ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (213)
  • Springer  (213)
  • American Institute of Physics
  • Cell Press
  • Oxford University Press
  • 2010-2014  (139)
  • 2005-2009  (74)
  • 1985-1989
  • 1945-1949
  • 2013  (139)
  • 2007  (38)
  • 2005  (36)
  • 1987
  • 1978
  • Environmental Fluid Mechanics  (75)
  • 9461
  • Architecture, Civil Engineering, Surveying  (213)
  • Nature of Science, Research, Systems of Higher Education, Museum Science
  • Natural Sciences in General
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Articles  (213)
Publisher
  • Springer  (213)
  • American Institute of Physics
  • Cell Press
  • Oxford University Press
Years
  • 2010-2014  (139)
  • 2005-2009  (74)
  • 1985-1989
  • 1945-1949
Year
Topic
  • Architecture, Civil Engineering, Surveying  (213)
  • Nature of Science, Research, Systems of Higher Education, Museum Science
  • Natural Sciences in General
  • Electrical Engineering, Measurement and Control Technology
  • Geography  (213)
  • +
  • 1
    Publication Date: 2007-01-25
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-07-03
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-10
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-09
    Description: When two open-channel flows merge in a three-branch subcritical junction, a mixing layer appears at the interface between the two inflows. If the width of the downstream channel is equal to the width of each inlet channel, this mixing layer is accelerated and is curved due to the junction geometry. The present work is dedicated to simplified geometries, considering a flat bed and a $90^{\circ }$ 90 ∘ angle where two configurations with different momentum ratios are tested. Due to the complex flow pattern in the junction, the so-called Serret–Frenet frame-axis based on the local direction of the velocity must be employed to characterize the flow pattern and the mixing layer as Cartesian and cylindrical frame-axes are not adapted. The analysis reveals that the centerline of the mixing layer, defined as the location of maximum Reynolds stress and velocity gradient, fairly fits the streamline separating at the upstream corner, even though a slight shift of the mixing layer towards the center of curvature is observed. The shape of the mixing layer appears to be strongly affected by the streamwise acceleration and the complex lateral confinement due to the side walls and the corners of the junction, leading to a streamwise increase of the mean velocity along the centerline and a decrease of the velocity difference. This results in a specific streamwise evolution of the mixing layer width, which reaches a plateau in the downstream region of the junction. Finally, the evaluation of the terms in the Reynolds-Averaged-Navier–Stokes equations reveals that the streamwise and normal acceleration and the pressure gradient remain dominant, which is typical of accelerated and rotational flows.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-16
    Description: With a growing awareness of water pollution problems, in recent years there has been a considerable increased effort in developing and applying numerical models to predict accurately the contaminant distributions, particularly in free surface flows. This numerical study presents a predictive hydrodynamic model in order to explore the dispersion phenomenon of a pollutant injected from time-dependent sources in a turbulent free surface flow. More precisely, we study the impact of pulsation on the dispersion of an injected material. The air/water interface was modeled with the volume of fluid method and sharpness of the free surface was assured by means of Geo-Reconstruct scheme. The numerical results showed that the pulsation played a dominant role at the early stage of the pollutant transport. It was also observed that the pulsation affected the distribution of the injected material especially near the front and that a major swirling action was developed compared to the constant-rate-injection case.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-21
    Description: The present paper explores the characteristics of turbulent flow and drag over two artificial 2-D forward-facing waveform structures with two different stoss side slopes of $50^{\circ }$ 50 ∘ and $90^{\circ },$ 90 ∘ , respectively. Both structures possessed a common slanted lee side slope of $6^{\circ }.$ 6 ∘ . Flume experiments were conducted at the Fluvial Mechanics Laboratory of Indian Statistical Institute, Kolkata. The velocity data were analyzed to identify the spatial changes in turbulent flow addressing the flow separation region with recirculating eddy, the Reynolds stresses, the turbulent events associated with burst-sweep cycles and the drag over two upstream-facing bedforms for Reynolds number $Re_h=1.44\times 10^5.$ R e h = 1.44 × 10 5 . The divergence at the stoss side slope between the two structures revealed significant changes in the mean flow and turbulence. Comparison showed that during the flood-tide condition there was no flow separation region on the gentle lee side of the structure with smaller slope at the stoss side, while for the other structure with vertical stoss side slope a thick flow separation region with recirculating eddy was observed at the gentle lee side just downstream of the crest. The recirculating eddy induced on the lee-side had a strong influence on the resistance that the structure exerts to the flow due to loss of energy through turbulence. In contrast, a great amount of reduction in drag was observed in the case of smaller stoss side sloped structure as there was no flow separation. The quadrant analysis was also used to highlight the turbulent event evolution along the bed form structures under flood-tide conditions.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-28
    Description: We report a semi-analytical theory of wave propagation through a vegetated water. Our aim is to construct a mathematical model for waves propagating through a lattice-like array of vertical cylinders, where the macro-scale variation of waves is derived from the dynamics in the micro-scale cells. Assuming infinitesimal waves, periodic lattice configuration, and strong contrast between the lattice spacing and the typical wavelength, the perturbation theory of homogenization (multiple scales) is used to derive the effective equations governing the macro-scale wave dynamics. The constitutive coefficients are computed from the solution of micro-scale boundary-value problem for a finite number of unit cells. Eddy viscosity in a unit cell is determined by balancing the time-averaged rate of dissipation and the rate of work done by wave force on the forest at a finite number of macro stations. While the spirit is similar to RANS scheme, less computational effort is needed. Using one fitting parameter, the theory is used to simulate three existing experiments with encouraging results. Limitations of the present theory are also pointed out.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-08
    Description: The three-dimensional dynamics of shallow vortex dipoles is investigated by means of an innovative three-dimensional, three-component (3D-3C) scanning PIV technique. In particular, the three-dimensional structure of a frontal spanwise vortex is characterized. The technique allows the computation of the three-dimensional pressure field and the planar (x, y) distribution of the wall shear stress, which are not available using standard 2D PIV measurements. The influence of such a complex vortex structure on mass transport is discussed in the context of the available pressure and wall shear stress fields.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-10
    Description: In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 〈 L z /d 1 〈 0.8 in the shear layer, where L z is the integral turbulent length scale and d 1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-10
    Description: We examined the effect of along-thalweg depth variability on the baroclinic response to wind in elongated narrow basins with a sharp thermocline. The effect of depth variability was examined by deriving a modal-based forced model with two density layers and applying the model to a symmetric curved-bottom basin (CB), an asymmetric wedge-shaped basin (with a sloping bottom towards a vertical wall, WB), and a flat-bottom basin (FB). The baroclinic responses of CB, WB, and FB to uniform wind were found to differ in time-scale, number and energy of excited modes, and temporal pattern and along-thalweg structure of baroclinic flow and thermocline deflection. For all bottom profiles that were examined, the fundamental mode was found to dominate the response to spatially-uniform wind. Compared to FB, the asymmetric depth variability in WB increased the number and energy of excited higher modes and localized the interface shear, while the symmetric deviation from flat bottom in CB caused the opposite effects. Linear deviation from uniform wind was found to feed energy into higher baroclinic modes for the symmetric CB, but was found to reduce the energy of higher baroclinic modes for WB when the deviation from uniform wind is comparable to the spatial-average magnitude. Our results can explain the observation of the second baroclinic mode and irregular wave patterns in some lakes and reservoirs. Further, our results suggest that one-dimensional vertical mixed-layer models provide better results for shear entrainment in curved-bottom basins than in wedge-shaped basins.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-04-10
    Description: New analytical formulations are presented for calculation of most effective parameters in the Gaussian plume dispersion model; the standard deviations of concentration for horizontal and vertical dispersion in neutral atmosphere conditions. Employing parallel Computational Fluid Dynamics (CFD) as a powerful tool, some well-known analytical generations of Pasquill–Gifford–Turner experimental data are modified. To achieve this aim, CFD simulations are carried out for single stack dispersion on flat terrain surface and ground level concentrations are determined in different distances. An inverse procedure in Gaussian plume dispersion model is then applied and standard deviations of horizontal and vertical dispersions are obtained. The values are compared with those of the well-known methods of Doury, Briggs and Hanna in two cases: the experimental data for release of krypton-85 from 100 m high and pollution dispersion from three 28 m high stacks of Besat power plant near Tehran. The comparison indicates that new formulations for plume dispersion are more accurate than other well-known formulations.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-04-10
    Description: In this paper the flow and turbulent structures are investigated over the city of Tehran (an urban area located in a basin surrounded by high mountains in the north and east). A number of non-dimensional parameters are investigated in the frame work of Monin–Obukhov similarity theory (MOST) using a local scaling approach. These parameters include dimensionless wind gradient, normalized standard deviations of three components of wind and dimensionless momentum fluxes. The main purpose of this paper is to evaluate MOST in predicting the above parameters for the selected terrain at 15 and 105 m heights. The prevailing conditions are stable and relatively neutral, based on stability parameter using local Obukhov length. For this study, data of a PA1 SODAR with supplementary data of a 100-m tower with four 2D sonic anemometers and also a 2D sonic anemometer installed at 2 m height have been used. Our results confirm that the non-dimensional parameters could be collapsed in to the similarity expressions only at 105 m height (that lies in the inertial sub-layer) not at 15 m height (that belongs to the roughness sub-layer). It is important to note that the obtained empirical constants for all of the considered parameters show considerable differences with those reported by others for other surface types. This is attributed to the local effects for where that the topographic wave forcing may need special considerations. This robustly emphasizes the importance of MOST validation for urban area with topography as Tehran. Consequently, MOST has been successfully verified at 105 m for Tehran data set with new empirical constants.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-04-10
    Description: This work proposes an approach to simulate wind flow fields around an urban environment with the aim of evaluating the potential impact of buildings on the general wind patterns and power production using the current generation of commercial wind turbines. The simulation process was performed with the aid of accessible computational tools that can potentially render the proposed procedure applicable in other cases of interest. The roughness of the urban environment was defined as the association of roughness map, topography, and an alternative process for obtaining the volumetry of buildings. A case study was conducted in a region located at the district of Boa Viagem (Recife-PE) for assessing the applicability of the approach. Scenarios were designed in order to simulate wind flow patterns and pre-identify sites that have suitable wind energy potential for electric power production by investigating the combination of wind speed magnitude and turbulence intensity. From the results obtained, it was possible to identify zones of potential wind sources that are not detected in classical wind atlas probably due to the influence of the built environment on local wind flow patterns.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-04-10
    Description: When modeling atmospheric boundary layer flow over rough landscapes, surface fluxes of flow quantities (momentum, temperature, etc.) can be described with equilibrium logarithmic law expressions, all of which require specification of a roughness length that is, physically, the elevation at which the flow quantity equals its surface value. In high Reynolds number flows, such as the atmospheric boundary layer, inertial forces associated with turbulent eddy motions are responsible for surface momentum fluxes (form, or pressure drag). Surface scalar fluxes, on the other hand, occur exclusively via diffusion in the immediate vicinity of the topography—the interfacial region—before being advected by turbulent eddy motions into the bulk of the flow. Owing to this difference in surface transfer mechanism, the passive scalar roughness length, $z_{0S}$ , is known to be less than the momentum roughness length, $z_0$ . In this work, classical relations are used to specify $z_{0S}$ during large-eddy simulation of atmospheric boundary layer flow over aerodynamically rough, synthetic, fractal topographies which exhibit power-law height energy spectrum, $E_h (k) \sim k^{\beta _s}$ , where $\beta _s$ is a (predefined) spectral exponent. These topographies are convenient since they resemble natural landscapes and $\beta _s$ can be varied to change the topography’s aerodynamic roughness (the study considers a suite of topographies with $-2.4 \le \beta _s \le -1.2$ , where $-2.4$ and $-1.2$ are the “most smooth” and “most rough” cases, respectively, corresponding with roughness Reynolds number, $Re_0 \approx 10$ and $300$ ). It is often assumed that $z_{0S}/z_{0} \approx 10^{-1}$ for all $Re_0$ . But results from this work show that the roughness length ratio, $z_{0S}/z_{0}$ , depends strongly on $Re_0$ , ranging between $10^{-3}$ and $10^{-1}$ .
