrated inside the airfoil geometry, leading to a solution without external fairings and so with no extra friction drag penalty for the aircraft.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018
    Description: In order to control the position and attitude of unmanned aerial vehicle (UAV) better in different environments, this study proposed a hybrid control system with backstepping and PID method for eight-rotor UAV in different flight conditions and designed a switching method based on altitude and attitude angle of UAV. The switched process of hybrid controller while UAV taking off, landing, and disturbance under the gust is verified in MATLAB/Simulink. A set of appropriate controllers always matches to the flight of UAV in different circumstances, which can speed up the system response and reduce the steady-state error to improve stability. The simulation results show that the hybrid control system can suppress the drift efficiently under gusts, enhance the dynamic performance and stability of the system, and meet the position and attitude of flight control requirements.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018
    Description: In regard to propulsion system applications, the stability of liquid propellants in long-term storage is of increasing importance, and this had led to a greater interest in gelation technology. As part of a preliminary test to determine the feasibility of using a gel propellant in a rocket with a catalyst bed, a hybrid rocket with a catalyst reactor using a gel propellant as an oxidizer was tested for the first time in this study. Experiments were conducted with two different oxidizers: one with liquid phase hydrogen peroxide and the other with gel phase hydrogen peroxide, as well as high-density polyethylene as fuel for a 250 N class hybrid thruster performance test. The thruster was designed with the catalyst ignition system, and a catalyst was manufactured to be inserted into the catalyst reactor to facilitate oxidizer decomposition. While the test result with neat hydrogen peroxide indicated sufficient decomposition efficiency using a manganese dioxide/alumina catalyst and successful autoignition of the fuel via the decomposed product, gel hydrogen peroxide exhibited insufficient decomposition and there were difficulties in operating the thruster as a part of the catalyst was covered in the gelling agent. This preliminary study identifies the potential challenges of using a gel phase oxidizer in a catalyst ignited hybrid thruster and discusses the technical issues that should be addressed in regard to a gel propellant hybrid thruster design with a catalyst reactor.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018
    Description: This paper presents the state of art of Microwave Rocket development and related researches on atmospheric discharge in a high-power millimeter-wave beam. Its operational mechanisms, thruster design, history of development, and flight path and cost analyses are introduced along with millimeter-wave discharge observations and numerical simulations. A thruster model of 126 g weight with no on-board propellant was launched to 1.2 m altitude using a 1 MW class gyrotron. A flight analysis that shows 77% cost reduction is possible using Microwave Rocket as the first stage of H-IIB heavy. A millimeter-wave discharge with unique plasma structure such as a quarter-wavelength microstructure and a comb-shaped filamentary structure was observed and reproduced by a two-dimensional numerical model.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018
    Description: This paper describes the main concept and development of a standard platform architecture of 3U Cube Satellite, whose design and performance were implemented and verified through the development of KAUSAT-5 3U CubeSat. The 3U standard platform is built in 1.5U size and developed as a modular concept to add and expand payloads and attitude control actuators to meet the user’s needs. In the case of the electrical power system, the solar panel, the battery, and the deployment mechanism are designed to be configured by the user. Mechanical system design maximizes the electrical capability to accommodate various payloads and to integrate and miniaturize EEE (Electrical, Electronic, and Electromechanical) parts and subsystem functions/performance into limited-size PCBs. The performance of KAUSAT-5 adopting standard platform was verified by mounting the VSCMG (Variable Speed Control Moment Gyro), which is one payload for technical demonstration, at the bottom of the platform and the infrared (IR) camera, which is the other payload for science mission, on the top. The 3U CubeSat equipped with the electronic optical camera is under development implementing the standard platform to reduce development cost and schedule by minimizing additional verification.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018
    Description: The three-dimensional braided composites, with intertwined fiber bundles in the through-thickness direction, have advantages of high interlaminar shear strength, fracture toughness, and excellent impact resistance, making them a promising material for applications in the field of aeroengine fan blades. As the bird impact behavior of the fan blade directly affects the safety of the aeroengines, it is of great significance to study the dynamic response and damage mechanism of 3D braided composites under bird strike load. In this paper, the bird impact tests on the 3D four-step braided composite targets were carried out using the gas gun system. The effects of impact velocity, impact location, and braiding angle on the bird impact behavior were studied. It is concluded that the damage and failure become more severe with the increasing impact velocity. The whole impact event could be divided into 3 stages, i.e., local deformation stage, postflow impact stage, and bending deflection stage. The braided composite presents flexible characteristics and could bear extraordinary deformation during the bird impact. One distinguishing feature of bird impact damage is the destruction of the clamping root due to bending load caused by cantilever construction. The internal damage form at the impact area was mainly the separation of the fiber bundles from the matrix while the breakage of the fiber bundles and the crushing of the matrix play the primary role at the root part. The target plate impacted at the 70% height had the largest bending angle and most serious damage, followed by those impacted at the 90% and 50% heights. Both the appearance damage and internal damage extent are smallest for 45° braiding composites.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018
    Description: Using liquid RP-3 aviation kerosene as the fuel to study, the effect of airflow temperature on the formation of initial flame kernel during the ignition of spray combustion and on the propagation characteristics of flame was investigated. Combining high-speed camera and dynamic temperature acquisitions at the outlet of combustor, the internal triggering mode was used under a constant fuel flow rate and airflow velocity. This combined system simultaneously recorded the formation of initial flame kernel, flame propagation, and outlet temperature variation of combustor under different airflow temperatures. MATLAB software was used to obtain the reaction zones at different moments and to analyze the effects of airflow temperature on morphological characteristics such as flame area, perimeter-to-area ratio, maximum length-to-height ratio, equivalent mean length-to-height ratio, mass center, and centroid. According to the growth rate in flame area, the ignition process can be divided into three stages: formation of flame kernel, rapid development of flame, and stable development of flame. Airflow temperature not only affects the formation time of flame kernel but also affects the growth rate of flame area. During the development of flame, the movements of mass center and centroid are irregular, and their positions do not coincide with each other. However, the overall moving trends are consistent. With the increase of the airflow temperature, the position, where the flame kernel is gradually formed, moves closer to the center of the end face of spark plug. The force of airflow on flame is the main factor that increases the flame area and heat-release rate. Therefore, the folds around the flame edge mainly result from the stretching under the action of airflow. With the increase in airflow temperature, the heat release of the initial flame kernel increases, and the ratio of perimeter to area as a characterization parameter increases by 8%, 86%, and 33%, respectively. In addition, the maximum outlet temperature rise increased by about 53%, 73.5%, and 0.65%, respectively. Meanwhile, the maximum rate of temperature rise increased by about 42.8%, 57%, and 5.1%, respectively.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018
