ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (550)
  • Springer  (550)
  • American Chemical Society (ACS)
  • Elsevier
  • Frontiers Media
  • Oxford University Press
  • PeerJ
  • 2015-2019  (413)
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • 1960-1964  (77)
  • 1935-1939  (60)
  • 2016  (413)
  • 1962  (77)
  • 1935  (60)
  • Planta  (216)
  • 938
  • Biology  (550)
  • Education
  • Sociology
  • Geography
Collection
  • Journals
  • Articles  (550)
Publisher
  • Springer  (550)
  • American Chemical Society (ACS)
  • Elsevier
  • Frontiers Media
  • Oxford University Press
  • +
Years
  • 2015-2019  (413)
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • 1960-1964  (77)
  • +
Year
Topic
  • Biology  (550)
  • Education
  • Sociology
  • Geography
  • 1
    Publication Date: 2016-07-10
    Description: Main conclusion In this review we focus on the role of SPA proteins in light signalling and discuss different aspects, including molecular mechanisms, specificity, and evolution. The ability of plants to perceive and respond to their environment is key to their survival under ever-changing conditions. The abiotic factor light is of particular importance for plants. Light provides plants energy for carbon fixation through photosynthesis, but also is a source of information for the adaptation of growth and development to the environment. Cryptochromes and phytochromes are major photoreceptors involved in control of developmental decisions in response to light cues, including seed germination, seedling de-etiolation, and induction of flowering. The SPA protein family acts in complex with the E3 ubiquitin ligase COP1 to target positive regulators of light responses for degradation by the 26S proteasome to suppress photomorphogenic development in darkness. Light-activated cryptochromes and phytochromes both repress the function of COP1, allowing accumulation of positive photomorphogenic factors in light. In this review, we highlight the role of the SPA proteins in this process and discuss recent advances in understanding how SPAs link light-activation of photoreceptors and downstream signaling.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-10
    Description: Main conclusion The distribution of cyclotides was visualized in plant cells, tissues and organs using immunohistochemistry. Finding of cyclotides in tissues potentially vulnerable to pathogen attacks supports their role as defense molecules. The cyclotide family of plant peptides is characterized by the cyclic cystine knot motif and its diverse biological activities. Given their insecticidal and antimicrobial properties, the role of cyclotides in planta is probably associated with host defense. Our current understanding of the cellular compartmentalization of cyclotides in the vacuole is based on indirect studies on transgenic model plants that do not express cyclotides naturally. Matrix-assisted laser desorption ionization (MALDI) imaging has also been used to study the distribution of cyclotides, but the technique’s resolution was insufficient to determine their tissue or cell distribution. To avoid the limitations of these approaches, immunohistochemical visualization methods were used. Antibodies were raised in rabbits using cycloviolacin O2 (cyO2), and their specificity was determined by Western and dot blot experiments. Slides for immunohistochemical analysis were prepared from leaf, petiole and root fragments of Viola odorata and Viola uliginosa , and specimens were visualized using indirect epifluorescence microscopy. The antibodies against cyclotides were specific against selected bracelet cyclotides with high similarity (cyO2, cyO3, cyO8, cyO13) and suitable for immunohistochemistry. The tissue distribution of the cyclotides visualized in this way is consistent with their proposed role in host defense—relatively large quantities were observed in the leaf and petiole epidermis in both Viola species. Cyclotides were also found in vascular tissue in all the assessed plant organs. The vacuole storage of cyclotides was directly shown.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-10
    Description: Main conclusion The photosystem I/II ratio increased when antenna size was enlarged by transient induction of CAO in chlorophyll b -less mutants, thus indicating simultaneous regulation of antenna size and photosystem I/II stoichiometry. Regulation of antenna size and photosystem I/II stoichiometry is an indispensable strategy for plants to acclimate to changes to light environments. When plants grown in high-light conditions are transferred to low-light conditions, the peripheral antennae of photosystems are enlarged. A change in the photosystem I/II ratio is also observed under the same light conditions. However, our knowledge of the correlation between antenna size modulation and variation in photosystem I/II stoichiometry remains limited. In this study, chlorophyll a oxygenase was transiently induced in Arabidopsis thaliana chlorophyll b -less mutants, ch1 - 1 , to alter the antenna size without changing environmental conditions. In addition to the accumulation of chlorophyll b , the levels of the peripheral antenna complexes of both photosystems gradually increased, and these were assembled to the core antenna of both photosystems. However, the antenna size of photosystem II was greater than that of photosystem I. Immunoblot analysis of core antenna proteins showed that the number of photosystem I increased, but not that of photosystem II, resulting in an increase in the photosystem I/II ratio. These results clearly indicate that antenna size adjustment was coupled with changes in photosystem I/II stoichiometry. Based on these results, the physiological importance of simultaneous regulation of antenna size and photosystem I/II stoichiometry is discussed in relation to acclimation to light conditions.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In: Planta