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-14
    Description: Converging flows at stream confluences often produce highly turbulent conditions. The shear layer/mixing interface that develops within the confluence hydrodynamic zone (CHZ) is characterized by complex patterns of three-dimensional flow that vary both spatially and temporally. Previous research has examined in detail characteristics of mean flow and turbulence along mixing interfaces at small stream confluences and laboratory junctions; however few, if any, studies have examined these characteristics within mixing interfaces at large river confluences. This study investigates the structure of mean velocity profiles as well as spatial and temporal variations in velocity, backscatter intensity, and temperature within the mixing interfaces of two large river confluences. Velocity, temperature, and backscatter intensity data were obtained at stationary locations within the mixing interfaces and at several cross sections within the CHZ using acoustic Doppler current profilers. Results show that mean flow within the mixing interfaces accelerates over distance from the junction apex. Turbulent kinetic energy initially increases rapidly over distance, but the rate of increase diminishes downstream. Hilbert–Huang transform analysis of time series data at the stationary locations shows that multiple dominant modes of fluctuations exist within the original signals of velocity, backscatter intensity, and temperature. Frequencies of the largest dominant modes correspond well with predicted frequencies for shallow wake flows, suggesting that mixing-interface dynamics include wake vortex shedding—a finding consistent with spatial patterns of depth-averaged velocities at measured cross sections. Spatial patterns of temperature and backscatter intensity show that the converging flows at both confluences do not mix substantially, indicating that turbulent structures within the mixing interfaces are relatively ineffective at producing mixing of the flows in the CHZ.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-23
    Description: Flow and turbulence within building canopies continue to be a topic of profound interest in the context of pedestrian comfort, wind loading, contaminant dispersion and energy usage in populated urban areas. Many experimental studies have been reported on this topic, but they either deal with wind/water tunnel measurements (at low Reynolds numbers) or complex urban building clusters (where the results are site dependent and difficult to interpret). To avert such problems, an instrumented mock building cluster made of a regular array of man-sized objects (shipping containers) placed in the atmospheric boundary layer was used to investigate spatial flow adjustment, flow patterns (as a function of approach angle) and turbulence within the building canopy. A new scaling is proposed for the characteristic canopy velocity based on the approach flow and canopy morphology, which was found to perform well when evaluated against experimental data. The flow adjustment at the leading and trailing edges of the canopy was found to be in good agreement with the formulation of Belcher et al. (J Fluid Mech 488:369–398, 2003 ). The results have applications to developing simple and fast contaminant transport and dispersion models that can be used in conjunction with emergency response.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-23
    Description: The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) is investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35–100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the canopy wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest canopy to a clearing or lake is proposed.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-10-11
    Description: The present work experimentally investigates the dynamics of unsteady gravity currents produced by lock-release of a saline mixture into a fresh water tank. Seven different experimental runs were performed by varying the density of the saline mixture in the lock and the bed roughness. Experiments were conducted in a Perspex flume, of horizontal bed and rectangular cross section, and recorded with a CCD camera. An image analysis technique was applied to visualize and characterize the current allowing thus the understanding of its general dynamics and, more specifically, of the current head dynamics. The temporal evolution of both head length and mass shows repeated stretching and breaking cycles: during the stretching phase, the head length and mass grow until reaching a limit, then the head becomes unstable and breaks. In the instants of break, the head aspect ratio shows a limit of 0.2 and the mass of the head is of the order of the initial mass in the lock. The average period of the herein called breaking events is seen to increase with bed roughness and the spatial periodicity of these events is seen to be approximately constant between runs. The rate of growth of the mass at the head is taken as a measure to assess entrainment and it is observed to occur at all stages of the current development. Entrainment rate at the head decreases in time suggesting this as a phenomenon ruled by local buoyancy and the similarity between runs shows independence from the initial reduced gravity and bed roughness.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-05-11
    Description: Solutions are found for a linear model of the circulation near the shore of a lake that is subject to two diurnal forcing mechanisms. The first is the day/night heating/cooling induced horizontal pressure gradient. The second is an unsteady surface stress modelling a sea breeze/gully wind pattern. The two forcing mechanisms can oppose or reinforce each other depending on their relative phase. The interplay of different dynamic balances at different times and locations in the domain lead to complex circulation patterns especially during the period of flow reversal.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-04-10
    Description: In this paper a turbulence kinetic energy (TKE) based empirical formulation for turbulent diffusion is developed from ultra sonic anemometer measurements at a tropical coastal site Kalpakkam situated on the southeast coast of India. The diffusivity relationship is validated against an independent observation from SODAR. This formulation for turbulent diffusion is incorporated in a particle trajectory model FLEXPART-WRF. Under this formulation the turbulent component of the motion of pseudo particles in the model can be related to the TKE. Two case studies of dispersion simulation are carried out by incorporating the new relationship in FLEXPART-WRF. In the first case the simulated plume spread is compared against a real smoke plume from an accidental oil tank fire obtained from satellite image (MODIS-TERRA). In the second case, observed plume in the Hanford tracer experiment is simulated and normalized concentration profiles at different arcs are compared with that of the simulation. Results demonstrate that the simulated TKE using Mellor–Yamada–Nakanishi–Niino scheme in the Weather Research & Forecasting along with the new relationships for TKE apportionment simulate the dispersion pattern better than the Hanna scheme based on surface layer parameterization.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-04-10
    Description: A comprehensive laboratory study of negatively buoyant discharges is presented. Unlike previous studies, here the focus is on generating data sets where influences of the bottom boundary have been eliminated. There are significant discrepancies in the published dilution data for these flows and a contributing factor is the large variation in the bottom boundary condition. A Laser-induced Fluorescence system is employed to gather flow spread, peak concentration (minimum dilution) and trajectory data for a wide range of densimetric Froude numbers and initial discharge angles. Data from these experiments are compared with previously published data, along with predictions from integral models and a revised form of the previously published semi-analytical solutions. The new data sets are not distorted by mixing processes associated with the bottom boundary and therefore provide the basis for more meaningful assessments of the predictive capabilities of existing models, given that the influences of the bottom boundary on contaminant mixing are not incorporated into these models. In general the models assessed are able to predict key geometric quantities with reasonable accuracy, but their minimum dilution predictions are conservative. Importantly dilution at the return point shows a strong dependence on the initial discharge angle and this could have important implications for the design of discharge systems.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-04-10
    Description: The design floods of several reservoirs were recently re-evaluated and the revised spillway outflow could result in dam overtopping with catastrophic consequences for some embankment structures. Herein a physical study was performed on flat and pooled stepped spillways with a slope typical of embankments $(\uptheta = 26.6^{\circ })$ and four stepped configurations were tested: a stepped spillway with flat horizontal steps, a pooled stepped spillway, and two stepped spillways with in-line and staggered configurations of flat and pooled steps. The focus of the study was on the flow aeration, air–water flow properties, cavity flow processes, and energy dissipation performances. The results demonstrated the strong aeration of the flow for all configurations. On the in-line and staggered configurations of flat and pooled steps, the flow was highly three-dimensional. The residual head and energy dissipation rates at the stepped chute downstream end were calculated based upon the detailed air–water flow properties. The results showed that the residual energy was the lowest for the flat stepped weir. The data for the stepped spillway configuration with in-line and staggered configurations of flat and pooled steps showed large differences in terms of residual head in the transverse direction. Altogether the present results showed that, on a $26.6^{\circ }$ slope stepped chute, the designs with in-line and staggered configurations of flat and pooled steps did not provide any advantageous performances in terms of energy dissipation and flow aeration, but they were affected by three-dimensional patterns leading to some flow concentration.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-04-10
    Description: Microstructure profiles of velocity and temperature were collected in Lake Kinneret during the summer months of 1997, 1998, 1999 and 2001 using the Portable Flux Profiler. The profiles were analysed to determine the turbulent properties within statistically homogeneous microstructure patches that were identified in each profile. The nature of the turbulent properties and their distribution is discussed in terms of the dominant forcing mechanisms that exist through the water column. It was found that the properties of binned patch data collapsed reasonably into log-linear functions of the gradient Richardson number $Ri_{g}$ with changes in behaviour at $Ri_{g} = 0.03$ and 0.2. For $Ri_{g} 〈 0.03$ the observations were dominated by boundary turbulence and law-of-the-wall approximations were shown to provide a good description of the observed data near the lake surface. For 0.03 $〈Ri_{g} 〈 0.2$ the microstructure appeared to represent turbulence generated primarily by shear instabilities in the interior of the lake that were sampled at various stages of their evolution from the initial stages of development at critical $Ri_{g} \sim $ 0.2, where buoyancy frequency and internal shear peak. In terms of the mixing that results from the observed turbulence, both regimes suggest that mixing efficiency $\gamma _{mix}$ falls in a relatively narrow range from 0.07 to 0.16 over the large range 10 $^{-5} \!〈\! Ri_{g} \!〈\! 0.2$ . For supercritical $Ri_{g}$ , shear weakened and turbulence was dominated by strong buoyancy forces so that mixing was suppressed and $\gamma _{mix}$ decreased rapidly toward zero.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-04-10
    Description: There are different approaches to estimating the transverse dispersion coefficient in river mixing. Theoretical approaches have derived the dispersion coefficient from the concept of shear flow, which has dominant effects on the transverse mixing. Empirical approaches have developed an equation using the hydraulic and geometric data of rivers through dimensional analysis and regression techniques. These two equations interact closely with each other. For example, the complicated theoretical equation can be simplified by empirical approaches, and the functional relationships of the empirical equation can be derived from theoretical bases. In this study, a new empirical equation for the transverse dispersion coefficient has been developed based on the theoretical background in river bends. As a regression method, the least-square iterative method was used because the equation was a nonlinear model. The estimated dispersion coefficients derived by the new equation were compared with observed transverse dispersion coefficients acquired from natural rivers and coefficients calculated by the other existing empirical equations. From a comparison of the existing transverse dispersion equations and the proposed equation, it appears that the behavior of the existing formula in a relative sense is very much dependent on the flow condition and the river geometry. Moreover, the proposed equation does not vary widely according to variation of flow conditions. Also, it was revealed that the equation proposed in this study becomes an asymptotic curve as the curvature effect increases.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: A simplified model for the prediction of the steady-state outflow through a breach in an inland dike is presented. It consists in the application of the mass and momentum conservation principles to a macroscopic control volume. A proper definition of the shape of the control volume enables to take the main characteristics of the flow into account and thus to compensate for the extreme simplification of the spatial representation of the model. At the breach, a relation derived from the shallow-water equations is used to determine the direction of the flow. Developments have been guided by numerical simulations and results have been compared to experimental data. Both the accuracy and the domain of validity of the simplified model are found satisfactory.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Erosion of sand or other granular material is a subject of utmost importance in several fields of practical interest, including industrial processes or environmental issues. Resulting from intricate interaction between the incident flow field and localized body forces responsible for the granular material cohesion, erosion is a particularly complex phenomenon. The present work addresses this problem, proposing a numerical method to compute the time evolution of a sand dune subjected to aeolian erosion, along with the associated entrainment and deposition fluxes. Turbulent fluid flow is computed through a three-dimensional Navier-Stokes solver based on a generalized coordinate system. A Lagrangian approach is adopted for tracking the trajectories of particles entrained in the saltation regime, thus allowing prediction of the corresponding deposition locations. Different models for saltation fluxes are tested, along with several formulations for the creeping-to-saltation flux ratio, creeping threshold and creeping distance. Comparison with results from wind tunnel experiments is very encouraging, stressing the relative importance of creeping in the erosion process for the presently studied conditions.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-04-10