    Description: Liquid is overheated and evaporated quickly when it enters into the environment with lower saturation pressure than that corresponding to its initial temperature. This phenomenon is known as the flash evaporation. A natural low-pressure environment and flash evaporation have unique characteristics and superiority in high altitude and outer space. Therefore, flash evaporation is widely used in aerospace. In this paper, spray flash evaporation and jet flash evaporation which are two different forms were introduced. Later, key attentions were paid to applications of flash evaporation in aerospace. For example, the flash evaporation has been used in the thermal control system of an aircraft and the propelling system of a microsatellite and oil supply system of a rocket motor. Finally, the latest progresses in the calculation model and numerical simulation of flash evaporation were elaborated.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018
    Description: The Electric Power System (EPS) and attitude control system (ACS) are the essential components of any satellite. EPS and ACS efficiency and compactness are substantial for the proper operation and performance of the satellite’s entire mission life. So, realizing the significance of EPS and ACS subsystems for any satellite, they have been assimilated and developed in modular forms focusing on efficiency and compactness. The EPS is comprised of three modules called the solar panel module (SPM), power conditioning module (PCM), and power distribution module (PDM) while the ACS has an embedded magnetorquer coil. For compactness and miniaturization purposes, the magnetorquer coil is embedded inside the SPM. The components used are commercial off-the-shelf (COTS) components emphasizing on their power efficiency, small dimensions, and weight. Latch-up protection systems have been designed and analyzed for CMOS-based COTS components, in order to make them suitable for space radioactive environment. The main design features are modularity, redundancy, power efficiency, and to avoid single component failure. The modular development of the EPS and ACS helps to reuse them for future missions, and as a result, the overall budget, development, and testing time and cost are reduced. A specific satellite mission can be achieved by reassembling the required subsystems.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: For the free-floating space manipulator with free-swinging joint failure, motions among its active joints, passive joints, free-floating base, and end-effector are coupled. It is significant to make clear all motion coupling relationships, which are defined as “kinematic coupling relationships” and “dynamic coupling relationships,” inside the system. With the help of conservation of system momentum, the kinematic model is established, and velocity mapping relation between active joints and passive joints, velocity mapping relation between active joints and base, velocity mapping relation between active joints and end-effector. We establish the dynamic model based on the Lagrange equation, and the system inertia matrix is partitioned according to the distribution of active joints, passive joints, and the base. Then, kinematic and dynamic coupling relationships are explicitly derived, and coupling indexes are defined to depict coupling degree. Motions of a space manipulator with free-swinging joint failure simultaneously satisfy the first-order nonholonomic constraint (kinematic coupling relationships) and the second-order nonholonomic constraint (dynamic coupling relationships), and the manipulator can perform tasks through motion planning and control. Finally, simulation experiments are carried out to verify the existence and correctness of the first-order and second-order nonholonomic constraints and display task execution effects of the space manipulator. This research analyzes the kinematic and dynamic characteristics of the free-floating space manipulator with free-swinging joint failure for the first time. It is the theoretical basis of free-swinging joint failure treatment for a space manipulator.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: Aircraft surface inspection includes detecting surface defects caused by corrosion and cracks and stains from the oil spill, grease, dirt sediments, etc. In the conventional aircraft surface inspection process, human visual inspection is performed which is time-consuming and inefficient whereas robots with onboard vision systems can inspect the aircraft skin safely, quickly, and accurately. This work proposes an aircraft surface defect and stain detection model using a reconfigurable climbing robot and an enhanced deep learning algorithm. A reconfigurable, teleoperated robot, named as “Kiropter,” is designed to capture the aircraft surface images with an onboard RGB camera. An enhanced SSD MobileNet framework is proposed for stain and defect detection from these images. A Self-filtering-based periodic pattern detection filter has been included in the SSD MobileNet deep learning framework to achieve the enhanced detection of the stains and defects on the aircraft skin images. The model has been tested with real aircraft surface images acquired from a Boeing 737 and a compact aircraft’s surface using the teleoperated robot. The experimental results prove that the enhanced SSD MobileNet framework achieves improved detection accuracy of aircraft surface defects and stains as compared to the conventional models.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: The loss of fan blades in an aeroengine, or fan-blade out (FBO), is a type of accident that causes a sudden imbalance and large impact load, which leads to complex vibration of a system. To conduct a dynamic analysis of an aeroengine rotor system is an important requirement for relevant departments. The purpose of this paper is to study the dynamic response of a complex dual-rotor system suffering FBO events and the protective effect of the fusing structure on the system. The dynamic model of an aeroengine dual-rotor system is established, and the response of the rotor system is obtained by calculation and analysis. The rear support bearing of the fan has a high reaction force, which may lead to bearing failure. The mechanism of a fusing structure is analyzed, and the results show that the sudden imbalance will produce impact loads on the rotor, resulting in a sharp increase in the vibration amplitude and reaction force, and then, attenuation to steady state. The fusing structure can reduce the amplitude of steady-state rotor vibration and reaction force on the support bearings. However, the transient response of the rotor will increase because of the sudden change in support stiffness.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: A new low-thrust trajectory design method is proposed that is based on the finite Fourier series method with pseudoequinoctial elements rather than the more common cylindrical coordinate components. The bijection relation between the elements and control variables is ensured by introducing an additional equality constraint derived from the angular momentum conservation. The guidance law and on-line control variables are obtained by applying inverse dynamics and the framework of inverse simulation technology, respectively. The pseudoequinoctial finite Fourier series method has the advantages of both the Fourier series and the perturbation analysis methods. For two-body problems, three cases were studied: the Earth to Mars, 1989ML, and Tempel-1 missions. Regarding the design of a rendezvous trajectory with a large inclination angle and a high eccentricity rate, this method yields a broader range of feasible results than the traditional Fourier series method. The circular restricted three-body problem was solved for the first time using the pseudoequinoctial finite Fourier series method combined with the patched conics method. The low-thrust Earth-Moon transfer was analyzed, and the results show that this method improves window analysis efficiency and guarantees precision of the initial geocentric trajectory for the low-thrust transfer.