    Publication Date: 2016-07-21
    Description: Main conclusion Despite its total reliance on its host plant, the holoparasite Phelipanche aegyptiaca suffers from a deficiency of aromatic amino acids upon exposure to glyphosate. The herbicide glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the biosynthesis of aromatic amino acids. However, the functionality of the EPSPS pathway in the obligate root holoparasite Phelipanche aegyptiaca is not straightforward because of the parasite’s total dependence on the host plant. Despite the importance of glyphosate as a means of controlling P. aegyptiaca , the mechanism of action of the herbicide in this parasite is not clearly understood. We characterized glyphosate control of P. aegyptiaca by using a glyphosate-resistant tomato (GRT) genotype as the host plant and evaluating the activity of EPSPS and the levels of free aromatic amino acids in the parasite. The viability of the parasite’s tissues deteriorated within the first 40 h after treatment (HAT) with glyphosate. In parallel, shikimate accumulation in the parasite was first detected at 24 HAT and increased over time. However, shikimate levels in the GRT host did not increase, indicating that the host was indeed glyphosate tolerant. Free phenylalanine and tyrosine levels decreased by 48 HAT in the parasite, indicating a deficiency of aromatic amino acids. The use of GRT as the host enabled us to observe, in an in situ experimental system, both endogenous EPSPS inhibition and a deficiency of aromatic amino acids in the parasite. We thus provided evidence for the presence of an active EPSPS and aromatic amino acid biosynthesis pathway in P. aegyptiaca and pinpointed this pathway as the target of glyphosate action in this parasite.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-26
    Description: Main conclusion External application of dsRNA molecules from Tobacco mosaic virus (TMV) p126 and CP genes confers significant resistance against TMV infection. Exogenously applied dsRNA exhibits a rapid systemic trafficking in planta , and it is processed successfully by DICER-like proteins producing small interfering RNAs. Abstract RNA interference (RNAi) is a sequence-specific, post-transcriptional gene silencing mechanism, induced by double-stranded RNA (dsRNA), which protects eukaryotic cells against invasive nucleic acids like viruses and transposons. In the present study, we used a non-transgenic strategy to induce RNAi in Nicotiana tabacum cv. Xanthi plants against TMV. DsRNA molecules for the p126 (TMV silencing suppressor) and coat protein (CP) genes were produced by a two-step PCR approach followed by in vitro transcription. The application of TMV p126 dsRNA onto tobacco plants induced greater resistance against TMV infection as compared to CP dsRNA (65 vs. 50 %). This study also reported the fast systemic spread of TMV p126 dsRNA from the treated (local) to non-treated (systemic) leaves beginning from 1 h post-application, confirmed by both conventional and real-time RT-PCR. Furthermore, we employed a stem-loop RT-PCR and confirmed the presence of a putative viral siRNA for up to 9 days in local leaves and up to 6 days in systemic leaves post-application. The approach employed could represent a simple and environmentally safe way for the control of plant viruses in future agriculture.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-30
    Description: Main conclusion Solanum tuberosum genome analysis revealed 12 StSULTR genes encoding 18 transcripts. Among genes annotated at group level ( StSULTR I–IV), group III members formed the largest SULTRs-cluster and were potentially involved in biotic/abiotic stress responses via various regulatory factors, and stress and signaling proteins. Employing bioinformatics tools, this study performed genome-wide identification and expression analysis of SULTR ( StSULTR ) genes in potato ( Solanum tuberosum L.). Very strict homology search and subsequent domain verification with Hidden Markov Model revealed 12 StSULTR genes encoding 18 transcripts. StSULTR genes were mapped on seven S. tuberosum chromosomes. Annotation of StSULTR genes was also done as StSULTR I – IV at group level based mainly on the phylogenetic distribution with Arabidopsis SULTRs . Several tandem and segmental duplications were identified between StSULTR genes. Among these duplications, Ka/Ks ratios indicated neutral nature of mutations that might not be causing any selection. Two segmental and one-tandem duplications were calculated to occur around 147.69, 180.80 and 191.00 million years ago (MYA), approximately corresponding to the time of monocot/dicot divergence. Two other segmental duplications were found to occur around 61.23 and 67.83 MYA, which is very close to the origination of monocotyledons. Most cis -regulatory elements in StSULTR s were found associated with major hormones (such as abscisic acid and methyl jasmonate), and defense and stress responsiveness. The cis -element distribution in duplicated gene pairs indicated the contribution of duplication events in conferring the neofunctionalization/s in StSULTR genes. Notably, RNAseq data analyses unveiled expression profiles of StSULTR genes under different stress conditions. In particular, expression profiles of StSULTR III members suggested their involvement in plant stress responses. Additionally, gene co-expression networks of these group members included various regulatory factors, stress and signaling proteins, and housekeeping and some other proteins with unknown functions.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-12
