ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (354)
  • Data
  • 2010-2014  (354)
  • 2005-2009
  • 1995-1999
  • 1980-1984
  • 1975-1979
  • 1960-1964
  • 1930-1934
  • 1925-1929
  • 2014  (354)
  • 1998
  • 1997
  • 1995
  • 1984
  • 1983
  • 1978
  • 1977
  • 1961
  • 1938
  • 1925
  • The Cryosphere Discussions  (177)
  • 92598
  • Geography  (354)
  • 1
    Publication Date: 2014-12-16
    Description: Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier disintegration, intercomparison of calculation methods, and impacts on mass balance modeling The Cryosphere Discussions, 8, 6147-6192, 2014 Author(s): L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect), and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers, compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium- to large-size glaciers so far, while observations on smaller ice bodies are scarce. Using a dataset from 8 on-glacier and 4 off-glacier weather stations, collected in summer 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and disintegration. None of the methods proposed in the literature for calculating on-glacier temperature from off-glacier data fully reproduced our observations. Among them, the more physically-based procedure of Greuell and Böhm (1998) provided the best overall results where the KBL prevail, but it was not effective elsewhere (i.e. on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-06
    Description: Strategy of valid 14 C dates choice in syngenetic permafrost The Cryosphere Discussions, 8, 5589-5621, 2014 Author(s): Y. K. Vasil'chuk and A. C. Vasil'chuk The main problem of radiocarbon dating within permafrost is the uncertain reliability of the 14 C dates. Syngenetic sediments contain allochthonous organic deposit that originated at a distance from its present position. Due to the very good preservation of organic materials in permafrost conditions and numerous re-burials of the fossils from ancient deposits into younger ones the dates could be both younger and older than the true age of dated material. The strategy for the most authentic radiocarbon date selection for dating of syncryogenic sediments is considered taking into account the fluvial origin of the syngenetic sediments. The re-deposition of organic material is discussed in terms of cyclic syncryogenic sedimentation and also the possible re-deposition of organic material in subaerial-subaqueous conditions. The advantages and the complications of dating organic micro-inclusions from ice wedges by the accelerator mass spectrometry (AMS) method are discussed applying to true age of dated material search. Radiocarbon dates of different organic materials from the same samples are compared. The younger age of the yedoma from cross-sections of Duvanny Yar in Kolyma River and Mamontova Khayata in the mouth of Lena River is substantiated due to the principle of the choice of the youngest 14 C date from the set.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-06
    Description: Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project The Cryosphere Discussions, 8, 5539-5588, 2014 Author(s): B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere–ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently published Bedmap2 bedrock topography indicate a significantly larger contribution to Pliocene sea-level rise from the East Antarctic ice sheet for all six models relative to the simulations with Bedmap1.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-07
    Description: Snow mass decrease in the Northern Hemisphere (1979/80–2010/11) The Cryosphere Discussions, 8, 5623-5644, 2014 Author(s): Z. Li, J. Liu, L. Huang, N. Wang, B. Tian, J. Zhou, Q. Chen, and P. Zhang Snow cover has a key effect on climate change and hydrological cycling, as well as water supply to a sixth of the world's population across the Northern Hemisphere. However, reliable data on trends in snow cover in the Northern Hemisphere is lacking. Snow water equivalent (SWE) is a common measure of the amount of equivalent water of the snow pack. Here we verify the accuracy of three existing global SWE products and merge the most accurate aspects of them to generate a new SWE product covering the last 32 years (1979/80–2010/11). Using this new SWE product, we show that there has been a significant decreasing trend in the total mass of snow in the Northern Hemisphere. The most notable changes in total snow mass are −16.45 ± 6.68 and −13.55 ± 7.80 Gt year −1 in January and February, respectively. These are followed by March and December, which have trends of −12.58 ± 6.88 and −10.70 ± 5.62 Gt year −1 , respectively, from 1979/80 to 2010/11. During the same period, the temperature in the study area raised 0.17 °C decade −1 , which is thought to be the main reason of SWE decline.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-07
    Description: Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya The Cryosphere Discussions, 8, 5645-5686, 2014 Author(s): R. J. Thayyen and A. P. Dimri Moisture, temperature and precipitation interplay forced through the orographic processes sustains the Himalayan cryospheric system. However, factors controlling the Slope Environmental Lapse Rate (SELR) of temperature along the higher Himalayan mountain slopes across various glacio-hydrologic regimes remain as a key knowledge gap. Present study dwells on the orographic processes driving the moisture–temperature interplay in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya. Systematic data collection at three altitudes between 2540 and 3763 m a.s.l. in the Garhwal Himalaya (hereafter called monsoon regime) and between 3500 and 5600 m a.s.l. in the Ladakh Himalaya (herefater called cold-arid regime) revealed moistrue control on temperature distribution at temporal and spatial scales. Observed daily SELR of temperature ranges between 9.0 to 1.9 °C km −1 and 17.0 to 2.8 °C km −1 in the monsoon and cold-arid regimes respectively highlighting strong regional variability. Moisture influx to the region, either from Indian summer monsoon (ISM) or from Indian winter monsoon (IWM) forced lowering of SELR. This phenophena of "monsoon lowering" of SELR is due to the release latent heat of condensation from orographically focred lifted air parcel. Seasonal response of SELR in the monsoon regime is found to be closly linked with the variations in the local lifting condensation levels (LCL). Contrary to this, cold-arid system is characterised by the extremely high values of daily SELR upto 17 °C km −1 signifying the extremely arid conditions prevailing in summer. Distinctly lower SELR devoid of monsoon lowering at higher altitude sections of monsoon and cold-arid regimes suggests sustained wetter high altitude regimes. We have proposed a SELR model for both glacio-hydrological regimes demostrating with two sections each using a derivative of the Clausius–Clapeyron relationship by deriving monthly SELR indices. It has been proposed that the manifestations of presence or absence of moisture is the single most important factor determining the temperature distribution along the higher Himalayan slopes driven by the orographic forcings. This work also suggests that the arbitary use of temperature lapse rate to extrapolate temperature to the higher Himalaya is extremely untenable.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-08