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: In this study, the optimization of a low-speed wing with functional constraints is discussed. The aerodynamic analysis tool developed by the coupling of the numerical nonlinear lifting-line method to Xfoil is used to obtain lift and drag coefficients of the baseline wing. The outcomes are compared with the results of the solver based on the nonlinear lifting-line theory implemented into XLFR5 and the transition shear stress transport model implemented into ANSYS-Fluent. The agreement between the results at the low and moderate angle of attack values is observed. The sequential quadratic programming algorithm of the MATLAB optimization toolbox is used for the solution of the constrained optimization problems. Three different optimization problems are solved. In the first problem, the maximization of is the objective function, while level flight condition at maximum is defined as a constraint. The functional constraints related to the wing weight, the wing planform area, and the root bending moment are added to the first optimization problem, and the second optimization problem is constructed. The third optimization problem is obtained by adding the level flight condition and the available power constraints at the maximum speed and the level flight condition at the minimum speed of the baseline unmanned air vehicle to the second problem. It is demonstrated that defining the root bending moment, the wing area, and the available power constraints in the aerodynamic optimization problems leads to more realistic wing planform and airfoil shapes.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: In aerospace engineering, structural modifications play an essential role in design of structures. In some cases, it is necessary to guarantee that a specific natural frequency of the structure remains unchanged when additional masses are attached. The methods based on the Sherman-Morrison formula are proposed in this paper, called the optimal selection method and the absolute value method, to maintain the specific natural frequency. The methods are both implemented by installing a spring on the system and can eliminate the effect of the additional mass on the specific frequency. The proposed methods were verified to be effective and accurate through numerical simulations. Results show that the optimal selection method has similar applicability as the existing real value method, and both methods are applicable only in cases of small damping. In addition, the absolute value method has extensive applicability in systems with either small or large damping.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: For small unguided space interceptors, the interception probability is an important index to evaluate their strike capability. However, the Monte Carlo (MC) based simulation method not only consumes a lot of computation time but also theoretically lacks interpretability. In this regard, this paper proposes an analytical method that can quickly and accurately calculate the short-term space interception probability. Firstly, by considering the effect of perturbation force on spacecraft as the effect of external force acceleration, the analytical calculation formula of the short-term state error covariance propagation of space target and interceptor is deduced. Next, by projecting the state error and rotating the coordinate system, the joint error distribution of the target and the interceptor in the calculation coordinate system at the time of closest approach (TCA) is obtained. Thereby convert the calculation of the space interception probability into the integral of the 2-dimensional probability density function in the circular domain. Then, the Laplace transform and Taylor expansion are used to obtain the exact power series expression and the maximum truncation error of the integral calculation, and the analytical calculation of the short-term space interception probability is realized. Finally, the effectiveness of the proposed method is verified by a simulation example. The proposed method can directly calculate the space interception probability according to the initial state error distribution of the target and interceptor, and the whole calculation process does not contain double integral operation. The proposed method has high computational efficiency, is suitable for on-orbit calculation, and provides effective support for the rapid evaluation of the strike capability of the space interceptor.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: The unsteady flow around a pitching two-dimensional airfoil section (NREL S809) has been simulated using unsteady RANS with the transition SST turbulence model. This geometry is chosen to represent a wind turbine blade in a standstill configuration. The Reynolds number is based on a chord length of 1 m. A prescribed sinusoidal pitching motion has been applied at a fixed amplitude of for a range of high angles of attack . At these incidences, the airfoil will behave more like a bluff body and may experience periodic vortex shedding. It is well known that, in bluff body flows, oscillations can lead to a lock-in (lock-in) of the vortex shedding frequency, , with the body’s motion frequency, . In order to investigate the susceptibility of airfoil to lock-in, the frequency ratio () has been varied around . The lock-in region boundaries have been proposed, and an analysis of the effect of the oscillation amplitude has been conducted. The lock-in map obtained suggests that, for the vibration amplitude considered, the risk of vortex-induced vibration is more significant in the regions of and , i.e., for shallower characteristic lengths. Finally, a lumped parameter wake oscillator model has been proposed for pitching airfoils. This simple model is in qualitative agreement with the CFD results.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: Hypersonic vehicles operate in a severe aerodynamic heating environment, which has a significant impact on their structural dynamic characteristics. Therefore, aerodynamic heating effects cannot be ignored when performing an aeroelastic analysis for a hypersonic vehicle. However, incorporating aerodynamic heating effects into the fluid-structural coupling analysis will result in extreme computational costs. Actually, after experiencing a sustained flight in a fixed state, the vehicle will eventually reach the thermodynamic equilibrium. Thus, the aeroelastic analysis can be efficiently performed by using the structural dynamic characteristics of the heated vehicle operating in each equilibrium state. The effects of aerodynamic heating show that the modal frequencies and modal shapes of the flexible structure are bound to change significantly in comparison with the unheated structure. In this paper, a method of thermal modal reconstruction is developed in order to directly generate the structural mode shapes and frequencies within the given parameter space without having to solve a high-fidelity thermal and structural problem. Once the modal data are available, the multivariate interpolation in a tangent space to Grassmann manifold is used to generate the modal matrix at the arbitrary selected parameter point. Besides, the Kriging interpolation method is used to establish the approximate relationships between natural frequencies and sampling points. Finally, an example of an aerodynamic heated control surface structure is used to validate the effectiveness of the proposed aerothermoelastic framework. It is demonstrated that the developed thermal modal reconstruction method has good robustness, very high computational efficiency, and sufficient accuracy over a wide parametric domain.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: The active defense scenario in which the attacker evades from the defender and pursues the target is investigated. In this scenario, the target evades from the attacker, and the defender intercepts the attacker by using the optimal strategies. The evasion and the pursuit boundaries are investigated for the attacker when the three players use the one-to-one optimal guidance laws, which are derived based on differential game theory. It is difficult for the attacker to accomplish the task by using the one-to-one optimal guidance law; thus, a new guidance law is derived. Unlike other papers, in this paper, the accelerations of the target and the defender are unknown to the attacker. The new strategy is derived by linearizing the model along the initial line of sight, and it is obtained based on the open-loop solution form as the closed-loop problem is hard to solve. The results of the guidance performance for the derived guidance law are presented by numerical simulations, and it shows that the attacker can evade the defender and intercept the target successfully by using the proposed strategy.