    Description: Main conclusion A novel annotated Chelidonium majus L. transcriptome database composed of 23,004 unique coding sequences allowed to significantly improve the sensitivity of proteomic C. majus assessments, which showed novel defense-related proteins characteristic to its latex. To date, the composition of Chelidonium majus L. milky sap and biosynthesis of its components are poorly characterized. We, therefore, performed de novo sequencing and assembly of C. majus transcriptome using Illumina technology. Approximately, 119 Mb of raw sequence data was obtained. Assembly resulted in 107,088 contigs, with N50 of 1913 bp and N90 of 450 bp. Among 34,965 unique coding sequences (CDS), 23,004 obtained CDS database served as a basis for further proteomic analyses. The database was then used for the identification of proteins from C. majus milky sap, and whole plant extracts analyzed using liquid chromatography–electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) approach. Of about 334 different putative proteins were identified in C. majus milky sap and 1155 in C. majus whole plant extract. The quantitative comparative analysis confirmed that C. majus latex contains proteins connected with response to stress conditions and generation of precursor metabolites and energy. Notable proteins characteristic to latex include major latex protein (MLP, presumably belonging to Bet v1-like superfamily), polyphenol oxidase (PPO, which could be responsible for browning of the sap after exposure to air), and enzymes responsible for anthocyanidin, phenylpropanoid, and alkaloid biosynthesis.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-16
    Description: Main conclusion Maize ( Zea mays ) terpene synthase 7 (ZmTPS7) was characterized as a τ-cadinol synthase, which exhibited constitutive and inducible gene expression patterns, suggesting involvement in stress response. Maize produces a variety of terpenoids involved in defense response. Despite some terpene synthases (TPSs) responsible for these terpenoids have been characterized, biosynthesis of many terpenes, particularly sesquiterpenes, which were produced in response to biotic or abiotic stress, remains largely unknown. Here, we characterized ZmTPS7 biochemically through recombinant expression in Escherichia coli and detected that it catalyzed formation of a blend of sesquiterpenes and sesquiterpenoid alcohols as the sesquiterpene synthase through GC–MS analysis. Subsequently, the major product was purified and identified as τ-cadinol through nuclear magnetic resonance spectroscopy (NMR) analysis, which was also detected in maize tissues infected by pathogen fungus for the first time. ZmTPS7 constitutively expressed in aerial tissues while with trace amount of transcript in roots. Fungus spore inoculation and methyl jasmonate (MeJA) treatment induced gene expression of ZmTPS7 in leaves, while exogenous ABA induced ZmTPS7 dramatically in roots, suggesting that ZmTPS7 might be involved in stress response. τ-cadinol was quantified in infected maize tissues with the concentration of ~200 ng/g fresh weight, however, which was much lower than the inhibitory one on two tested necrotrophic fungi. Such evidences indicate that anti-fungal activity of τ-cadinol is not physiologically relevant, and further investigation is needed to clarify its biological functions in maize. Taken together, ZmTPS7 was characterized as the τ-cadinol synthase and suggested to be involved in stress response, which also increased the diversity of maize terpenoid profile.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-03
    Description: Main conclusion The L. regale ATP-binding cassette transporter gene, LrABCF1 belonging to GCN subfamily, functions as a positive regulator of plant defense against Cucumber mosaic virus , Tobacco rattle virus , and Botrytis cinerea in petunia. ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1 , was identified from Cucumber mosaic virus (CMV)-induced cDNA library of L. regale . LrABCF1 was up-regulated upon inoculation with CMV and Lily mottle virus (LMoV). Salicylic acid (SA) and ethylene (ET) application and treatments with abiotic stresses such as cold, high salinity, and wounding increased the transcript abundances of LrABCF1 . Constitutive overexpression of LrABCF1 in petunia ( Petunia  ×  hybrida ) resulted in an impairment of plant growth and development. LrABCF1 overexpression conferred reduced susceptibility to CMV, Tobacco rattle virus (TRV), and B. cinerea infection in transgenic petunia plants, accompanying by elevated transcripts of PhGCN2 and a few defense-related genes in SA-signaling pathway. Our data indicate that LrABCF1 positively modulates viral and fungal resistance.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-05-11
    Description: Main conclusion Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice . For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer ( Scirpophaga incertulas ), rice leaf folder ( Cnaphalocrocis medinalis ) and rice horn caterpillar ( Melanitis leda ismene ) in T 1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T 1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette ( vip - lox - hpt - lox ) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase ( hpt II) gene. Crossing experiments were performed between T 1 plants with single insertion site of vip - lox - hpt - lox T-DNA and one T 1 plant with moderate expression of cre recombinase with linked bialaphos resistance ( syn   bar ) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) ( hpt II +  cre - syn   bar ), were established in subsequent generation through genetic segregation.
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...