    Description: A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen The Cryosphere Discussions, 8, 5687-5726, 2014 Author(s): J. Oerlemans and W. J. J. van Pelt The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to AD 1300, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produces the correct Little Ice Age maximum glacier length and simulates the observed magnitude of the 1978-surge. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions will remain as they were for the period 1989–2010, the glacier will ultimately shrink to a length of about 4 km (but this will take hundreds of years). For a climate change scenario involving a 2 m yr −1 rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 12 km long. The main effect of a surge is to lower the mean surface elevation and to increase the ablation area, thereby causing a negative perturbation of the mass budget. We found that the occurrence of surges leads to a somewhat stronger retreat of the glacier in a warming climate. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude E . For a decrease of E of only 160 m, the glacier would steadily grow into the Woodfjorddalen until after 2000 years it would reach the Woodfjord and calving could slow down the advance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-06
    Description: Comparison of aeolian snow transport events and snow mass fluxes between observations and simulations made by the regional climate model MAR in Adélie Land, East Antarctica The Cryosphere Discussions, 8, 6007-6032, 2014 Author(s): A. Trouvilliez, H. Gallée, F. Naaim-Bouvet, C. Genthon, C. Amory, V. Favier, C. Agosta, L. Piard, and H. Bellot The regional climate model MAR including a coupled snow pack/aeolian snow transport parameterisation is compared with aeolian snow mass fluxes at a fine spatial resolution (5 km horizontally and 2 m vertically) and at a fine temporal resolution (30 min) over 1 month in Antarctica. Numerous feedbacks are taken into account in the MAR including the drag partitioning caused by the roughness elements. Wind speed is correctly simulated with a positive value of the Nash test (0.60 and 0.37) but the wind speeds above 10 m s −1 are underestimated. The aeolian snow transport events are correctly reproduced with a good temporal resolution except for the aeolian snow transport events with a particles' maximum height below 1 m. The simulated threshold friction velocity, calculated without snowfall, is overestimated. The simulated aeolian snow mass fluxes between 0 to 2 m have the same variations but are underestimated compared to the second-generation FlowCapt values and so is the simulated relative humidity at 2 m. This underestimation is not entirely due to the underestimation of the simulated wind speed. The MAR underestimates the aeolian snow quantity that pass through the first two meters by a factor ten compared to the second-generation FlowCapt value (13 990 kg m −1 and 151 509 kg m −1 respectively). It will conduct the MAR, with this parametrisation, to underestimate the effect of the aeolian snow transport on the Antarctic surface mass balance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-06
    Description: Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area The Cryosphere Discussions, 8, 6033-6057, 2014 Author(s): J. Gaume, G. Chambon, N. Eckert, M. Naaim, and J. Schweizer Dry-snow slab avalanches are generally caused by a sequence of fracture processes including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually improved our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically-based statistical model of the slab–WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by elasticity of the slab and the slab possible tensile failure. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and to trigger a tensile failure within the slab, (2) partial-slope release if fracture arrest and slab tensile failure occurs due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and of the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as it is often claimed in the literature.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-03
    Description: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica The Cryosphere Discussions, 8, 5961-6005, 2014 Author(s): S. Altnau, E. Schlosser, E. Isaksson, and D. Divine The spatial and temporal distribution of surface mass balance (SMB) and δ 18 O were investigated in the first comprehensive study of a set of 76 firn cores retrieved by various expeditions during the past three decades in Dronning Maud Land, East Antarctica. The large number of cores was used to calculate stacked records of SMB and δ 18 O, which considerably increased the signal-to-noise ratio compared to earlier studies and facilitated the detection of climatic signals. Considerable differences between cores from the interior plateau and the coastal cores were found. The δ 18 O of both the plateau and the ice shelf cores exhibit a slight positive trend over the second half of the 20th century. In the corresponding period, the SMB has a negative trend in the ice shelf cores, but increases on the plateau. Comparison with meteorological data from Neumayer Station revealed that for the ice shelf regions atmospheric dynamic effects are more important than thermodynamics, while on the plateau, the temporal variations of SMB and δ 18 O occur mostly in parallel, thus can be explained by thermodynamic effects. The Southern Annular Mode (SAM) exhibits a positive trend since the mid-1960s, which is assumed to lead to a cooling of East Antarctica. This is not confirmed by the firn core data in our data set. Changes in the atmospheric circulation that result in a changed seasonal distribution of precipitation/accumulation could partly explain the observed features in the ice shelf cores.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-11
    Description: Brief Communication: Light-absorbing impurities can reduce the density of melting snow The Cryosphere Discussions, 8, 259-271, 2014 Author(s): O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta Climatic effects of Black Carbon (BC) deposition on snow have been proposed to result from reduced snow albedo and increased melt due to light-absorbing particles. In this study, we hypothesize that BC may decrease the liquid water retention capacity of melting snow, and present our first data, where both the snow density and elemental carbon content were measured. In our experiments, artificially added light-absorbing impurities decreased the density of seasonally melting natural snow. We also suggest three possible processes that might lead to the lower snow density.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-01-15