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: A numerical study has been performed to characterize the nozzle flow field of secondary injection thrust vector control (SITVC) and to estimate the performance parameters of SITVC. After validating the CFD turbulence models with an experimental data, a numerical simulation has been conducted in order to investigate the influence of changing the injection location, the injection angle, and the primary nozzle divergence half angle on the SITVC nozzle flow field structure and on the SITVC performance parameters. The secondary mass flow rate was kept constant for all cases during the simulation. The results showed that downstream injection near the nozzle exit increases the high-pressure zone upstream the injection leading to an increase in the side force; also, the higher divergence half angle 15° slightly increases the side force and it provides a wide range of deflection without shock impingement on the opposite wall becoming more effective for SITVC. The injection angle in the upstream direction 135° increases the side force, and by decreasing the injection angle to downstream direction 45°, the side force decreases. However, the SITVC performance parameters and the flow field structure are more influenced by the injection location and the primary nozzle divergence half angle while being less influenced by the injection angle.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: A new analysis of the vortex-identification -criterion and its recent modifications is presented. In this unified framework based on different approaches to averaging of the cross-sectional balance between vorticity and strain rate in 3D, new relations among the existing modifications are derived. In addition, a new method based on spherical averaging is proposed. It is applicable to compressible flows, and it inherits a duality property which allows its use for identifying high strain-rate zones together with vortices. The new quantity is applied to identification of vortices and high strain-rate zones in the flow around an inclined flat plate, in the flow past a sphere, and for the reconnection process of two Burgers vortices.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: All combustion processes in present-day engineering applications are of the deflagration type. This character limits achievable values of parameters, such as the highest reached temperature and the corresponding degree of gas ionisation. If it were possible to increase the parameter values and reach the plasmatic state, a number of potentially useful combustion applications might be improved—like propulsion or electricity generation. Authors demonstrate a combustion chamber with detonation-type combustion that can reach, by cumulative implosion, extreme temperatures of generated thermal plasma.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-06-17
    Description: For low earth orbit (LEO) satellite GPS receivers, space-based augmentation system (SBAS) ephemeris/clock corrections can be applied to improve positioning accuracy in real time. The SBAS correction is only available within its service area, and the prediction of the SBAS corrections during the outage period can extend the coverage area. Two time series forecasting models, autoregressive moving average (ARMA) and autoregressive (AR), are proposed to predict the corrections outside the service area. A simulated GPS satellite visibility condition is applied to the WAAS correction data, and the prediction accuracy degradation, along with the time, is investigated. Prediction results using the SBAS rate of change information are compared, and the ARMA method yields a better accuracy than the rate method. The error reductions of the ephemeris and clock by the ARMA method over the rate method are 37.8% and 38.5%, respectively. The AR method shows a slightly better orbit accuracy than the rate method, but its clock accuracy is even worse than the rate method. If the SBAS correction is sufficiently accurate comparing with the required ephemeris accuracy of a real-time navigation filter, then the predicted SBAS correction may improve orbit determination accuracy.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-10-13
    Description: The lubrication and heat transfer designs of bearing chamber depend on an understanding of oil/air two-phase flow. As initial and boundary conditions, the characteristics of ligament and droplet generation by oil film on rotating parts have significant influence on the feasibility of oil/air two-phase flow analysis. An integrated model to predict the oil film flow, ligament number, and droplet Sauter mean diameter (SMD) of a rotating disk, which is an abstraction of the droplet generation sources in a bearing chamber, is developed based on the oil film force balance analysis and wave theory. The oil film thickness and velocity, ligaments number, and droplet SMD are calculated as functions of the rotating disk radius, rotational speed and oil volume flow rate and oil properties. The theoretical results show that the oil film thickness and SMD are decreased with an increasing rotational speed, while the radial, transverse velocities, and ligament number are increased. The oil film thickness, radial velocity, and SMD are increased with an increasing oil flow rate, but the transverse velocity and ligament number are decreased. A test facility is built for the investigation into the ligament number of a rotating disk, and the measurement of ligament number is carried out by means of a high speed photography.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-10-21
    Description: A supersonic flow over a rectangular cavity is known to oscillate at certain predominant frequencies. The present study focuses on the effect of the cavity length-to-depth () ratio on the frequency for a free-stream Mach number of 1.7. The pressure oscillations are measured by changing the ratio from 0.5 to 3.0, and the power spectral density is calculated from the temporal pressure signals for each ratio. The results demonstrate that the spectral peaks for an ratio of less than ~1 and greater than ~2 are accounted for by the feedback mechanisms of the transverse and longitudinal oscillations, respectively. The results also demonstrate that the spectral peaks in the transition (1
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-10-23
    Description: Dynamic soaring is a special flying technique designed to allow UAVs (unmanned aerial vehicles) to extract energy from wind gradient field and enable UAVs to increase the endurance. In order to figure out the energy-extraction mechanisms in dynamic soaring, a noninertial wind relative reference frame of aircraft is built. In the noninertial frame, there is an inertial force which is created by gradient wind field. When the wind gradient and the components of airspeed are positive, inertial force makes positive work to the aircraft. In the meantime, an equilibrium position theory of dynamic soaring is proposed. At the equilibrium positions, the increased potential energy is greater than the wasted kinetic energy when the aircraft is flying upwards. The mechanical energy is increased in this way, and the aircraft can store energy for flight. According to the extreme value theory, contour line figures of the maximum function and the component of airspeed are obtained to find out the aircraft’s lifting balance allowance in dynamic soaring. Moreover, this equilibrium position theory can also help to conduct an aircraft to acquire energy from the environment constantly.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-07-07
    Description: The Kalman filter (KF), extended KF, and unscented KF all lack a self-adaptive capacity to deal with system noise. This paper describes a new adaptive filtering approach for nonlinear systems with additive noise. Based on the square-root unscented KF (SRUKF), traditional Maybeck’s estimator is modified and extended to nonlinear systems. The square root of the process noise covariance matrix Q or that of the measurement noise covariance matrix R is estimated straightforwardly. Because positive semidefiniteness of Q or R is guaranteed, several shortcomings of traditional Maybeck’s algorithm are overcome. Thus, the stability and accuracy of the filter are greatly improved. In addition, based on three different nonlinear systems, a new adaptive filtering technique is described in detail. Specifically, simulation results are presented, where the new filter was applied to a highly nonlinear model (i.e., the univariate nonstationary growth model (UNGM)). The UNGM is compared with the standard SRUKF to demonstrate its superior filtering performance. The adaptive SRUKF (ASRUKF) algorithm can complete direct recursion and calculate the square roots of the variance matrixes of the system state and noise, which ensures the symmetry and nonnegative definiteness of the matrixes and greatly improves the accuracy, stability, and self-adaptability of the filter.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-07-17