    Description: This paper describes a σ -coordinate scalar transport model coupled with a Boussinesq-type hydrodynamic model. The Boussinesq model has the ability to calculate both three-dimensional velocity distributions and the water surface motion. To capture ‘dispersion’ processes in open channel flow, horizontal vorticity effects induced by a bottom shear stress are included in the Boussinesq model. Thus, a reasonable representation of vertical flow structure can be captured in shallow and wavy flow fields. To solve the coupled Boussinesq and scalar transport system, a finite-volume method, based on a Godunov-type scheme with the HLL Riemann solver, is employed. Basic advection and advection–diffusion numerical tests in a non-rectangular domain were carried out and the computed results show good agreement with analytic solutions. With quantitative comparisons of dispersion experiments in an open channel, it is verified that the proposed coupled model is appropriate for both near and far field scalar transport predictions. From numerical simulations in the surf zone, physically reasonable results showing expected vertical variation are obtained.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-04-10
    Description: A field study conducted to investigate the flow and turbulence structure of the urban boundary layer (UBL) over an industrial/suburban area is described. The emphasis was on morning and evening transition periods, but some measurements covered the entire diurnal cycle. The data analysis incorporated the dependence of wind direction on morphometric parameters of the urban canopy. The measurements of heat and momentum fluxes showed the possibility of a constant flux layer above the height $z\approx 2{H}$ , wherein the Monin-Obukhov Similarity Theory (MOST) is valid; here $H$ is the averaged building height. For the nocturnal boundary layer, the mean velocity and temperature profiles obeyed classical MOST scaling up to $\sim 0.5\Lambda \left( {\sim 6{H}}\right) $ , where $\Lambda $ is the Obukhov length scale, beyond which stronger stratification may disrupt the occurrence of constant fluxes. For unstable and neutral cases, MOST scaling described the mean data well up to the maximum measured height $(\sim 6{H})$ . Available MOST functions, however, could not describe the measured turbulence structure, indicating the influence of additional governing parameters. Alternative turbulence parameterizations were tested, and some were found to perform well. Calculation of integral length scales for convective and neutral cases allowed a phenomenological description of eddy characteristics within and above the urban canopy layer. The development of a significant nocturnal surface inversion occurred only on certain days, for which a criterion was proposed. The nocturnal UBL exhibited length scale relationships consistent with the evening collapse of the convective boundary layer and maintenance of buoyancy-affected turbulence overnight. The length and velocity scales so identified are useful in parameterizing turbulent dispersion coefficients in different diurnal phases of the UBL.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-04-10
    Description: A number of experimental studies on submerged canopy flows have focused on fully-developed flow and turbulent characteristics. In many natural rivers, however, aquatic vegetation occurs in patches of finite length. In such vegetated flows, the shear layer is not formed at the upstream edge of the vegetation patch and coherent motions develop downstream. Therefore, more work is neededz to reveal the development process for large-scale coherent structures within vegetation patches. For this work, we considered the effect of a limited length vegetation patch. Turbulence measurements were intensively conducted in open-channel flows with submerged vegetation using Particle Image Velocimetry (PIV). To examine the transition from boundary-layer flow upstream of the vegetation patch to a mixing-layer-type flow within the patch, velocity profiles were measured at 33 positions in a longitudinal direction. A phenomenological model for the development process in the vegetation flow was developed. The model decomposed the entire flow region into four zones. The four zones are the following: (i) the smooth bed zone, (ii) the diverging flow zone, (iii) the developing zone and (iv) the fully-developed zone. The PIV data also confirmed the efficiency of the mixing-layer analogy and provided insight into the spatial evolution of coherent motions.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-04-10
    Description: Air–water flows at hydraulic structures are commonly observed and called white waters. The free-surface aeration is characterised by some intense exchanges of air and water leading to complex air–water structures including some clustering. The number and properties of clusters may provide some measure of the level of particle-turbulence and particle–particle interactions in the high-velocity air–water flows. Herein a re-analysis of air–water clusters was applied to a highly aerated free-surface flow data set (Chanson and Carosi, Exp Fluids 42:385–401, 2007 ). A two-dimensional cluster analysis was introduced combining a longitudinal clustering criterion based on near-wake effect and a side-by-side particle detection method. The results highlighted a significant number of clustered particles in the high-velocity free-surface flows. The number of bubble/droplet clusters per second and the percentage of clustered particles were significantly larger using the two-dimensional cluster analysis than those derived from earlier longitudinal detection techniques only. A number of large cluster structures were further detected. The results illustrated the complex interactions between entrained air and turbulent structures in skimming flow on a stepped spillway, and the cluster detection method may apply to other highly aerated free-surface flows.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-04-10
    Description: A computational investigation has been made to study the effects of particle size on inter-phase slip velocity and flow turbulence in a solid–liquid two-phase flow through a rectangular duct. Finite volume method with an algebraic slip mixture model and renormalization k - $\varepsilon $ model has been used in the simulation. Simulations have been made for three different sizes of particles to show their effects on mean and turbulent flow properties. The presence of obstruction changes the typical stratified distribution of micro particles in the stagnation and recirculation regions where stagnation region is characterized with high value of solid particles concentration and recirculation region is characterized with low value. The slip velocity between the particles and liquid phases has been observed more in the upstream compared to the downstream of the obstruction. The change in particles distributions and slip velocities caused by the presence of obstruction disappears at certain downstream distance of the obstruction and the flow properties regain their un-disturbed states. This settling distance depends upon the particle size. Particles enhance the flow turbulence and the effect in complex flow region has been observed more for large size particles. Even though Stokes number associated with the flow is small, the turbulence and slip velocity have been increased due to flow disturbance created by the obstruction.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-04-10
    Description: We present a numerical model based on the hydro-morphodynamical coupling to study coastal sandbar migration. In order to improve both nonlinear and dispersive wave processes in relatively shallow water, we developed a finite element model based on the Legendre polynomials and on the Extended Boussinesq model. This model reproduces the propagation of wave trains with a high degree of accuracy on a greater range of depths than the standard Boussinesq models. We also implemented the Total Variation Diminishing schemes to improve the quality of the computed hydrodynamic fields, especially in areas where sharp flow gradients occurred. The coupled morpho-hydrodynamical model is then used to simulate the migration of real sandbars observed at Rousty beach (Mediterranean French coast). For verification the model results are compared with field measurements obtained from a small-scale field campaign carried out over two years at Rousty beach, and the results of this comparison are thoroughly discussed and analyzed.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: A sediment cloud release in stagnant ambient fluid occurs in many engineering applications. Examples include land reclamation and disposal of dredged materials. The detailed modeling of the distinct characteristics of both the solid and fluid phases of the sediment cloud is hitherto unavailable in the literature despite their importance in practice. In this paper, the two-phase mixing characteristics of the sediment cloud are investigated both experimentally and theoretically. Experiments were carried out to measure the transient depth penetration and the lateral spread of the sediment cloud and its entrained fluid using the laser induced fluorescence technique, with a range of particle sizes frequently encountered in the field (modeled at laboratory scale). A two-phase model of the sediment cloud that provides detailed predictions of the mixing characteristics of the individual phases is also proposed. The entrained fluid characteristics are solved by an integral model accounting for the buoyancy loss (due to particle separation) in each time step. The flow field induced by the sediment cloud is approximated by a Hill’s spherical vortex centered at the centroid and with the size of the entrained fluid. The particle equation of motion under the effect of the induced flow governs each computational particle. A random walk model using the hydrodynamic diffusion coefficient is used to account for the random fluctuation of particles in the dispersive regime. Overall, the model predictions of the two-phase mixing characteristics are in good agreement with the experimental data for a wide range of release conditions.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-04-28
    Description: This paper investigates, experimentally and numerically, the shear velocity distribution along a single transverse dune and along two closely spaced dunes, analyzing the flow effects of one dune upon the other. The paper focuses on two-dimensional models simulating transverse sand dunes. The shape of the two pile geometries studied is described by sinusoidal curves, one having a maximum slope of $32^{\circ }$ and the other $27.6^{\circ }$ , with leeward flow separation. The tests were carried out for two undisturbed wind speeds and the experimental data obtained through wind-tunnel modeling encompass flow visualization and shear-velocity results. A generally good agreement is observed between the experimental measurements and computational results. From the inquiry between shear velocity distributions and published eroded contours for the same geometries, it appears the Bagnold’s approach is insufficient in the prediction of threshold conditions in wake flows formed in the dune’s leeward side.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-04-26
    Description: Consecutive groynes and embayments form dead water zones, where sedimentation and high concentrations of pollutants are often observed. It is thus very important to understand the mass and momentum exchange between the main channel and side cavities in rivers and hydraulic engineering structures. The spanwise gradient of the streamwise velocity near the junction produces small-scale turbulent vortices because of shear instability. Furthermore, large-scale horizontal circulation is also generated in the cavity zone. These coherent turbulent structures play a significant role in mass and sediment transfer at the boundary between the mainstream and embayment. However, the relation between turbulence and mass transfer is poorly understood. In this study, we performed particle image velocity and laser-induced fluorescence experiments using a laboratory flume, laser light sheets and a high-speed CMOS camera. We examined the exchange properties of a dye as a function of bed configuration and sedimentation effect. Both primary and secondary gyres were observed in the flat bed and downward-sloping bed, whereas the primary gyre was prevalent in the upward-sloping bed. Moreover, the horizontal circulation strongly affected the mass-transfer properties between the mainstream and side cavity.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-04-28