    Description: Fabric measurement along the NEEM ice core, Greenland, and comparison with GRIP and NGRIP ice cores The Cryosphere Discussions, 8, 307-335, 2014 Author(s): M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat Fabric (distribution of crystallographic orientations) profile along the full NEEM ice core, Greenland, is presented in this work. Data were measured in the field by an Automatic Ice Texture Analyzer every 10 m, from 33 m down to 2461 m depth. The fabric evolves from a slightly anisotropic fabric at the top, toward a strong single maximum at about 2300 m, which is typical of a deformation pattern mostly driven by uniaxial compression and simple shearing. A sharp increase in the fabric strengthening is observed at the Holocene to Wisconsin climatic transition. A similar strengthening, toward an anisotropic single maximum-type fabric, has been observed in several ice cores from Greenland and Antarctica, and can be attributed to a positive feedback between changes in ice viscosity at the climatic transition, and the impact of a shear component of stress. Centimeter scale abrupt texture (fabric and microstructure) variations are observed in the bottom part of the core. Their positions are in good agreement with the folding hypothesis used for a climatic reconstruction by Dahl-Jensen et al. (2013). Comparison is made to two others ice cores drilled along the same ridge; the GRIP ice core drilled at the summit of the ice sheet, and the NorthGRIP ice core, drilled 325 km to the NNW of the summit along the ridge, and 365 km upstream from NEEM. The fabric profile clearly reflects the increase in shear deformation when moving NW along the ridge from GRIP to NorthGRIP and NEEM. The difference in fabric profiles between NEEM and NorthGRIP also evidences a stronger lateral extension associated with a sharper ridge at NorthGRIP.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-01-15
    Description: Parameterization of basal hydrology near grounding lines in a one-dimensional ice sheet model The Cryosphere Discussions, 8, 363-419, 2014 Author(s): G. R. Leguy, X. S. Asay-Davis, and W. H. Lipscomb Ice sheets and ice shelves are linked by the transition zone, the region where the grounded ice lifts off the bedrock and begins to float. Adequate resolution of the transition zone is necessary for numerically accurate ice sheet–ice shelf simulations. The required resolution depends on how the basal physics is parameterized. We propose a new, simple parameterization of the basal hydrology in a one-dimensional vertically integrated model. This parameterization accounts for connectivity between the basal hydrological system and the ocean in the transition zone. Our model produces a smooth transition between finite basal friction in the ice sheet and zero basal friction in the ice shelf. Through a set of experiments based on the Marine Ice Sheet Model Intercomparison Project (MISMIP), we show that a smoother basal shear stress, in addition to adding physical realism, significantly improves the numerical accuracy of our fixed-grid model, allowing for reliable grounding-line dynamics at resolutions ~1 km.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-01-14
    Description: A spurious jump in the satellite record: is Antarctic sea ice really expanding? The Cryosphere Discussions, 8, 273-288, 2014 Author(s): I. Eisenman, W. N. Meier, and J. R. Norris Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that the increase in the reported trend occurred primarily due to the effect of a previously undocumented change in the way the satellite sea ice observations are processed for the widely-used Bootstrap algorithm dataset, rather than a physical increase in the rate of ice advance. Although our analysis does not definitively identify whether this undocumented change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current dataset or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the dataset. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that this expansion may be a spurious artifact of an error in the satellite observations, and that the actual Antarctic sea ice cover may not be expanding at all.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-01-16
    Description: Present and future variations in Antarctic firn air content The Cryosphere Discussions, 8, 421-451, 2014 Author(s): S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke A firn densification model (FDM) is used to assess spatial and temporal (1979–2200) variations in the depth, density and temperature of the firn layer covering the Antarctic ice sheet (AIS). Results from a time-dependent version of the FDM are compared to more commonly used steady-state FDM results. Although the average AIS firn air content (FAC) between both models is similar (22.5 m), large spatial differences are found: in the ice-sheet interior, the steady-state model underestimates the FAC by up to 2 m, while the FAC is overestimated by 5–15 m along the ice-sheet margins, due to significant surface melt. Applying the steady-state FAC values to convert surface elevation to ice thickness (i.e. assuming flotation at the grounding line) potentially results in an underestimation of ice discharge at the grounding line, and hence an underestimation of current AIS mass loss by 23.5%, or 16.7 Gt yr −1 (with regard to the reconciled estimate over 1992–2011, Shepherd et al., 2012). The timing of the measurement is also important as temporal FAC variations of 1–2 m are simulated within the 33 yr period. Until 2200, the Antarctic FAC is projected to change due to a combination of increasing accumulation, temperature and surface melt. The latter two result in a decrease of FAC, due to (i) more refrozen meltwater, (ii) a higher densification rate and (iii) a faster firn-to-ice transition at the bottom of the firn layer. These effects are however more than compensated by increasing snowfall, leading to a 4–14% increase in FAC. Only in melt-affected regions, future FAC is simulated to decrease, with the largest changes (−50 to −80%) on the ice shelves in the Antarctic Peninsula and Dronning Maud Land. Integrated over the AIS, increased precipitation results in a combined ice and air volume increase of ∼300 km 3 yr −1 until 2100, equivalent to an elevation change of +2.1 cm yr −1 . This shows that variations in firn depth remain important to consider in future mass balance studies using (satellite) altimetry.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-01-22