    Description: The paper investigates different solutions for ionospheric delay handling in high accuracy long baseline relative positioning by Carrier-Phase Differential GPS (CDGPS). Standard literature approaches are reviewed and the relevant limitations are discussed. Hence, a completely ionosphere-free approach is proposed, in which the differential ionospheric delays are cancelled out by combination of dual frequency GPS measurements. The performance of this approach is quantified over real-world spaceborne GPS data made available by the Gravity Recovery and Climate Experiment (GRACE) mission and compared to the standard solution.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-06-27
    Description: In this work an overview of numerous possible processing modes in future dual frequency, dual constellation GBAS is given and compared to the current GAST D standard. We discuss the individual error contributions to GBAS protection levels and give an overview of the general processing. Based on this the consequences when adding a second constellation as well as frequency are investigated. Geometrical implications and changes to the residual differential error bounds are studied separately first. In terms of geometry a comparison between the single and dual constellation case is presented using dilution of precision as metric. The influence on the different sigma contributions when using new satellites (Galileo) and signals (E1, L5, and E5a) is individually discussed based on recent measurements. Final simulations for different varying parameters are carried out to compare relevant processing modes in terms of achieved nominal protection levels. A concluding discussion compares the outcomes and analyzes the implications of choosing one or the other mode.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-28
    Description: This paper is to present a thermomechanical topology optimization formulation. By designing structures that support specific nondesignable domain, optimization is to suppress the stress level in the nondesignable domain and maintain global stiffness simultaneously. A global stress measure based on -norm function is then utilized to reduce the number of stress constraints in topology optimization. Sensitivity analysis employs adjoint method to derive the global stress measure with respect to the topological pseudodensity variables. Some particular behaviors in thermomechanical topology optimization of elastic supports, such as the influence of different thermomechanical loads and the existence of intermediate material, are also analyzed numerically. Finally, examples of elastic supports on a cantilever beam and a nozzle flap under different thermomechanical loads are tested with reasonable optimized design obtained.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-01
    Description: Solar energy offers solar-powered unmanned aerial vehicle (UAV) the possibility of unlimited endurance. Some researchers have developed techniques to achieve perpetual flight by maximizing the power from the sun and by flying in accordance with its azimuth angles. However, flying in a path that follows the sun consumes more energy to sustain level flight. This study optimizes the overall power ratio by adopting the mission profile configuration of optimal solar energy exploitation. Extensive simulation is conducted to optimize and restructure the mission profile phases of UAV and to determine the optimal phase definition of the start, ascent, and descent periods, thereby maximizing the energy from the sun. In addition, a vertical cylindrical flight trajectory instead of maximizing the solar inclination angle has been adopted. This approach improves the net power ratio by 30.84% compared with other techniques. As a result, the battery weight may be massively reduced by 75.23%. In conclusion, the proposed mission profile configuration with the optimal power ratio of the trajectory of the path planning effectively prolongs UAV operation.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-08-16
    Description: For evaluating the motion of a solid body in a gaseous medium, one has to know the drag constant of the body. It is therefore not surprising that this subject was extensively investigated in the past. While accurate knowledge is available for the drag coefficient of a sphere in a steady flow condition, the case where the flow is time dependent is still under investigation. In the present work the drag coefficient of a sphere placed in a shock tube is evaluated numerically. For checking the validity of the used flow model and its numerical solution, the present numerical results are compared with available experimental findings. The good agreement between present simulations and experimental findings allows usage of the present scheme in nonstationary flows.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-07-06
    Description: Autonomous formation flight is a key approach for reducing energy cost and managing traffic in future high density airspace. The use of Unmanned Aerial Vehicles (UAVs) has allowed low-budget and low-risk validation of autonomous formation flight concepts. This paper discusses the implementation and flight testing of nonlinear dynamic inversion (NLDI) controllers for close formation flight (CFF) using two distinct UAV platforms: a set of fixed wing aircraft named “Phastball” and a set of quadrotors named “NEO.” Experimental results show that autonomous CFF with approximately 5-wingspan separation is achievable with a pair of low-cost unmanned Phastball research aircraft. Simulations of the quadrotor flight also validate the design of the NLDI controller for the NEO quadrotors.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-08-17
    Description: Aeronautical Communication (AC) systems are likely to be a part of future tiered communication network structures. Therefore maintaining a robust AC link with a minimum power burden on the host platform has a critical importance. In this paper, we analyze the AC systems from a link budget analysis point of view and define the requirements for the parameters of link budget with an emphasize on antenna gains. First, we study the link budget analysis in an AC system. Then, we present a mathematical framework to provide an end-to-end link budget analysis utilizing the platform kinematics. Finally, we present the numerical results for typical AC scenarios and discuss that these results can be used for calculating the real-time link budget and electronic beamforming to provide a robust link.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-08-17
    Description: In order to maintain and enhance the operational reliability of a robotic manipulator deployed in space, an operational reliability system control method is presented in this paper. First, a method to divide factors affecting the operational reliability is proposed, which divides the operational reliability factors into task-related factors and cost-related factors. Then the models describing the relationships between the two kinds of factors and control variables are established. Based on this, a multivariable and multiconstraint optimization model is constructed. Second, a hierarchical system control model which incorporates the operational reliability factors is constructed. The control process of the space manipulator is divided into three layers: task planning, path planning, and motion control. Operational reliability related performance parameters are measured and used as the system’s feedback. Taking the factors affecting the operational reliability into consideration, the system can autonomously decide which control layer of the system should be optimized and how to optimize it using a control level adjustment decision module. The operational reliability factors affect these three control levels in the form of control variable constraints. Simulation results demonstrate that the proposed method can achieve a greater probability of meeting the task accuracy requirements, while extending the expected lifetime of the space manipulator.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-08-16