    Description: The propagation of density current under different boundary conditions is investigated using high resolution direct numerical simulations (DNS). A revised Kleiser and Schumann influence-matrix method is used to treat the general Robin type velocity boundary conditions and the related “tau” error corrections in the numerical simulations. Comparison of the simulation results reveals that the boundary conditions change the turbulent flow field and therefore the propagation of the front. This paper mainly focuses on the effects of boundary conditions and initial depth of the dense fluid. The differences in energy dissipation and overall front development in wall-bounded and open channels are examined. Through DNS simulations, it is evident that with the decrease of initial release depth ratio ( $D/H$ ), the effect of the top boundary becomes less important. In wall-bounded channels, there are three distinctive layers in the vertical distribution of energy dissipation corresponding to the contributions from bottom wall, interface, and top wall, respectively. In open channels, there are only two layers with the top one missing due to the shear free nature of the boundary. It is found that the energy dissipation distribution in the bottom layer is similar for cases with the same $D/H$ ratio regardless the top boundary condition. The simulation results also reveal that for low Reynolds number cases, the energy change due to concentration diffusion cannot be neglected in the energy budget. To reflect the real dynamics of density current, the dimensionless Froude number and Reynolds number should be defined using the release depth $D$ as the length scale.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-28
    Description: An accurate prediction of near-shore sea-state is imperative during extreme events such as cyclones required in an operational centre. The mutual interaction between physical processes such as tides, waves and currents determine the physical environment for any coastal region, and hence the need of a parallelized coupled wave and hydrodynamic model. The present study is an application of various state-of-art models such as WRF, WAM, SWAN and ADCIRC used to couple and simulate a severe cyclonic storm Thane that developed in the Bay of Bengal during December 2011. The coupled model (ADCIRC–SWAN) was run in a parallel mode on a flexible unstructured mesh. Thane had its landfall on 30 December, 2011 between Cuddalore and Pondicherry where in-situ observations were available to validate model performance. Comprehensive experiment on the impact of meteorological forcing parameters with two forecasted tracks derived from WRF model, and JTWC best track on the overall performance of coupled model was assessed. Further an extensive validation experiment was performed for significant wave heights and surface currents during Thane event. The significant wave heights measured along satellite tracks by three satellites viz; ENVISAT, JASON-1 and JASON-2, as well in-situ near-shore buoy observation off Pondicherry was used for comparison with model results. In addition, qualitative validation was performed for model computed currents with HF Radar Observation off Cuddalore during Thane event. The importance of WRF atmospheric model during cyclones and its robustness in the coupled model performance is highlighted. This study signifies the importance of coupled parallel ADCIRC–SWAN model for operational needs during extreme events in the North Indian Ocean.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-05-03
    Description: For the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM–SWEs model. Fifteen experiments were conducted with their scouring flow durations vary from 46 to 546 h. The comparison shows that the 2D SGUM–SWEs model gives good representation to the experimental results with the practical advantage.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-05-30
    Description: We consider high-Reynolds-number Boussinesq gravity current and intrusion systems in which both the ambient and the propagating “current” are linearly stratified. The main focus is on a current of fixed volume released from a rectangular lock; the height ratio of the fluids $H$ H , the stratification parameter of the ambient $S$ S , and the internal stratification parameter of the current, $\sigma $ σ , are quite general. We perform two-dimensional Navier–Stokes simulation and compare the results with those of a previously-published one-layer shallow-water model. The results provide insights into the behavior of the system and enhance the confidence in the approximate model while also revealing its limitations. The qualitative predictions of the model are confirmed, in particular: (1) there is an initial “slumping” stage of propagation with constant speed $u_N$ u N , after which $u_N$ u N decays with time; (2) for fixed $H$ H and $S$ S , the increase of $\sigma $ σ causes a slower propagation of the current; (3) for some combinations of the parameters $H,S, \sigma $ H , S , σ the fluid released from the lock lacks initially (or runs out quickly of) buoyancy “driving power” in the horizontal direction, and does not propagate like a gravity current. There is also a fair quantitative agreement between the predictions of the model and the simulations concerning the spread of the current.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-05-18
    Description: Sediment-laden turbulent flows are commonly encountered in natural and engineered environments. It is well known that turbulence generates fluctuations to the particle motion, resulting in modulation of the particle settling velocity. A novel stochastic particle tracking model is developed to predict the particle settling out and deposition from a sediment-laden jet. Particle velocity fluctuations in the jet flow are modelled from a Lagrangian velocity autocorrelation function that incorporates the physical mechanism leading to a reduction of settling velocity. The model is first applied to study the settling velocity modulation in a homogeneous turbulence field. Consistent with basic experiments using grid-generated turbulence and computational fluid dynamics (CFD) calculations, the model predicts that the apparent settling velocity can be reduced by as much as 30 % of the stillwater settling velocity. Using analytical solution for the jet mean flow and semi-empirical RMS turbulent velocity fluctuation and dissipation rate profiles derived from CFD predictions, model predictions of the sediment deposition and cross-sectional concentration profiles of horizontal sediment-laden jets are in excellent agreement with data. Unlike CFD calculations of sediment fall out and deposition from a jet flow, the present method does not require any a priori adjustment of particle settling velocity.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-05-27
    Description: Three-dimensional 3-D Large eddy simulation (LES) has become a powerful tool to investigate evolution and structure of gravity currents, especially for cases (e.g., high Reynolds number flows, flows with massive separation) where 3-D Direct numerical simulation using non-dissipative viscous solvers is computationally too expensive. In this paper we briefly review some important results obtained based on high-resolution 3-D LES of bottom-propagating compositional Boussinesq currents in lock-exchange configurations. LES was used to provide a detailed description of the structure of the current, to discuss the role of the large-scale coherent structures, and to predict the evolution of the front velocity over the different stages of the current propagation. Three main types of lock-exchange flows are considered: (1) currents with a high volume of release (HVR) and a low volume of release (LVR) propagating in a channel with a smooth horizontal bed; (2) HVR and LVR currents propagating in a horizontal channel containing a porous layer; and (3) currents propagating in a horizontal channel containing an array of bottom obstacles (2-D dunes and ribs). The simulations are performed using non-dissipative numerical algorithms and sub-grid scale models that predict a zero eddy viscosity in regions where the turbulence is negligible. Experimental data is used to validate LES predictions. LES results show that in most cases the evolution of the front velocity is consistent with that predicted based on shallow-flow theory. LES flow fields are then used to estimate important quantities (e.g., bed friction velocity, sediment entrainment capacity) that are very difficult to obtain from experiments and to understand how the structure and evolution of the current change because of the additional drag induced by obstacles present within the channel or at the channel bed. The paper also discusses how the evolution and structure of the current change as the Reynolds number is increased to values that are relevant for gravity currents encountered in geosciences and environmental engineering applications.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-06-14
    Description: We discuss the results of direct numerical simulations of bi-disperse turbidity currents interacting with a flat bottom wall and a Gaussian bump, respectively, with a focus on the final deposit profiles of the coarse and fine particles. We identify regions of reduced and enhanced deposition, as a result of the presence of the bump. Coarse particles are predominantly deposited towards the sides of the bump, as a result of the bi-section and lateral deflection of the current by the bump. In contrast, for fine particles the influence of the bump is felt more in its far wake. We furthermore employ Lagrangian markers in order to track the coarse and fine particles in the current, and to investigate their deposit locations as function of their location of origin. By comparing the final deposit maps, we observe that the bump has the strongest influence on those particles originating in the central lock sections.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-06-05
    Description: A comprehensive experimental investigation for an inclined ( $60^{\circ }$ 60 ∘ to vertical) dense jet in perpendicular crossflow—with a three-dimensional trajectory—is reported. The detailed tracer concentration field in the vertical cross-section of the bent-over jet is measured by the laser-induced fluorescence technique for a wide range of jet densimetric Froude number $Fr$ Fr and ambient to jet velocity ratios $U_r$ U r . The jet trajectory and dilution determined from a large number of cross-sectional scalar fields are interpreted by the Lagrangian model over the entire range of jet-dominated to crossflow-dominated regimes. The mixing during the ascent phase of the dense jet resembles that of an advected jet or line puff and changes to a negatively buoyant thermal on descent. It is found that the mixing behavior is governed by a crossflow Froude number $\mathbf{F} = U_r Fr$ F = U r Fr . For $\mathbf{F} 〈 0.8$ F 〈 0.8 , the mixing is jet-dominated and governed by shear entrainment; significant detrainment occurs and the maximum height of rise $Z_{max}$ Z max is under-predicted as in the case of a dense jet in stagnant fluid. While the jet trajectory in the horizontal momentum plane is well-predicted, the measurements indicate a greater rise and slower descent. For $\mathbf{F} \ge 0.8$ F ≥ 0.8 the dense jet becomes significantly bent-over during its ascent phase; the jet mixing is dominated by vortex entrainment. For $\mathbf{F} \ge 2$ F ≥ 2 , the detrainment ceases to have any effect on the jet behavior. The jet trajectory in both the horizontal momentum and buoyancy planes are well predicted by the model. Despite the under-prediction of terminal rise, the jet dilution at a large number of cross-sections covering the ascent and descent of the dense jet are well-predicted. Both the terminal rise and the initial dilution for the inclined jet in perpendicular crossflow are smaller than those of a corresponding vertical jet. Both the maximum terminal rise $Z_{max}$ Z max and horizontal lateral penetration $Y_{max}$ Y max follow a $\mathbf{F}^{-1/2}$ F − 1 / 2 dependence in the crossflow-dominated regime. The initial dilution at terminal rise follows a $S \sim \mathbf{F}^{1/3}$ S ∼ F 1 / 3 dependence.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-11-20
    Description: The size and arrangement of the obstacles and the presence of a source of heat (anthropogenic heat flux) are distinctive characteristics of an urban area. These two elements, together with the specific applications oriented to improve citizen’s comfort, determine the way urban heterogeneities are represented in mesoscale models. In this contribution two examples are presented. In the first a microscale fluid dynamics model is used to investigate the role of organized motions (dispersive fluxes) of a passive tracer emitted at the surface in a staggered and in an aligned array of cubes. The impact of the dispersive flux, that can reach 90 % of the total flux in the staggered array, is then assessed in a column model. The second example deals with the representation of anthropogenic heat fluxes and the estimation of thermal comfort by means of an urban canopy parameterization with a simple building energy model, implemented in a mesoscale model. The simulation of a typical summer day over the city of Madrid (Spain) shows that the anthropogenic heat fluxes have the largest impact on the air temperature in the evening-night, and that the presence of the city prolongs to the late evening the period of thermal discomfort, compared with the rural areas surrounding the city. The paper is concluded by pointing out that future work must be devoted to deep on the relationship between the real morphology of a city and the simplified morphology adopted in the urban canopy parameterizations.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-11-20