    Description: Dynamic response of Antarctic ice shelves to bedrock uncertainty The Cryosphere Discussions, 8, 479-508, 2014 Author(s): S. Sun, S. L. Cornford, Y. Liu, and J. C. Moore Bedrock geometry is an essential boundary condition in ice sheet modelling. The shape of the bedrock on fine scales can influences ice sheet evolution, for example through the formation of pinning points that alter grounding line dynamics. Here we test the sensitivity of the BISICLES adaptive mesh ice sheet model to small amplitude height fluctuations on different spatial scales in the bed rock topography provided by bedmap2 in the catchments of Pine Island Glacier, the Amery Ice Shelf, and a region of East Antarctica including the Denman and Totten Glaciers. We generate an ensemble of bedrock topographies by adding random noise to the bedmap2 data with amplitude determined by the accompanying estimates of bedrock uncertainty. Lower frequency coherent noise, which generates broad spatial scale (over 10s of km) errors in topography with relatively gently slopes, while higher frequency noise has steeper slopes over smaller spatial scales. We find that the small amplitude fluctuations result in only minor changes in the way these glaciers evolve. However, lower frequency noise is more important than higher frequency noise even when the features have the same height amplitudes and the total noise power is maintained. This provides optimism for credible sea level rise estimates with presently achievable densities of thickness measurements. Pine Island Glacier appears to be the most sensitive to errors in bed topography, while Lambert–Amery is stable under the present day observational data uncertainty. Totten–Denman region may undergo a retreat around Totten ice shelf, where the bedrock is lower than the sea level, especially if basal melt rates increase.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-01-14
    Description: How old is the ice beneath Dome A, Antarctica? The Cryosphere Discussions, 8, 289-305, 2014 Author(s): B. Sun, J. C. Moore, T. Zwinger, Z. Liyun, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín Chinese scientists will start to drill a deep ice core at Kunlun station near Dome A in the near future. Recent work has predicted that Dome A is a location where ice older than 1 million years can be found. We model flow, temperature and the age of the ice by applying a three-dimensional, thermo-mechanically coupled full-Stokes model to a 70 km × 70 km domain around Kunlun station, using isotropic non-linear rheology and different prescribed anisotropic ice fabrics that vary the evolution from isotropic to single maximum at 1/3 or 2/3 depths. The variation in fabric is about as important as the uncertainties in geothermal heat flux in determining the vertical advection which in consequence controls both the basal temperature and the age profile. We find strongly variable basal ages across the domain since the ice varies greatly in thickness and any basal melting effectively removes very old ice in the deepest parts of the subglacial valleys. Comparison with dated radar isochrones in the upper one third of the ice sheet cannot sufficiently constrain the age of the deeper ice, with uncertainties as large as 500 000 yr in the basal age. We also assess basal age and thermal state sensitivities to geothermal heat flux and surface conditions. Despite expectations of modest changes in surface height over a glacial cycle at Dome A, even small variations in the evolution of surface conditions cause large variation in basal conditions which is consistent with basal accretion features seen in radar surveys.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-01-23
    Description: A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover The Cryosphere Discussions, 8, 509-536, 2014 Author(s): K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller In permafrost environments exposed to strong winds, drifting snow can create a small-scale pattern of strongly variable snow heights which has profound implications for the thermal regime of the ground. Arrays of 26 to more than 100 temperature loggers were installed to record the distribution of ground surface temperatures within three study areas across a climatic gradient from continuous to sporadic permafrost in Norway. A variability of the mean annual ground surface temperature of up to 6 °C was documented within areas of 0.5 km 2 . The observed variation can to a large degree be explained by variation in snow height. Permafrost models employing averages of snow height for grid cells of e.g. 1 km 2 are not capable of representing such sub-grid variability. We propose a statistical representation of the sub-grid variability of ground surface temperatures and demonstrate that a simple equilibrium permafrost model can reproduce the temperature distribution within a grid-cell based on the distribution of snow heights.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-04-29
    Description: Repeat UAV photogrammetry to assess calving front dynamics at a large outlet glacier draining the Greenland Ice Sheet The Cryosphere Discussions, 8, 2243-2275, 2014 Author(s): J. C. Ryan, A. L. Hubbard, J. Todd, J. R. Carr, J. E. Box, P. Christoffersen, T. O. Holt, and N. Snooke To quantify the ice-ocean processes which drive dynamic and geometric change at calving outlet glaciers, detailed measurements beyond the capability of present satellites are required. This study presents the application of a cost-effective ( 〈 USD 2000), unmanned aerial vehicle (UAV) to investigate frontal dynamics at a major outlet draining the western sector of the Greenland Ice Sheet. The UAV was flown over Store Glacier on three sorties during summer 2013 and acquired over 2000 overlapping, geo-tagged images of the calving front at ∼40 cm resolution. Stereo-photogrammetry applied to these images enabled the extraction of high-resolution digital elevation models with an accuracy of ±1.9 m which we used to quantify glaciological processes from early July to August 2013. The central zone of the calving front advanced by ~500 m whilst the lateral margins remained stable. In addition, the ice surface thinned by 3.5 m m −1 during the melt-season in association with dynamic thinning. Ice flux through the calving front is calculated at 2.96 × 10 7 m 3 d −1 , equivalent to 11 Gt a −1 , which is comparable to flux-gate estimates of Store Glacier's annual discharge. Water-filled crevasses were observed throughout the observation period, but covered a limited area (1200 to 12 000 m 2 of the ∼5 × 10 6 m 2 surveyed area) and did not appear to exert any significant control over calving. We conclude that the use of repeat UAV surveys coupled with the processing techniques outlined in this paper have a number of important potential applications to tidewater outlet glaciers.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-04-25