    Description: The paper deals with the structural synthesis of robust system for stabilization of observation equipment operated on unmanned aerial vehicles. The model of the triaxial stabilization system taking into consideration necessary kinematic transformations is developed. The matrix weighting transfer functions ensuring design of the system with the desired amplitude-frequency characteristics of the system are chosen. The features of the robust structural synthesis for the researched system are considered. The structure and parameters of the robust controller, based on robust structural synthesis including the methods of the mixed sensitivity and loop-shaping, are obtained. The results of the synthesized system simulation are represented. The obtained results allow implementing stabilization of observation equipment in difficult conditions of real operation. This improves the quality of photography, mapping, survey, and so forth and gives advantages of accuracy for images representations of the territory flown. The obtained results are significant for stabilization of equipment operated at a moving base.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-08-30
    Description: We consider the integrated problem of allocation and control of surface-to-air-missiles for interception of ballistic targets. Previous work shows that using multiple missile and utilizing collaborative estimation and control laws for target interception can significantly decrease the mean miss distance. However, most of these methods are highly sensitive to initial launch conditions, such as the initial pitch and heading angles. In this work we develop a methodology for optimizing selection of multiple missiles to launch among a collection of missiles with prespecified launch coordinates, along with their launch conditions. For the interception we use 3-DoF models for missiles and the ballistic target. The trajectory of the missiles is controlled using three-dimensional extensions of existing algorithms for planar collaborative control and estimation laws. Because the dynamics of the missiles and nature of the allocation problem is highly nonlinear and involves both discrete and continuous variables, the optimization problem is cast as a mixed integer nonlinear programming problem (MINP). The main contribution of this work is the development of a novel probabilistic search algorithm for efficiently solving the missile allocation problem. We verify the algorithm by performing extensive Monte-Carlo simulations on different interception scenarios and show that the developed approach yields significantly less average miss distance and more efficient use of resources compared to alternative methods.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-10-16
    Description: An optimization procedure for the shape design of morphing aircraft is presented. The process is coupled with a knowledge-based framework combining parametric geometry representation, multidisciplinary modelling, and genetic algorithm. The parameterization method exploits the implicit properties of the Bernstein polynomial least squares fitting to allow both local and global shape control. The framework is able to introduce morphing shape changes in a feasible way, taking into account the presence of structural parts, such as the wing-box, the physical behaviour of the morphing skins, and the effects that these modifications have on the aerodynamic performances. It inherits CAD capabilities of generating 3D deformed morphing shapes and it is able to automatically produce aerodynamic and structural models linked to the same parametric geometry. Dedicated crossover and mutation strategies are used to allow the parametric framework to be efficiently incorporated into the genetic algorithm. This procedure is applied to the shape design of Reference Aircraft (RA) and to the assessment of the potential benefits that morphing devices can bring in terms of aircraft performances. It is adopted for the design of a variable camber morphing wing to investigate the effect of conformal leading and trailing edge control surfaces. Results concerning four different morphing configurations are reported.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-10-19
    Description: As centralized state estimation algorithms for formation flying spacecraft would suffer from high computational burdens when the scale of the formation increases, it is necessary to develop decentralized algorithms. To the state of the art, most decentralized algorithms for formation flying are derived from centralized EKF by simplification and decoupling, rendering suboptimal estimations. In this paper, typical decentralized state estimation algorithms are reviewed, and a new scheme for decentralized algorithms is proposed. In the new solution, the system is modeled as a dynamic Bayesian network (DBN). A probabilistic graphical method named junction tree (JT) is used to analyze the hidden distributed structure of the DBNs. Inference on JT is a decentralized form of centralized Bayesian estimation (BE), which is a modularized three-step procedure of receiving messages, collecting evidences, and generating messages. As KF is a special case of BE, the new solution based on JT is equivalent in precision to centralized KF in theory. A cooperative navigation example of a three-satellite formation is used to test the decentralized algorithms. Simulation results indicate that JT has the best precision among all current decentralized algorithms.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-10-19
    Description: As an important device of the aircraft landing system, the antilock braking system (ABS) has a function to avoid aircraft wheels self-locking. To deal with the strong nonlinear characteristics, complex nonlinear control schemes are applied in ABS. However, none of existing control schemes focus on the braking operating status, which directly reflects wheels self-locking degree. In this paper, the braking operating status region is divided into three regions: the healthy region, the light slip region, and the deep slip region. An ABLF-based wheel slip controller is proposed for ABS to constrain the braking system operating status in the healthy region and the light slip region. Therefore the ABS will be prevented from operating in the deep slip region. Under the proposed control scheme, self-locking is avoided completely and zero steady state error tracking of the wheel optimal slip ratio is implemented. The Hardware-In-Loop (HIL) experiments have validated the effectiveness of the proposed controller.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-10-20
    Description: Based on the wing-box structure, a model was established to analyze the strength of the scale model for the composite wing. Firstly, different failure criteria were set to determine damage onset of the components. The continuum damage variables were adopted in the stiffness degradation rule. Secondly, the interface elements were placed along the interface between the beam flange and the skin to investigate the effects of bonding strength on the ultimate load-carrying capacity of the wing-box. The failure modes of the wing-box structure were studied by using the nonlinear finite element method. The effect of flange’s width on the strength of wing-box was discussed based on the prediction method. The results indicated that the ultimate load-carrying capacity varied distinctly with the change of flange’s width. However, the bonding strength had limited effect on the model strength as the flange’s width increases to the critical value. The research methods and results of the study can serve as reference for the strength analysis on the scale model of composite wing as well as the determination of principles adopted in the design of the scale model for wing spar.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-10-28
    Description: A sliding mode control- (SMC-) based limit cycle oscillation (LCO) regulation method is presented, which achieves asymptotic LCO suppression for UAVs using synthetic jet actuators (SJAs). With a focus on applications involving small UAVs with limited onboard computational resources, the controller is designed with a simplistic structure, requiring no adaptive laws, function approximators, or complex calculations in the control loop. The control law is rigorously proven to achieve asymptotic regulation of both pitching and plunging displacements for a class of systems in a dual-parallel underactuated form, where a single scalar control signal simultaneously affects two states. Since dual-parallel underactuated systems cannot be expressed in a strict feedback or cascade form, standard backstepping-based control techniques cannot be applied. This difficulty is mitigated through careful algebraic manipulation in the regulation error system development, along with innovative design of the sliding surface. A detailed model of the UAV LCO dynamics is utilized, and a rigorous analysis is provided to prove asymptotic regulation of the pitching and plunging displacements. Numerical simulation results are provided to demonstrate the performance of the control law.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-12-15