    Description: Experiments are performed in a mixing box to evaluate the effect of suspended sediment on turbulence generated by an oscillating grid. Quartz-density sand of varying sizes and concentrations is used, and particle image velocimetry is employed to quantify only the fluid phase. Results show that (1) while a relatively large secondary flow field is present in the box, turbulence is a maximum near the grid and it decreases systematically toward the water surface; (2) relatively high concentrations of fine sediment can markedly alter this secondary flow field and significantly decrease both the time-mean and turbulent kinetic energy within the flow, yet these same sediment concentrations have little effect on the integral time and length scales derived for each velocity component; and (3) the overall turbulence suppression observed can be related to the transfer of energy from the fluid to the sediment and the maintenance of a suspended sediment load rather than commonly employed turbulence modulation criteria. These experimental data demonstrate unequivocally that the presence of a suspended sediment load can significantly reduce overall turbulent kinetic energy, and these results should be applicable to a range of sediment-laden geophysical flows.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-11-23
    Description: The spatial variability of flow and turbulence properties above an outdoor scale model of regular cube roughness under neutral stability is investigated using eight simultaneously employed sonic anemometers which are characterized by an extra short transducer span (0.05 m) and high sampling rate (50 Hz). Measurements are conducted in a layer between the top of the cubes with a plan area density of 0.25 and two times the height of the roughness, $H$ . Large spatial variability (horizontal and vertical) is observed at the two lowest measurement levels ( $z=H$ and $1.25H$ ) for all variables considered which include mean wind, Reynolds stress, integral statistics, (co)spectra, budget of turbulent kinetic energy and a spatial quadrant analysis of the momentum transfer. The spatial inhomogeneity almost disappears at $z = 1.5H$ where normalized variables attain homogeneous surface layer values for neutral stratification. The present results support a new conceptual framework to explain the turbulence behavior just above the canopy consisting of two sublayers which develop in response to the strongly varying surface. Although an individual measurement location below $z = 1.5H$ is unable to produce representative turbulence statistics above the present bluff body roughness, averaging across a sufficient number of measurement locations to achieve complete spatial sampling of all surface characteristics (canyon spaces, rooftops, etc.), produces representative statistics even at heights which are probably still within the roughness sublayer with values close to the respective inertial subrange predictions.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-11-23
    Description: Recent theoretical research indicates that dynamics of shallow flows can be strongly affected by waves developing on the free surface. In this study a shallow wake with an oblique pressure wave behind a model of a tree-centered emergent bar is investigated in a gravel-bed river. A bar was constructed in a shallow river reach with nearly uniform flow. The structure of flow was assessed with an array of velocimeters. Flow visualization with a solute of fluorescent dye complemented the measurements and provided qualitative information on the wake behavior. This study indicates that quantitative criteria for shallow wakes classification developed in laboratory setups are not straightforward in explaining the field results. According to the wake stability criteria, the expected dynamics for examined wake flow is a vortex street (VS) type. Contrary to this expectation, measurements and visualizations in this study show that mean momentum differential and turbulent vortices in the wake decrease stronger than expected in VS type and therefore the wake should be classified as unsteady bubble type with a weak downstream instability. Analysis of velocity differential dynamics in the examined shallow wake suggests that the bed friction alone is insufficient to explain the inconsistency of VS criterion whereas accounting for advective fluxes driven by inhomogeneous pressure field leads to a correct prediction of the wake behavior.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-23
    Description: In the present study, the prediction accuracy of a dynamic one-equation sub-grid scale model for the large eddy simulation of dispersion around an isolated cubic building is investigated. For this purpose, the localized dynamic $k_\mathrm{SGS} $ -equation model (LDKM) is employed and the results are compared with the available experimental data and two other classic sub-grid scale models, namely, standard Smagorinsky–Lilly model (SSLM) and dynamic Smagorinsky–Lilly model (DSLM). It is shown that the three SGS models give results in good agreement with experiment. However, near the ground level of the leeward wall, dimensionless time-averaged concentration, $\langle K\rangle $ , profile is not quite similar to the experimental data. It is also demonstrated that the LDKM predicts the values of $\langle K\rangle $ on the roof, leeward and side walls more acceptably than the SSLM and DSLM. Whereas, the streamwise elongation of time-averaged structures of the plume shape is more over-estimated with the LDKM than with the other two SGS models. In terms of numerical difficulty, the LDKM is found to be stable and computationally reasonable. In addition, it does not suffer from a flow dependent constant such as the Smagorinsky coefficient employed in the SSLM model.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-09-01
    Description: The aim of this work is to investigate how both the orientation of the urban canyon and the modeling of the edge effects (i.e. urban canyons of finite length) are important in the numerical simulation of the surface energy budget in urban areas. Starting from the town energy balance scheme, two models of increasing complexity of the canyon geometry are developed. A sensitivity analysis of the role played by the chosen hypothesis and parameterizations is performed by coupling the canyon schemes with the numerical weather prediction model RAMS. The results suggest that a detailed description of the urban geometry could produce non-negligible differences of the energy balances and of the temperature fields with respect to what occurs using simpler schematizations, in particular during the summer.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-08-24
    Description: It is commonly assumed that shallow flows are in good approximation two-dimensional (2D) or quasi-2D. We will provide evidence that this is not always the case, and that the simple scaling argument based on the continuity equation does not always apply. Laboratory experiments on vortex flows in shallow fluid layers have revealed that locally significant three-dimensional (3D) effects and substantial vertical motions may occur, clearly destroying the assumed 2D character of the flow. For example, in the case of a dipolar vortex structure, an oscillatory vertical motion is observed in the vortex cores, while a spanwise circulation roll is present in front of the travelling dipole. These laboratory observations are confirmed by 3D numerical flow simulations. Attention will be given to a correct scaling analysis, in which both the aspect ratio of the fluid depth and a typical horizontal scale and the Reynolds number play a role.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-29
    Description: Turbulent flow in a densely built-up area of Seoul, South Korea, is numerically investigated using the parallelized large-eddy simulation model. Based on the analysis of streamwise velocity and column-averaged vertical turbulent momentum flux, three areas of interest are selected: a downstream area of an apartment complex, an area behind high-rise buildings, and a park area. In the downstream area of the apartment complex, a large wake develops and a region of strong vertical turbulent momentum flux appears above the wake. At the height of maximum vertical turbulent momentum flux magnitude, all the four quadrant events occur in larger magnitude and contribute more to the vertical turbulent momentum transport than the averages in the main domain. In the area behind the high-rise buildings, fluctuating wakes and vortices are distinct flow structures around the top of the tallest building and updrafts induced by the flow structures appear as strong ejections just behind the high-rise buildings or farther downstream. While strong ejections are dominant at building-top heights, downdrafts along the windward walls of high-rise buildings are distinct below building-top heights and they induce high turbulent kinetic energy and winding flow around the high-rise buildings near the ground surface, transporting momentum downward and intermittently into nearby streets. In the park area located downstream in the main domain, turbulent eddies exist well above the ground surface, and the thickness of the interfacial region between low-speed air and high-speed air increases and complex turbulent flow appears in the interfacial region.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-28
    Description: The issue of the transport of dissolved nutrients and contaminants between the sediment in the bottom of a lake or reservoir and the body of water above it is an important one for many reasons. In particular the biological and chemical condition of the body of water is intricately linked to these mass transport processes. As the review by Boudreau (Rev Geophys 38(3):389–416, 2000 ) clearly demonstrates those transport processes are very complex involving mechanisms as diverse as the wave-induced flux between the sediment and the overlying water and the effect of burrowing animals on the transport within the sediment as well as basic diffusion mechanisms. The present paper focuses on one facet of these transport processes; we re-examine the balance of diffusion and wave-induced advection and demonstrate that the wave-induced flux of a solute from submerged sediment is not necessarily purely diffusive as suggested by Harrison et al. (J Geophys Res 88:7617–7622, 1983 ) but can be dominated by a mean or time-averaged flux induced by the advective fluid motion into and out of the sediment caused by the fluctuating pressure waves associated with wave motion. Indeed along the subtidal shoreline where the fluctuating bottom pressures are greatest, wave-induced advection will dominate the mean, time-averaged transport of solute into or out of the sediment as suggested in the work of Riedl et al. (Mar Biol 13:210–221, 1972 ). However, the present calculations also indicate that this advective flux decreases rapidly with increasing depth so that further away from the shoreline the advective flux becomes negligible relative to the diffusive flux and therefore the latter dominates in deeper water.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-05-11
    Description: Spatially averaged velocity distributions, turbulence characteristics, and stream bed roughness elevations were collected in two streams with rough-bed substrate. Variogram analysis of substrate roughness height yielded characteristic length scales of the stream bed over which bed elevations were correlated from 0.14 to 0.41 m. Temporally and spatially averaged (double-averaged) vertical velocity profiles followed a composite distribution consisting of a linear distribution below the roughness crest height and a power or wake law above the crest. Our double-averaged velocity data demonstrated the applicability of both the wake law and power law to open-channel flow for which a low ratio of flow depth to roughness height does not support the development of the universal logarithmic velocity law. A power-law scaling relationship among spatially averaged Glossosoma density, stream bed roughness characteristics, and double-averaged fluid flow conditions was developed. The density of Glossosoma scaled directly with substrate crest elevation, normalized spatial fluctuation of longitudinal velocity in the proximity of the bed, and inversely with the standard deviation of the crest elevation. The proposed dimensionless scaling relationship explains 84 % of the Glossosoma variability.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-05-11
    Description: A mechanistic model of sedimentary oxygen demand (SOD) for hyporheic flow is presented. The permeable sediment bed, e.g. sand or fine gravel, is considered with hydraulic conductivity in the range $0.1 〈 K 〈 20$  cm/s. Hyporheic pore water flow is induced by pressure fluctuations at the sediment/water interface due to near-bed turbulent coherent motions. A 2-D advection–diffusion equation is linked to the pore water flow model to simulate the effect of advection–dispersion driven by interstitial flow on oxygen transfer through the permeable sediment. Microbial oxygen uptake in the sediment is expressed as a function of the microbial growth rate, and is related to the sediment properties, i.e. the grain diameter $(d_{s})$ and porosity $(\phi )$ . The model describes the significance of sediment particle size to oxygen transfer through the sediment and microbial oxygen uptake: With increasing grain diameter $(d_{s})$ , the hydraulic conductivity $(K)$ increases so does the oxygen transfer rate, while particle surface area per volume (the available surface area for colonization by biofilms) decreases reducing the microbial oxygen uptake rate. Simulation results show that SOD increases as the hydraulic conductivity $(K)$ increases before a threshold has been reached. After that, SOD diminishes with the increment of the hydraulic conductivity $(K)$ .