    Description: Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present The Cryosphere Discussions, 8, 2005-2041, 2014 Author(s): J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick Many tidewater glaciers in Greenland are known to have undergone significant retreat during the last century following their Little Ice Age maxima. Where it is possible to reconstruct glacier change over this period, they provide excellent records for comparison to climate records, and calibration/validation for numerical models. These records therefore allow tests of numerical models that seek to simulate tidewater glacier behaviour over multi-decadal to centennial timescales. Here we present a detailed record of behaviour from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859–2012 and compare it against available oceanographic and atmospheric temperature variability between 1871–2012. We also use these records to evaluate the ability of a well-established one-dimensional flow-band model to replicate behaviour for the observation period. The record of terminus change demonstrates that KNS has advanced/retreated in phase with atmosphere and ocean climate anomalies averaged over multi-annual to decadal timescales. Results from an ensemble of model runs demonstrate that observed dynamics can be replicated, with changes in atmospheric forcing not needing to be offset by changes in oceanic forcing sensitivity. Furthermore, successful runs always require a significant atmospheric forcing component, while an oceanic forcing component is not always needed. Although the importance of oceanic forcing cannot be discounted, these results demonstrate that changes in atmospheric forcing are likely to be a primary driver of the terminus fluctuations of KNS from 1859–2012.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-04-26
    Description: Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams The Cryosphere Discussions, 8, 2119-2177, 2014 Author(s): J. Thompson, M. Simons, and V. C. Tsai Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams. Data from Whillans Ice Plain, Rutford Ice Stream, and other Antarctic ice streams show periodicity in flow velocity at periods similar to those of ocean tides at geodetic stations many tens of kilometers inland from the grounding line. These data suggest that ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude farther inland than tidal flexure of the ice stream alone. Recent models exploring the role of tidal perturbations in basal shear stress are primarily two-dimensional, with the impact of the ice stream margins either ignored or parameterized. Here, we use two- and three-dimensional finite element modeling to investigate transmission of tidal stresses in ice streams and the impact of considering more realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, exponential decay in the stress due to resistance at the ice stream margins. This behavior is independent of basal conditions beneath the ice stream and cannot be fit to observations using either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice stream from its lateral margins. Our results suggest that a mechanism external to the ice stream is necessary to explain the tidal modulation of stresses far upstream of the grounding line for narrow ice streams. We propose a hydrologic model based on time-dependent variability in till strength to explain transmission of tidal stresses inland of the grounding line. This conceptual model reproduces observations from Rutford Ice Stream.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-04-26
    Description: Quantifying the Jakobshavn Effect: Jakobshavn Isbrae, Greenland, compared to Byrd Glacier, Antarctica The Cryosphere Discussions, 8, 2043-2118, 2014 Author(s): T. Hughes, A. Sargent, J. Fastook, K. Purdon, J. Li, J.-B. Yan, and S. Gogineni The Jakobshavn Effect is a series of positive feedback mechanisms that was first observed on Jakobshavn Isbrae, which drains the west-central part of the Greenland Ice Sheet and enters Jakobshavn Isfjord at 69°10'. These mechanisms fall into two categories, reductions of ice-bed coupling beneath an ice stream due to surface meltwater reaching the bed, and reductions in ice-shelf buttressing beyond an ice stream due to disintegration of a laterally confined and locally pinned ice shelf. These uncoupling and unbuttressing mechanisms have recently taken place for Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland, respectively. For Byrd Glacier, no surface meltwater reaches the bed. That water is supplied by drainage of two large subglacial lakes where East Antarctic ice converges strongly on Byrd Glacier. Results from modeling both mechanisms are presented here. We find that the Jakobshavn Effect is not active for Byrd Glacier, but is active for Jakobshavn Isbrae, at least for now. Our treatment is holistic in the sense it provides continuity from sheet flow to stream flow to shelf flow. It relies primarily on a force balance, so our results cannot be used to predict long-term behavior of these ice streams. The treatment uses geometrical representations of gravitational and resisting forces that provide a visual understanding of these forces, without involving partial differential equations and continuum mechanics. The Jakobshavn Effect was proposed to facilitate terminations of glaciation cycles during the Quaternary Ice Age by collapsing marine parts of ice sheets. This is unlikely for the Antarctic and Greenland ice sheets, based on our results for Byrd Glacier and Jakobshavn Isbrae, without drastic climate warming in high polar latitudes. Warming would affect other Antarctic ice streams already weakly buttressed or unbuttressed by an ice shelf. Ross Ice Shelf would still protect Byrd Glacier.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-03-20
    Description: Representing moisture fluxes and phase changes in glacier debris cover using a single-reservoir approach The Cryosphere Discussions, 8, 1589-1629, 2014 Author(s): E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush Due to the complexity of treating moisture in supraglacial debris, surface energy balance models to date have neglected moisture infiltration and phase changes in the debris layer. The latent heat flux (QL) is also often excluded due to the uncertainty in determining the surface vapour pressure. To quantify the importance of moisture on the surface energy and climatic mass balance (CMB) of debris-covered glaciers, we developed a simple, single-reservoir parameterization for the debris ice and water content, as well as an estimation of the latent heat flux. The parameterization was incorporated into a sophisticated CMB model adapted for debris-covered glaciers. We perform two point simulations using both our new "moist" and the conventional "dry" approaches, on the Miage Glacier, Italy, during summer 2008 and fall 2011. The former simulation coincides with available in situ glaciological and meteorological measurements, including the first eddy-covariance measurements of the turbulent fluxes over supraglacial debris, while the latter contains two refreeze events that permit evaluation of the influence of phase changes. The simulations demonstrate a clear influence of moisture on the glacier energy and mass dynamics. Heat transmission to the underlying ice is lower, as the effective thermal diffusivity of the debris is reduced by increases in the weighted density and specific heat capacity when water and ice are considered. In combination with surface heat extraction by QL, sub-debris ice melt is reduced by 2.3% in 2008 and by 2.8% in 2011 when moisture effects are included. However, mass loss due to surface vapour fluxes more than compensates for the reduction in ice melt, such that the total accumulated ablation increased by 5.3% in 2008 and by 2.8% in 2011. Although the parameterization is a simplified representation of the moist physics of glacier debris, it is a novel attempt at including moisture in a numerical model of debris-covered glaciers and opens up additional avenues of future research.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-01-24