    Description: Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-12-21
    Description: The development of a control strategy appropriate for the suppression of aeroelastic vibration of a two-dimensional nonlinear wing section based on iterative learning control (ILC) theory is described. Structural stiffness in pitch degree of freedom is represented by nonlinear polynomials. The uncontrolled aeroelastic model exhibits limit cycle oscillations beyond a critical value of the free-stream velocity. Using a single trailing-edge control surface as the control input, a ILC law under alignment condition is developed to ensure convergence of state tracking error. A novel Barrier Lyapunov Function (BLF) is incorporated in the proposed Barrier Composite Energy Function (BCEF) approach. Numerical simulation results clearly demonstrate the effectiveness of the control strategy toward suppressing aeroelastic vibration in the presence of parameter uncertainties and triangular, sinusoidal, and graded gust loads.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-12-23
    Description: With radar and surface-to-air missiles posing an increasing threat to on-orbit spacecraft, low-observable satellites play an important role in low-thrust transfers. This paper presents the design for a low-thrust geostationary earth orbit (GEO) transfer control strategy which takes into consideration the low-observable constraint and discusses Earth shadow and perturbation. A control parameter optimization addresses the orbit transfer problem, and five thrust modes are used. Simulation results show that the method outlined in this paper is simple and feasible and results in reduced transfer time with a small amount of calculation. The method therefore offers a useful reference for low-thrust GEO transfer design.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-06-16
    Description: The Cube Laboratory for Space Technology Experimental Projects (STEP Cube Lab) is a cube satellite (CubeSat) classified as a pico-class satellite of 1 U (unit) size. Its main mission objective is to exploit core space technologies researched by domestic universities and verify the effectiveness of these technologies through on-orbit tests using the CubeSat. To guarantee a successful mission under extreme space thermal environments, proper thermal design is important. This paper describes the development process undertaken in the thermal design of the STEP Cube Lab, based on a passive approach, and its validation test. The system functionality and thermal design were verified through thermal vacuum and thermal balance tests under space simulated thermal vacuum environment condition. Finally, the orbital temperature of each component was predicted using a highly reliable correlated thermal mathematical model of the CubeSat obtained from the thermal balance test.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-05-31
    Description: Radar emitter classification is a special application of data clustering for classifying unknown radar emitters in airborne electronic support system. In this paper, a novel online multisensor data fusion framework is proposed for radar emitter classification under the background of network centric warfare. The framework is composed of local processing and multisensor fusion processing, from which the rough and precise classification results are obtained, respectively. What is more, the proposed algorithm does not need prior knowledge and training process; it can dynamically update the number of the clusters and the cluster centers when new pulses arrive. At last, the experimental results show that the proposed framework is an efficacious way to solve radar emitter classification problem in networked warfare.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-07
    Description: Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb) thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-08-23
    Description: Computed tomography of chemiluminescence (CTC) is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1). The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-08-26
    Description: A guidance problem for impact time and angle control applicable to cooperative attack is considered based on the sliding mode control. In order to satisfy the impact angle constraint, a line-of-sight rate polynomial function is introduced with four tuning parameters. And the time-to-go derivative with respect to a downrange orientation is derived to minimize the impact time error. Then the sliding mode control surface with impact time and angle constraints is constructed using nonlinear engagement dynamics to provide an accurate solution. The proposed guidance law is easily extended to a nonmaneuvering target using the predicted interception point. Numerical simulations are performed to verify the effectiveness of the proposed guidance law for different engagement scenarios.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-08-30
    Description: In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a) flight-based epidemic model and (b) airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-04-13
    Description: In order to implement the uniform load distribution of the power-split transmission system, a pseudostatic model is built. Based on the loaded tooth contact analysis (LTCA) technique, the actual meshing process of each gear pair is simulated and the fitting curve of time-varying mesh stiffness is obtained. And then, the torsional angle deformation compatibility conditions are proposed according to the closed-loop characteristic of power flow, which will be combined with the torque equilibrium conditions and elastic support conditions to calculate the transfer torque of each gear pair. Finally, the load-sharing coefficient of the power-split transmission system is obtained, and the influences of the installation errors are analyzed. The results show that the above-mentioned installation errors comprehensively influence the load-sharing characteristics, and the reduction of only one error could not effectively achieve perfect load-sharing characteristics. Allowing for the spline clearance floating and constrained by the radial spacing ring, the influence of the floating pinion is analyzed. It shows that the floating pinion can improve the load-sharing characteristics. Through the comparison between the theoretical and related experimental data, the reasonability and feasibility of the above-proposed method and model are verified.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-04-28
    Description: This paper presents an optimum control scheme of firing time and firing phase angle by taking impact point deviation as optimum objective function which takes account of the difference of longitudinal and horizontal correction efficiency, firing delay, roll rate, flight stability, and so forth. Simulations indicate that this control scheme can assure lateral impulse thrusters are activated at time and phase angle when the correction efficiency is higher. Further simulations show that the impact point dispersion is mainly influenced by the total impulse deployed, and the impulse, number, and firing interval need to be optimized to reduce the impact point dispersion of rockets. Live firing experiments with two trajectory correction rockets indicate that the firing control scheme works effectively.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-06-18
    Description: To reduce the impact of uncertainties caused by unknown motion parameters on searching plan of moving targets and improve the efficiency of UAV’s searching, a novel distributed Multi-UAVs cooperative search control method for moving target is proposed in this paper. Based on detection results of onboard sensors, target probability map is updated using Bayesian theory. A Gaussian distribution of target transition probability density function is introduced to calculate prediction probability of moving target existence, and then target probability map can be further updated in real-time. A performance index function combining with target cost, environment cost, and cooperative cost is constructed, and the cooperative searching problem can be transformed into a central optimization problem. To improve computational efficiency, the distributed model predictive control method is presented, and thus the control command of each UAV can be obtained. The simulation results have verified that the proposed method can avoid the blindness of UAV searching better and improve overall efficiency of the team effectively.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-06-18