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-05-11
    Description: Results are presented from a series of parametric experimental and analytical studies of the behaviour of dense gravity currents along rotating, up-sloping, wedge-shaped channels. High resolution density profile measurements at fixed cross- and along-channel locations reveal the outflowing bottom gravity currents to adjust to quasi-steady, geostrophically-balanced conditions along the channels, with the outflow layer thickness and cross-channel interface slope shown to scale with the inlet Burger number for all experimental conditions tested. A general analytical solution to the classic rotating hydraulics problem has been developed under the assumption of inviscid, zero-potential-vorticity conditions to model dense water flow through a triangular constriction and thus simulate the vee-channel configurations under consideration. Predictions from this zero-PV model are shown to provide good overall quantitative agreement with experimental measurements obtained both under hydraulically-controlled conditions at the channel exit and for subcritical conditions generated along the channel length. Quantitative discrepancies between measurements and analytical predictions are attributed primarily to assumptions and limitations associated with the zero-PV modelling approach adopted, as well as the to the rapid adjustment in outflow characteristics as the channel exit is approached, as characterised by the along-channel variation in densimetric Froude number for the outflows.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-06-19
    Description: In this paper we examine the characteristics of near-inertial internal Poincaré waves in Lake Michigan (USA) as discerned from field experiments and hydrodynamic simulations. The focus is on the determination of the lateral and vertical structure of the waves. Observations of near-inertial internal wave properties are presented from two field experiments in southern Lake Michigan conducted during the years 2009 and 2010 at Michigan City (IN, USA) and Muskegon (MI, USA), respectively. Spectra of thermocline displacements and baroclinic velocities show that kinetic and potential baroclinic energy is dominated by near-inertial internal Poincaré waves. Vertical structure discerned from empirical orthogonal function analysis shows that this energy is predominantly vertical mode 1. Idealized hydrodynamic simulations using stratifications from early summer (June), mid-summer (July) and fall (September) identify the basin-scale internal Poincaré wave structure as a combination of single- and two-basin cells, similar to those identified in Lake Erie by Schwab, with near-surface velocities largest in the center of the northern and southern basins. Near-inertial bottom kinetic energy is seen to have roughly constant magnitude over large swathes across the basin, with higher magnitude in the shallower areas like the Mid-lake Plateau, as compared with the deep northern and southern basins. The near-bottom near-inertial kinetic energy when mapped appears similar to the bottom topography map. The wave-induced vertical shear across thermocline is concentrated along the longitudinal axis of the lake basin, and both near-bottom velocities and thermocline shear are reasonably explained by a simple conceptual model of the expected transverse variability.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-06-19
    Description: Dust emissions from stockpiles surfaces are often estimated applying mathematical models such as the widely used model proposed by the USEPA. It employs specific emission factors, which are based on the fluid flow patterns over the near surface. But, some of the emitted dust particles settle downstream the pile and can usually be re-emitted which creates a secondary source. The emission from the ground surface around a pile is actually not accounted for by the USEPA model but the method, based on the wind exposure and a reconstruction from different sources defined by the same wind exposure, is relevant. This work aims to quantify the contribution of dust re-emission from the areas surrounding the piles in the total emission of an open storage yard. Three angles of incidence of the incoming wind flow are investigated ( $30^{\circ }, 60^{\circ }$ 30 ∘ , 60 ∘ and $90^{\circ }$ 90 ∘ ). Results of friction velocity from numerical modelling of fluid dynamics were used in the USEPA model to determine dust emission. It was found that as the wind velocity increases, the contribution of particles re-emission from the ground area around the pile in the total emission also increases. The dust emission from the pile surface is higher for piles oriented $30^{\circ }$ 30 ∘ to the wind direction. On the other hand, considering the ground area around the pile, the $60^{\circ }$ 60 ∘ configuration is responsible for higher emission rates (up to 67 %). The global emissions assumed a minimum value for the piles oriented perpendicular to the wind direction for all wind velocity investigated.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-06-19
    Description: During the Queensland floods in the summer of 2010–2011, a flood-driven Brisbane River plume extended into Moreton Bay, Queensland, Australia, and then seaward, travelling in a northward direction. It covered approximately 500 km $^{2}$ 2 . This paper presents a three- dimensional hydrodynamic numerical model investigation into the behaviour of the Brisbane River plume. The model was verified by using satellite observations and field measurement data. The present study concludes that the high river discharge was the primary factor determining the plume size and its seaward extensions. A notable finding was that the plume was a bottom-trapped type rather than a buoyant type. Further, the southerly winds were found to have moderately confined the alongshore extension of the plume, and had caused the plume to mix thoroughly with the ocean water.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-06-27
    Description: In order to simulate a simple entraining geophysical flow, a viscous Newtonian gravity current is released from a reservoir by a dam-break and flows along a rigid horizontal bed until it meets a layer of entrainable material of finite depth, identical to the current. The goal is to examine the entrainment mechanisms by observing the interaction between the incoming flow and the loose bed. The sole parameter varied is the initial volume of the gravity current, thus altering its height and velocity. The gravity current plunges or spills into the entrainable bed and the velocity of the flow front becomes linear with time. The bed material is directly affected: motion is generated in the fluid far downstream of, and in that lying beneath the encroaching front. Shear bands are identified, separating horizontal flow downstream from flow with a strong vertical component close to the step. Downstream of the step the flow is horizontal and stratified, with no slip on the bottom boundary and very low shear near the surface. Between these two regions may lie transitional zones with linear velocity profiles, separated by horizontal bands of high shear; the number of transitional zones in the cross-section varies with the initial volume of the dam-break.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-06-30
    Description: The influence of different nutrient sources on the seasonal variation of nutrients and phytoplankton was assessed in the northern area of the Perth coastal margin, south–western Australia. This nearshore area is shallow, semi-enclosed by submerged reefs, oligotrophic, nitrogen-limited and receives sewage effluent via submerged outfalls. Analysis of 14 year of field observations showed seasonal variability in the concentration of dissolved inorganic nitrogen and phytoplankton biomass, measured as chlorophyll-a. For 2007–2008, we quantified dissolved inorganic nitrogen inputs from the main nutrient sources: superficial runoff, groundwater, wastewater treatment plant effluent, atmospheric deposition and exchange with surrounding coastal waters. We validated a three-dimensional hydrodynamic-ecological model and then used it to assess nutrient-phytoplankton dynamics. The model reproduced the temporal and spatial variations of nitrate and chlorophyll-a satisfactorily. Such variations were highly influenced by exchange through the open boundaries driven by the wind field. An alongshore (south–north) flow dominated the flux through the domain, with dissolved inorganic nitrogen annual mean net-exportation. Further, when compared with the input of runoff, the contributions from atmospheric-deposition, groundwater and wastewater effluent to the domain’s inorganic nitrogen annual balance were one, two and three orders of magnitude higher, respectively. Inputs through exchange with offshore waters were considerably larger than previous estimates. When the offshore boundary was forced with remote-sensed derived data, the simulated chlorophyll-a results were closer to the field measurements. Our comprehensive analysis demonstrates the strong influence that the atmosphere–water surface interactions and the offshore dynamics have on the nearshore ecosystem. The results suggest that any additional nutrient removal at the local wastewater treatment plant is not likely to extensively affect the seasonal variations of nutrients and chlorophyll-a. The approach used proved useful for improving the understanding of the coastal ecosystem.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-10-30
    Description: The effect of the upstream conditions on propagation of gravity current over a slope is investigated using three-dimensional numerical simulations. The current produced by constant buoyancy flux, is simulated using a large eddy simulation solver. The dense saline solution used at the inlet is the driving force of the flow. Higher replenishment of the current is possible either by a high inflow discharge or high initial fractional density excess. In the simulations, it is observed that these two parameters affect the flow in different ways. Results show that the front speed of the descending current is proportional to the cube root of buoyancy flux, $(g_o^{\prime } Q)^{1/3}$ , which agrees with the previous experimental and numerical observations. The height of the tail of the current grows linearly in the streamwise direction. Formation of a strong shear layer at the boundary of mixed upper layer and dense lower layer is observed within the body and the tail of the current. Over the tail of the current far enough from the inlet, the vertical velocity and density profiles are compared to the ones from an experimental study. Distance from the bed to the point of maximum velocity increases with an increase in inflow discharge, while it remains practically unchanged with increasing initial fractional excess density in the simulations. Even though the velocity profiles are in good agreement, some discrepancies are observed in fractional excess density profiles among experimental and numerical results. Possible reasons for these discrepancies are discussed. Generally, gravity current type of flows could be expressed in layer-integrated formulation of governing equations. However, layer integration introduces several constants, commonly known as shape factors, to the equations of motion. The values of these shape factors are calculated based on simulation results and compared to the values from experiments and to the favorably used ‘top hat’ assumption.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-11-03
    Description: In this paper, we simulated damaging wind loads on the One Indiana Square tower in Indianapolis due to the storm of April 2nd 2006. We followed recommended practice guidelines for this urban wind modeling. First, a test case, Aerodynamics of Commonwealth Advisory Aeronautical Council (CAARC) building were modeled and simulated to compare with a publicly available experiment and other computational studies. Based on the modeling parameters in the CAARC study, then, as a clean building configuration, we modeled the One Indiana tower alone without surrounding buildings. Finally, the flow field around the tower including nearby downtown buildings were simulated. We used the Fluent flow analysis software tools. The domain was meshed using unstructured grids, the first boundary layer grid element being 10 cm (4 in.) and 15 cm (6 in.) in height from the tower and the ground for the CAARC building and the One Indiana tower, respectively. Two different wind directions of 260 $^\circ $ and 280 $^\circ $ at 137 km/h (85 mph) speed were considered to estimate wind loads on the One Indiana tower façades. Simulated pressure distributions on the tower and flow patterns over the downtown buildings were discussed to draw conclusions about the mechanism of extreme wind load that caused the damage. The simulations revealed that suction forces are almost twice higher hence more damaging at the corners of the west façades than straight wind. It was also seen in the simulation results that upstream building topology, specifically Chase, One America, and some low-rise towers, augmented the actual wind load unfavorably on the One Indiana Square tower. Although this study presents a specific case, the applicability of its findings are of more general interest. Similar wind events are common especially during storm seasons both in urban and suburban areas. In similar incidents, one can follow the same procedure to analyze their problems as certain modeling guidelines were followed in this study.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-11-10