    Description: Hybrid inventory, gravimetry and altimetry (HIGA) mass balance product for Greenland and the Canadian Arctic The Cryosphere Discussions, 8, 537-580, 2014 Author(s): W. Colgan, W. Abdalati, M. Citterio, B. Csatho, X. Fettweis, S. Luthcke, G. Moholdt, and M. Stober We present a novel inversion algorithm that generates a mass balance field that is simultaneously consistent with independent observations of glacier inventory derived from optical imagery, cryosphere-attributed mass changes derived from satellite gravimetry, and ice surface elevation changes derived from airborne and satellite altimetry. We use this algorithm to assess mass balance across Greenland and the Canadian Arctic over the December 2003 to December 2010 period at 26 km resolution. We assess a total mass loss of 316 ± 37 Gt a −1 over Greenland and the Canadian Arctic, with 217 ± 20 Gt a −1 being attributed to the Greenland Ice Sheet proper, and 38 ± 6 Gt a −1 and 50 ± 8 Gt a −1 being attributed to peripheral glaciers in Greenland and the Canadian Arctic, respectively. These absolute values are dependent on the gravimetry-derived spherical harmonic representation we invert. Our attempt to validate local values of algorithm-inferred mass balance reveals a paucity of in situ observations. At four sites, where direct comparison between algorithm-inferred and in situ mass balance is valid, we find an RMSD of 0.18 m WE a −1 . Differencing algorithm-inferred mass balance with previously modelled surface mass balance, in order to solve the ice dynamic portion of mass balance as a residual, allows the transient glacier continuity equation to be spatially partitioned across Greenland.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-01-25
    Description: Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS) The Cryosphere Discussions, 8, 691-719, 2014 Author(s): P. Vallelonga, K. Christianson, R. B. Alley, S. Anandakrishnan, J. E. M. Christian, D. Dahl-Jensen, V. Gkinis, C. Holme, R. W. Jacobel, N. Karlsson, B. A. Keisling, S. Kipfstuhl, H. A. Kjær, M. E. L. Kristensen, A. Muto, L. E. Peters, T. Popp, K. L. Riverman, A. M. Svensson, C. Tibuleac, B. M. Vinther, Y. Weng, and M. Winstrup The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607–2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-01-25
    Description: An improved CryoSat-2 sea ice freeboard and thickness retrieval algorithm through the use of waveform fitting The Cryosphere Discussions, 8, 721-768, 2014 Author(s): N. T. Kurtz, N. Galin, and M. Studinger We develop an empirical model capable of simulating the mean echo power cross product of CryoSat-2 SAR and SARIn mode waveforms over sea ice covered regions. The model simulations are used to show the importance of variations in the radar backscatter coefficient with incidence angle and surface roughness for the retrieval of surface elevation of both sea ice floes and leads. The numerical model is used to fit CryoSat-2 waveforms to enable retrieval of surface elevation through the use of look-up tables and a bounded trust region Newton least squares fitting approach. The use of a model to fit returns from sea ice regions offers advantages over currently used threshold retracking methods which are here shown to be sensitive to the combined effect of bandwidth limited range resolution and surface roughness variations. Laxon et al. (2013) have compared ice thickness results from CryoSat-2 and IceBridge, and found good agreement, however consistent assumptions about the snow depth and density of sea ice were not used in the comparisons. To address this issue, we directly compare ice freeboard and thickness retrievals from the waveform fitting and threshold tracker methods of CryoSat-2 to Operation IceBridge data using a consistent set of parameterizations. For three IceBridge campaign periods from March 2011–2013, mean differences (CryoSat-2 – IceBridge) of 0.144 m and 1.351 m are respectively found between the freeboard and thickness retrievals using a 50% sea ice floe threshold retracker, while mean differences of 0.019 m and 0.182 m are found when using the waveform fitting method. This suggests the waveform fitting technique is capable of better reconciling the sea ice thickness data record from laser and radar altimetry data sets through the usage of consistent physical assumptions.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-01-24
    Description: Insights into ice stream dynamics through modeling their response to tidal forcing The Cryosphere Discussions, 8, 659-689, 2014 Author(s): S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green The tidal forcing of ice streams at their ocean boundary can serve as a natural experiment to gain an insight into their dynamics and constrain the basal sliding law. A 3-D visco-elastic full Stokes model of coupled ice-stream ice-shelf flow is used to investigate the response of ice streams to ocean tides. In agreement with previous results based on flow-line modeling and with a fixed grounding line position, we find that a non-linear basal sliding law can reproduce long period modulation of tidal forcing found in field observations, and the inclusions of lateral effects and grounding line migration do not alter this result. Further analysis of modeled ice stream flow shows a varying stress-coupling length scale of boundary effects upstream of the grounding line. We derive a visco-elastic stress coupling length scale from ice stream equations that depends on the forcing period and closely agrees with model output.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-01-28
    Description: Thermal resistances in the Everest Area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model The Cryosphere Discussions, 8, 887-918, 2014 Author(s): D. R. Rounce and D. C. McKinney Debris thickness is an important characteristic of many debris-covered glaciers in the Everest region of the Himalayas. The debris thickness controls the melt rates of the glaciers, which has large implications for hydrologic models, the glaciers response to climate change, and the development of glacial lakes. Despite its importance, there is little knowledge of how the debris thickness varies over these glaciers. This paper uses an energy balance model in conjunction with Landsat7 ETM+ satellite imagery to derive thermal resistances, which is the debris thickness divided by the thermal conductivity. The developed model accounts for the nonlinear temperature gradient in the debris cover to derive accurate thermal resistances. Fieldwork performed on Lhotse Shar/Imja glacier in September 2013 was used to validate the satellite-derived thermal resistances. Results indicate that accounting for the nonlinear temperature gradient is crucial. Furthermore, correcting the incoming shortwave radiation term for the effects of topography and including the turbulent heat fluxes is imperative to derive accurate thermal resistances. Since the topographic correction is important, the model will improve with the quality of the DEM. The main limitation of this work is the poor resolution (60 m) of the satellite's thermal band. The derived thermal resistances are accurate at this resolution, but are unable to derive trends related to slope and aspect on a finer scale. Nonetheless, the study finds this model derives accurate thermal resistances on this scale and is transferable to other debris-covered glaciers in the Everest region.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-01-28