    Description: Experimental results show that there exist two flow fields in the hypersonic inlets when the forebody waves interact with the lip boundary, which is similar to the shock reflection ion hysteresis phenomenon. In order to improve the performance of the flow field, counterflow is applied to control the shock reflection configuration in the hypersonic inlets. For better understanding of the internal mechanism, inviscid numerical simulation is conducted. And the results demonstrate that it is feasible to realize the transition between the regular reflection configuration and the Mach reflection ion configuration in the hypersonic inlets. That is because the von Neumann criterion and detached criterion play a dominant role, respectively, in these transitions. In addition, the evolution process of Mach reflection ion in the hypersonic inlets can be divided into three stages: transmission of waves, emergence of Mach stem, and stabilization of flow field.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-01-21
    Description: Diffusion-bonded titanium hollow warren structures have been successfully applied in aircraft engine components, such as fan blade, and OGV, while the optimal design of the hollow warren structure to improve its impact resistance, especially under bird-strike event, has been a challenge. In this work, a series of impact tests and numerical simulations are carried out to investigate the effect of key geometric features on the overall impact strength of a panel-shaped titanium hollow warren structure. Based on experimental and numerical studies, a quantitative relationship between diffusion bonding seam strength and the overall impact strength is developed. Meanwhile, key geometric factors affecting the resultant bonding seam strength for a typical manufacturing process are identified. This work provides useful references for the optimal design to increase impact resistance for aircraft engine hollow warren structure components.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-02-09
    Description: This paper develops a novel autopilot design method for blended missiles with aerodynamic control surfaces and lateral jets. Firstly, the nonlinear model of blended missiles is reduced into a piecewise affine (PWA) model according to the aerodynamics properties. Secondly, based on the equivalence between the PWA model and mixed logical dynamical (MLD) model, the MLD model of blended missiles is proposed taking into account the on-off constraints of lateral pulse jets. Thirdly, a hybrid model predictive control (MPC) method is employed to design autopilot. Finally, simulation results under different conditions are presented to show the effectiveness of the proposed method, which demonstrate that control allocation between aerodynamic control surfaces and lateral jets is realized by adjusting the weighting matrix in an index function.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-02-20
    Description: It is estimated that today several hundred operational satellites are orbiting Earth while many more either have already reentered the atmosphere or are no longer operational. On the 13th of February 2012 one more satellite of the Italian Space Agency has been successfully launched. The main difference with respect to all other satellites is its extremely high density that makes LARES not only the densest satellite but also the densest known orbiting object in the solar system. That implies that the nongravitational perturbations on its surface will have the smallest effects on its orbit. Those design characteristics are required to perform an accurate test of frame dragging and specifically a test of Lense-Thirring effect, predicted by General Relativity. LARES satellite, although passive, with 92 laser retroreflectors on its surface, was a real engineering challenge in terms of both manufacturing and testing. Data acquisition and processing are in progress. The paper will describe the scientific objectives, the status of the experiment, the special feature of the satellite and separation system including some manufacturing issues, and the special tests performed on its retroreflectors.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-07-08
    Description: With the ever-increasing number of satellites in Low Earth Orbit (LEO) for scientific missions, the precise determination of the position and velocity of the satellite is a necessity. GPS (Global Positioning System) based reduced-dynamic orbit determination (RPOD) method is commonly used in the post processing with high precision. This paper presents a sequential RPOD strategy for LEO satellite in the framework of Extended Kalman Filter (EKF). Precise Point Positioning (PPP) technique is used to process the GPS observations, with carrier phase ambiguity resolution using Integer Phase Clocks (IPCs) products. A set of GRACE (Gravity Recovery And Climate Experiment) mission data is used to test and validate the RPOD performance. Results indicate that orbit determination accuracy could be improved by 15% in terms of 3D RMS error in comparison with traditional RPOD method with float ambiguity solutions.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-07-13
    Description: The understanding of the target radar cross section (RCS) is significant for target identification and for radar designing and optimization. In this paper, a numerical algorithm for calculating target RCS is presented which is based on Legendre wavelet model-based parameter estimation (LW-MBPE). The Padé rational function fitting model applied for MBPE in the frequency domain is enhanced to include spatial dependence on the numerator and denominator coefficients. This allows the function to interpolate target RCS in both the frequency and spatial domains simultaneously. The combination of Legendre wavelets guarantees the convergence of the algorithm. The method is convergent by increasing the sampling frequency and spatial points. Numerical results are provided to demonstrate the validity and applicability of the new technique.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-07-16
    Description: In order to predict pressing quality of precision press-fit assembly, press-fit curves and maximum press-mounting force of press-fit assemblies were investigated by finite element analysis (FEA). The analysis was based on a 3D Solidworks model using the real dimensions of the microparts and the subsequent FEA model that was built using ANSYS Workbench. The press-fit process could thus be simulated on the basis of static structure analysis. To verify the FEA results, experiments were carried out using a press-mounting apparatus. The results show that the press-fit curves obtained by FEA agree closely with the curves obtained using the experimental method. In addition, the maximum press-mounting force calculated by FEA agrees with that obtained by the experimental method, with the maximum deviation being 4.6%, a value that can be tolerated. The comparison shows that the press-fit curve and max press-mounting force calculated by FEA can be used for predicting the pressing quality during precision press-fit assembly.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-09-29
    Description: Use of probabilistic techniques has been demonstrated to learn air data parameters from surface pressure measurements. Integration of numerical models with wind tunnel data and sequential experiment design of wind tunnel runs has been demonstrated in the calibration of a flush air data sensing anemometer system. Development and implementation of a metamodeling method, Sequential Function Approximation (SFA), are presented which lies at the core of the discussed probabilistic framework. SFA is presented as a tool capable of nonlinear statistical inference, uncertainty reduction by fusion of data with physical models of variable fidelity, and sequential experiment design. This work presents the development and application of these tools in the calibration of FADS for a Runway Assisted Landing Site (RALS) control tower. However, the multidisciplinary nature of this work is general in nature and is potentially applicable to a variety of mechanical and aerospace engineering problems.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...