    Description: A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, and the bore front corresponds to the leading edge of the tidal wave in a funnel shaped estuarine zone with macro-tidal conditions. Some field observations were conducted in the tidal bore of the Garonne River on 7 June 2012 in the Arcins channel, a few weeks after a major flood. The tidal bore was a flat undular bore with a Froude number close to unity: $\hbox {Fr}_{1} = 1.02$ and 1.19 (morning and afternoon respectively). A key feature of the study was the simultaneous recording of the water elevation, instantaneous velocity components and suspended sediment concentration (SSC) estimates, together with a detailed characterisation of the sediment bed materials. The sediment was some silty material ( $\hbox {d}_{50} \approx 13~\upmu \hbox {m}$ ) which exhibited some non-Newtonion thixotropic behaviour. The velocity and SSC estimate were recorded simultaneously at high frequency, enabling a quantitative estimate of the suspended sediment flux at the end of the ebb tide and during the early flood tide. The net sediment flux per unit area was directed upstream after the bore, and its magnitude was much larger than that at end of ebb tide. The field observations highlighted a number of unusual features on the morning of 7 June 2012. These included (a) a slight rise in water elevation starting about 70 s prior to the front, (b) a delayed flow reversal about 50 s after the bore front, (c) some large fluctuations in suspended sediment concentration (SSC) about 100 s after the bore front and (d) a transient water elevation lowering about 10 min after the bore front passage. The measurements of water temperature and salinity showed nearly identical results before and after the tidal bore, with no evidence of saline and thermal front during the study.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-11-10
    Description: We consider the dam-break initial stage of propagation of a gravity current of density $\rho _{c}$ released from a lock (reservoir) of height $h_0$ in a channel of height $H$ . The channel contains two-layer stratified fluid. One layer, called the “tailwater,” is of the same density as the current and is of thickness $h_T (〈 h_0)$ , and the other layer, called the “ambient,” is of different density $\rho _{a}$ . Both Boussinesq ( $\rho _{c}/\rho _{a}\approx 1$ ) and non-Boussinesq systems are investigated. By assuming a large Reynolds number, we can model the flow with the two-layer shallow-water approximation. Due to the presence of the tailwater, the “jump conditions” at the front of the current are different from the classical Benjamin formula, and in some circumstances (clarified in the paper) the interface of the current matches smoothly with the horizontal interface of the tailwater. Using the method of characteristics, analytical solutions are derived for various combinations of the governing parameters. To corroborate the results, two-dimensional direct numerical Navier–Stokes simulations are used, and comparisons for about 80 combinations of parameters in the Boussinesq and non-Boussinesq domains are performed. The agreement of speed and height of the current is very close. We conclude that the model yields self-contained and fairly accurate analytical solutions for the dam-break problem under consideration. The results provide reliable insights into the influence of the tailwater on the propagation of the gravity current, for both heavy-into-light and light-into-heavy motions. This is a significant extension of the classical gravity-current theory from the particular $h_T=0$ point to the $h_T 〉 0$ domain.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-05
    Description: This study focuses on the influence of emission conditions—velocity and temperature—on the dynamics of a buoyant gas release in the atmosphere. The investigations are performed by means of wind tunnel experiments and numerical simulations. The aim is to evaluate the reliability of a Lagrangian code to simulate the dispersion of a plume produced by pollutant emissions influenced by thermal and inertial phenomena. This numerical code implements the coupling between a Lagrangian stochastic model and an integral plume rise model being able to estimate the centroid trajectory. We verified the accuracy of the plume rise model and we investigated the ability of two Lagrangian models to evaluate the plume spread by means of comparisons between experiments and numerical solutions. A quantitative study of the performances of the models through some suitable statistical indices is presented and critically discussed. This analysis shows that an additional spread has to be introduced in the Lagrangian trajectory equation in order to account the dynamical and thermal effects induced by the source conditions.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-08-10
    Description: Eddy-resolving techniques have become a powerful tool to investigate shallow flows at both laboratory and field scale. In this paper several examples are given where high-resolution 3D numerical simulation are used to investigate the spatial development of mixing interfaces (MIs) forming in shallow environments like open channels with idealized and natural bathymetry where the bed friction plays a major role in the spatial development of the MI and associated large-scale turbulence. The focus is on the coherent structures forming within the MI and in its vicinity that control the momentum and mass exchange and heat transfer between the two sides of the MI. Examples include: (1) a MI developing in a flat-bed open channel downstream of a splitter wall separating two parallel fully-turbulent streams of different velocities, (2) a MI developing in a flat-bed open channel downstream of a 60 $^{\circ }$ ∘ wedge separating two non-parallel fully turbulent streams of different velocities, (3) a MI developing downstream of a river confluence for cases with a large and, respectively, a small difference between the mean velocities of the two streams. Stratification effects due to unequal densities of the two incoming streams are also discussed, (4) a MI developing between a main rectangular straight channel and a series of shallow embayments present at one of the channel banks. Besides using available experimental data to demonstrate that eddy resolving techniques can accurately predict the structure of the MI and its development, the paper discusses new insights into the physics of these flows obtained based on the simulations. The paper also provides an overview of the main numerical approaches that can be used to simulate the unsteady dynamics of the large scale turbulence in flows containing shallow MIs.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-05
    Description: In wind tunnel experiments, we study the effects of soil moisture on the threshold condition to entrain fine grain sand/silt into eolian flow and the near-bed concentration of airborne particles. To study the effect of particle shape on moisture bonding, we use two types of particles nearly equal in size: spherical glass beads $(d_{50} = 134\,\upmu \mathrm{m})$ ( d 50 = 134 μ m ) and sieved quartz sand $(d_{50} = 139 \,\upmu \mathrm{m})$ ( d 50 = 139 μ m ) . Both are poorly graded soils. We conducted these experiments at low moisture contents $({〈}1\,\%)$ ( 〈 1 % ) . We found that the spherical particles were more sensitive to changes in moisture than the sand, attributable to the large differences in specific surface area of the two particles. The larger specific surface area for sand is due to the surface roughness of the angular sand particle. Consequently, sand “stores” more moisture via surface adsorption, requiring higher soil moisture content to form liquid bridges between sand particles. Based on these findings, we extend the concept of a threshold moisture content, $w^{\prime }$ w ′ —originally proposed for clayey soils—to soils that lack any measureable clay content. This allows application of existing models developed for clayey soils that quantify the moisture effect on the threshold friction velocity to sand and silty soils (i.e., clay content $=$ = 0). Additionally, we develop a model that quantifies the moisture effects on near-surface airborne particulate concentration, using experimental observations to determine the functional dependence on fluid and particle properties, including soil specific area. These models can be applied to numerical simulation of particulate plume formation and dispersion.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-12
    Description: Turbidity currents traversing canyon-fan systems flow over bed slopes that decrease in the downstream direction. This slope decrease eventually causes turbidity currents to decelerate and enter a net-depositional mode. When the slope decrease is relatively rapid in the downstream direction, the turbidity current undergoes a concomitantly rapid and substantial transition. Similar conditions are found when turbidity currents debouch to fan systems with loss of lateral confinement. In this work a simplified approach to perform direct numerical simulation of continuous turbidity currents undergoing slope breaks and loss of lateral confinement is presented and applied to study turbulence modulation in the flow. The presence of settling sediment particles breaks the top–bottom symmetry of the flow, with a tendency to self-stratify. This self-stratification damps turbulence, particularly near the bottom wall, affecting substantially the flow’s ability to transport sediment in suspension. This work reports results on two different situations: turbidity currents driven by fine and coarser sediment flowing through a decreasing slope. In the case of fine sediment, after the reduction in the slope of the channel, the flow remains turbulent with only a modest influence on turbulence statistics. In the case of coarse sediments, after the change in slope, turbulence is totally suppressed.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-04-13
    Description: Scalar similarity is widely assumed in models and interpretation of micro-meteorological measurements. However, in the air space within and just above the canopy (the so-called canopy sublayer, CSL) scalar similarity is generally violated. The scalar dissimilarity has been mainly attributed to differences in the distribution of sources and sinks throughout the canopy. Since large-scale coherent structures in the CSL (e.g. double roller and sweep/ejection) arise from the instabilities generated by the interaction between the mean flow and the canopy, they may encode key dynamical features about the production term responsible for the source–sink dissimilarity of scalars. Therefore, it is reasonable to assume that the geometric attributes of coherent structures are tightly coupled to the onset and the vertical extent of scalar dissimilarity within the CSL. Large-eddy simulation (LES) runs were used to investigate the role of coherent structures in explaining scalar dissimilarity among three scalars (potential air temperature, water vapour and $\text{ CO }_2$ concentration) within the CSL under near-neutral conditions for horizontally uniform but vertically varying vegetation leaf area density. It was shown that coherent structures, when identified from the first mode of a novel proper orthogonal decomposition (POD) approach, were able to capture some features of the scalar dissimilarity in the original LES field. This skill was quantified by calculating scalar–scalar correlation coefficients and turbulent Schmidt numbers of the original field and the coherent structures, respectively. However, coherent structures tend to magnify the magnitude of scalar–scalar correlation, particularly in cases where this correlation is already strong. The ability of coherent structures to describe more complex features such as the scalar sweep-ejection cycle was also explored. It was shown that the first mode of the POD does not capture the relative importance of sweeps to ejections in the original LES field. However, the superposition of few secondary coherent structures, derived from higher order POD modes, largely diminish the discrepancies between the original field and the POD expansion.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-04-11