    Description: Sea ice melt pond fraction estimation from dual-polarisation C-band SAR – Part 2: Scaling in situ to Radarsat-2 The Cryosphere Discussions, 8, 845-885, 2014 Author(s): R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber Observed changes in the Arctic have motivated efforts to understand and model its components as an integrated and adaptive system at increasingly finer scales. Sea ice melt pond fraction, an important summer sea ice component affecting surface albedo and light transmittance across the ocean-sea ice–atmosphere interface, is inadequately parameterized in models due to a lack of large scale observations. In this paper, results from a multi-scale remote sensing program dedicated to the retrieval of pond fraction from satellite C-band synthetic aperture radar (SAR) are detailed. The study was conducted on first-year sea (FY) ice in the Canadian Arctic Archipelago during the summer melt period in June 2012. Approaches to retrieve the subscale FY ice pond fraction from mixed pixels in RADARSAT-2 imagery, using in situ, surface scattering theory, and image data are assessed. Each algorithm exploits the dominant effect of high dielectric free-water ponds on the VV/HH polarisation ratio (PR) at moderate to high incidence angles (about 40° and above). Algorithms are applied to four images corresponding to discrete stages of the seasonal pond evolutionary cycle, and model performance is assessed using coincident pond fraction measurements from partitioned aerial photos. A RMSE of 0.07, across a pond fraction range of 0.10 to 0.70, is achieved during intermediate and late seasonal stages. Weak model performance is attributed to wet snow (pond formation) and synoptically driven pond freezing events (all stages), though PR has utility for identification of these events when considered in time series context. Results demonstrate the potential of wide-swath, dual-polarisation, SAR for large-scale observations of pond fraction with temporal frequency suitable for process-scale studies and improvements to model parameterizations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-01-28
    Description: Sea ice melt pond fraction estimation from dual-polarisation C-band SAR – Part 1: In situ observations The Cryosphere Discussions, 8, 805-844, 2014 Author(s): R. K. Scharien, J. Landy, and D. G. Barber An understanding of the evolution of melt ponds on Arctic sea ice is important for climate model parameterizations, weather forecast models, and process studies involving mass, energy and biogeochemical exchanges across the ocean-sea ice–atmosphere interface. A field campaign was conducted on landfast first-year sea ice in the Canadian Arctic Archipelago during the summer of 2012, to examine the potential for estimating melt pond fraction from C-band synthetic aperture radar (SAR). In this study, in situ dual-polarisation radar scatterometer observations of pond covered ice are combined with surface physical measurements to analyse the effects of radar and surface parameters on backscatter. LiDAR measurements of ice surface roughness and ultrasonic wind-wave height profiles of melt ponds are used to quantify the sea ice surface rms-height. Variables contributing to the roughness of wind-generated melt pond surface waves within the fetch-limited pond environment are evaluated, and we show that pond roughness and backscatter cannot be explained by wind speed alone. The utility of the VV / HH polarisation ratio (PR) for retrieving melt pond properties including pond fraction, due to the dielectric contrast between free surface water and sea ice, is demonstrated and explained using Bragg scattering theory. Finally, the PR approach is discussed in the context of retrievals from satellite C-, L-, and P-band dual-polarisation SAR.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-01-28
    Description: Dating of a Dome Fuji (Antarctica) shallow ice core by volcanic signal synchronization with B32 and EDML1 chronologies The Cryosphere Discussions, 8, 769-804, 2014 Author(s): Y. Motizuki, Y. Nakai, K. Takahashi, M. Igarashi, H. Motoyama, and K. Suzuki We found extremely good synchronization of volcanic eruption signals between a shallow ice core drilled at Dome Fuji in 2001 (DF01 core) and the B32 shallow ice core from Dronning Maud Land, East Antarctica. We then applied volcanic signature matching to transfer the B32 chronology constructed by annual layer counting to a portion of the DF01 core for which annual layer counting was difficult because of the low precipitation rate. Matching was done by careful comparison of non-sea-salt sulfate (nssSO 4 2− ) data, which have a temporal resolution of about 1 yr, between the DF01 and B32 cores. The newly obtained chronology is called DFS1 (Dome Fuji Shallow ice core 1). In total, 31 volcanic eruptions were synchronized from AD 1900 back to AD 187, the earliest volcanic eruption date in the B32 core. The mean accumulation rate between synchronized volcanic horizons of the Dome Fuji core relative to rates at the B32 core drilling site did not differ significantly between these dates, increasing our confidence in this matching approach. We also used the B32-correlated EDML1/EDC3 chronology obtained from the top part of the EPICA Dronning Maud Land (DML) deep ice core to date a portion of the DF01 core. This new chronology, called DFS2 (Dome Fuji Shallow ice core 2), uses the correlations between B32 and EDML1/EDC3 ages to date the DF01 core from AD 1900 back to AD 199; moreover, four volcanic eruption dates from the EDML1/EDC3 chronology were used to date the interval from AD 199 back to AD 1. Because the EDML1/EDC3 ages were determined by adopting the B32 chronology back to AD 1170, DFS1 and DFS2 dates are identical between AD 1170 and 1900. These two methods enabled us to obtain a detailed chronology of the DF01 core, in particular the part before the last millennium, which has been difficult before this. We also present the absolute mean accumulation rates at Dome Fuji between AD 1 and 1900, based on the DFS1 and DFS2 chronologies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-02-26