    Description: In this paper, semi-analytical expressions of the effective hydraulic conductivity ( $K^{E})$ and macrodispersivity ( $\alpha ^{E})$ for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of $K^{E}$ and $\alpha ^{E}$ on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal $K^{E}$ and $\alpha ^{E}$ are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical $K^{E}$ and $\alpha ^{E}$ are found to be reduced slightly when the density factor ( $\gamma $ ) is less than 0.01, whereas significant decreases occur when $\gamma $ exceeds 0.01. Of note, the variation of $K^{E}$ and $\alpha ^{E}$ is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-07-20
    Description: The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-07-18
    Description: An integrated model is presented for the calculation of the discharge of thermal effluents from power plants into coastal waters; the model consists of the near field model CorJet and the far field model FLOW-3DL that are interconnected via an active coupling algorithm. Firstly, the model is validated using experimental data; moreover, calculations are compared with passive coupling simulations to identify the dominant differences among these methods. Then, the model is applied to simulate the single-port thermal discharge originating from a thermal power plant to the non-stratified coastal waters in the region of Mantoudi in Evia, Greece. Model predictions are compared with CORMIX far field estimations and calculations employing passive coupling. Calculations verify the need for the application of an integrated active model. The detailed information for the coupling algorithm that is contained in this paper, including its difficulties and their resolution, permits its implementation to any active coupling between practically any near field with any far field model.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-07-18
    Description: Modeling dispersion in urban area requires appropriate input parameters, in particular aerodynamic roughness parameters. A low-speed wind tunnel was deployed to study flow patterns over an urban canyon model with three aspect ratios and three flow speeds of 2, 5, and 10 m/s with the objective of obtaining these parameters. Flow speed, standard deviation, and turbulence intensity profiles were determined with a single directional hot-wire anemometer at several positions across the urban canyon model. The aerodynamic parameters $u_*$ , $z_0$ , and $d_0$ were obtained from flow speed profile via a non-linear fit after a suitable choice of the initial value of $d_0$ for which all aerodynamic parameters converge. Flow speed and standard deviation profiles do not change significantly with the position across the canyon, but are much affected by the free flow speed. The regular way they respond to the free flow speed suggested a normalization for which all profiles collapse onto a single profile, which depends only on the canyon aspect ratio. The normalization criterion revealed to be important for obtaining convergent dimensionless profiles. To describe the general profiles characteristics a simple new parameterization is proposed, in which a single-valued function (Gaussian curve) describing the flow speed profile is used in a flux-gradient relationship for describing the standard deviation profiles. This parameterization works well down to $z/h \sim $ 0.25 –0.50.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-07-18
    Description: A three-zone model was constructed and applied to study vertical profiles of streamwise velocity in steady uniform, open-channel flows with submerged vegetation. Three zones are examined—lower vegetation, upper vegetation and non-vegetated. Dominant forces acting on the water body were mainly gravity, vegetation drag and Reynolds stress. The latter was estimated by mixing length theory. A power series method was used to solve the governing differential equation of the upper vegetation zone. Other governing equations for the remaining two zones were directly solved analytically, deriving formulas for calculating the streamwise velocities. Values calculated with the formulas agreed well with measured experimental data, which demonstrates the practical applicability of the model.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-07-18
    Description: The effect of rotation on the behaviour of an inviscid axisymmetric stratified gravity current released from a lock and propagating into a stratified ambient fluid is considered. It is assumed that both the ambient and the current are linearly stratified. We develop a one-layer shallow-water model and show that the flow is governed by four dimensionless parameters which represent the stratifications in the current and ambient, the ratio of Coriolis to inertia effects, and the height ratio of the ambient to the lock. The solution, obtained by a finite-difference method, provides the shape of the interface, radial and azimuthal speeds, and radius of propagation, as functions of time. The propagation reaches a maximum radius, dependent on the input parameters; the increase of the internal stratification reduces the radius. The system admits steady-state lens structures for which simple approximate solutions are also presented. In general, the internal stratification of the current reduces the velocity of propagation, and enhances the Coriolis effects in a rotating system.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-08-12
    Description: The flow induced at the surface of a water body by a submerged heated horizontal turbulent jet was investigated experimentally with the aim of developing parameterizations for surface mean temperature/velocity fields. The jet nozzle diameter was fixed, the depth of the jet beneath the free surface was varied, and two jet Reynolds numbers (5020, 11300) were considered. The surface temperature was measured using a highly sensitive infrared camera, and the near-surface horizontal velocity field was measured using particle image velocimetry. The experimental results were explained using a model based on similarity solutions with variable turbulent viscosity. While classical Schlichting’s solution with constant turbulent viscosity predicts complete similarity for transverse velocity/temperature distributions only in a plane that coincides with the flow axis, the present solution predicts similarity in an arbitrary plane parallel to the flow axis, which was confirmed using data collected at the surface. Comparisons of present data with available previous results also showed general agreement.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-12-25
    Description: The statistics of the fluctuating concentration field within a plume is important in the analysis of atmospheric dispersion of toxic, inflammable and odorous gases. Previous work has tended to focus on concentration fluctuations in single plumes released in the surface layer or at ground level and there is a general lack of information about the mixing of two adjacent plumes and how the statistical properties of the concentration fluctuations are modified in these circumstances. In this work, data from wind tunnel experiments are used to analyse the variance, skewness, kurtosis, intermittency, probability density function and power spectrum of the concentration field during the mixing of two identical plumes and results are compared with those obtained for an equivalent single plume. The normalised variance, skewness and kurtosis on the centre-lines of the combined plume increase with distance downwind of the stack and, in the two-source configuration, takes lower values than those found in the single plumes. The results reflect the merging process at short range, which is least protracted for cases in which the sources are in-line or up to 30 $^{\circ }$ off-line. At angles of 45 $^{\circ }$ and more, the plumes are effectively side-by-side during the merging process and the interaction between the vortex pairs in each plume is strong. Vertical asymmetry is observed between the upper and the lower parts of the plumes, with the upper part having greater intermittency (i.e. the probability that no plume material is present) and a more pronounced tail to the concentration probability distribution. This asymmetry tends to diminish at greater distances from the source but occurs in both buoyant and neutral plumes and is believed to be associated with the ‘bending-over’ of the emission in the cross-flow and the vortex pair that this generates. The results allowed us to identify three phases in plume development. The first, very near the stack, is dominated by turbulence generated within the plume and characterised by concentration spectra with distinct peaks corresponding to scales comparable with those of the counter-rotating vortex pair. A second phase follows at somewhat greater distances downwind, in which there are significant contributions to the concentration fluctuations from both the turbulence internal to the plume and the external turbulence. The third phase is one in which the concentration fluctuations appear to be controlled by the external turbulence present in the ambient flow.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-12-25
    Description: Lake Villarrica, located in south central Chile, has a maximum depth of 167 m and a maximum fetch of about 20 km. The lake is monomictic, with a seasonal thermocline located at a depth of approximately 20 m. Field data show the presence of basin-scale internal waves that are forced by daily winds and affected by Coriolis acceleration. A modal linear and non-linear analysis of internal waves has been used, assuming a two-layer system. The numerical simulations show good agreement with the internal wave field observations. The obtained modes were used to study the energy dissipation within the system, which is necessary to control the amplitude growth. Field data and numerical simulations identify (1) the occurrence of a horizontal mode 1 Kelvin wave, with a period of about a day that coincides with the frequency of daily winds, suggesting that this mode of the Kelvin waves is in a resonant state (subject to damping and controlled by frictional effects in the field) and (2) the presence of higher-frequency internal waves, which are excited by non-linear interactions between basin-scale internal waves. The non-linear simulation indicates that only 10 % of the dissipation rate of the Kelvin wave is because of bottom friction, while the rest 90 % represents the energy that is radiated from the Kelvin wave to other modes. Also, this study shows that modes with periods between 5 and 8 h are excited by non-linear interactions between the fundamental Kelvin wave and horizontal Poincaré-type waves. A laboratory study of the resonant interaction between a periodic forcing and the internal wave field response has also been performed, confirming the resonance for the horizontal mode 1 Kelvin wave.
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2007-09-01
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-03-30
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-05-29
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-25
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-11-06
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2007-09-09
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-04-28
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2007-03-06
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2007-12-07
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2007-10-05
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-12-25
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-12-31
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-10-10
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-10-30
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-09
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-11-07
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2007-05-08
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-08
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-14
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-11-17
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2005-04-01
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-09-27
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...