    Description: Climatic and topographic influences on glacier distribution in the Bhutan Himalaya The Cryosphere Discussions, 8, 1305-1336, 2014 Author(s): H. Nagai, K. Fujita, A. Sakai, T. Nuimura, and T. Tadono The locations and extent of mountain glaciers are affected by climatic constraints such as air temperature, precipitation, and solar radiation, as well as by local topography, which influences avalanche accumulation and debris supply. To evaluate these influences on the elevational distribution of glaciers in the Bhutan Himalaya, we created a glacier inventory together with debris-covered area and potential material-supply (PMS) slopes using satellite images with high spatial resolution. The median elevation of a glacier, which is used as a proxy of the equilibrium line altitude (ELA), decreases with increasing annual precipitation, suggesting the influence of climatic factors, according to which the ELA is lowered in relatively warm and humid environments, and raised when the opposite conditions prevail. We found a weak but significant influence of topography on the elevational distribution of glaciers, indicated by the relationship between the deviation of the median elevation of an individual glacier from the regional average and the PMS slope ratio (defined as the ratio of the PMS slope area to glacier area). We further analysed the dependency of the median glacier elevation on the gradient and aspect of PMS slopes. We found that the median elevation is affected by the avalanche-driven redistribution of snow accumulation on debris-free glaciers, and that in debris-covered glaciers the debris supply affects glacier extent through the insulation effect of the debris layer.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-02-26
    Description: Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs The Cryosphere Discussions, 8, 1383-1406, 2014 Author(s): P. J. Hezel, T. Fichefet, and F. Massonnet Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-02-11
    Description: The impact of ice layers on gas transport through firn The Cryosphere Discussions, 8, 1095-1110, 2014 Author(s): K. Keegan, M. R. Albert, and I. Baker Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present which may alter transport dynamics in ways that may reduce the accuracy of climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. Both ice layers were somewhat permeable. However, only the shallower ice layer was significantly less permeable than the surrounding firn and is therefore likely to retard gas transport. Large closed bubbles were found in one ice layer, which would contain older atmospheric samples than expected. Theses bubbles are likely to significantly bias age estimates. Conversely, the permeability and thickness of ice layers at NEEM suggest that they will not significantly bias the expected firn air concentration profiles at the present spatial resolution at which these data are collected. Therefore, ice layers do not need to be accounted for in gas transport models at NEEM. However, the microstructure of these ice layers indicates that larger melting events could significantly bias ice core records.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-02-21
    Description: Union Glacier: a new exploration gateway for the West Antarctic Ice Sheet The Cryosphere Discussions, 8, 1227-1256, 2014 Author(s): A. Rivera, R. Zamora, J. A. Uribe, R. Jaña, and J. Oberreuter Union Glacier (79°46' S/83°24' W) in the West Antarctic Ice Sheet (WAIS), has been used by the private company Antarctic Logistic and Expeditions (ALE) since 2007 for their landing and commercial operations, providing a unique logistic opportunity to perform glaciological research in a vast region, including the Ice divide between Institute and Pine Island glaciers and the Subglacial Lake Ellsworth. Union glacier is flowing into the Ronne Ice Shelf, where future migrations of the grounding line zone (GLZ) in response to continuing climate and oceanographic changes have been modelled. In order to analyse the potential impacts on Union glacier of this scenario, we installed an array of stakes, where ice elevation, mass balance and ice velocities have been measured since 2007, resulting in near equilibrium conditions with horizontal displacements between 10 and 33 m yr −1 . GPS receivers and three radar systems have been also used to map the subglacial topography, the internal structure of the ice and the presence of crevasses along surveyed tracks. The resulting radar data showed a subglacial topography with a minimum of 858 m below sea level, much deeper than estimated before. The below sea level subglacial topography confirms the potential instability of the glacier in foreseen scenarios of GLZ upstream migration during the second half of the XXI century.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-02-22
    Description: Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age The Cryosphere Discussions, 8, 1257-1278, 2014 Author(s): S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, N. J. Korsgaard, A. A. Bjørk, J. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance at the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 10 to more than 150 yr. We show that although the frontal portion of HG thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, KG was stable from 1981 to 1998 and experienced major thinning only after 2003. Extending the record back to the end of the Little Ice Age (ca. 1850) shows no significant thinning of HG from 1850 to 1981, while KG underwent substantial thinning of ~265 m. Analyses of their sensitivity to sub-surface water temperature anomalies and variations in air temperature suggest that both HG and KG are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. At century time-scales, however, multiple external parameters (e.g. outlet shape) dominate the mass change. These findings undermine attempts to use measurements over the last decade as initial conditions to project future dynamic ice loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-03-26
    Description: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 The Cryosphere Discussions, 8, 1673-1721, 2014 Author(s): V. Helm, A. Humbert, and H. Miller The ESA satellite CryoSat-2 has been observing Earth's polar regions since April 2010. It carries a sophisticated radar altimeter and aims for the detection of changes in sea ice thickness as well as surface elevation changes of Earth's land and marine ice sheets. This study focuses on the Greenland and Antarctic ice sheets, considering the contemporary elevation of their surfaces. Based on 2 years of CryoSat-2 data acquisition, elevation change maps and mass balance estimates are presented. Additionally, new digital elevation models (DEMs) and the corresponding error maps are derived. Due to the high orbit of CryoSat-2 (88° N/S) and the narrow across-track spacing, more than 99% of Antarctica's surface area is covered. In contrast, previous radar altimeter measurements of ERS1/2 and ENVISAT were limited to latitudes between 81.5° N and 81.5° S and to surface slopes below 1°. The derived DEMs for Greenland and Antarctica have an accuracy which is similar to previous DEMs obtained by satellite-based laser and radar altimetry (Liu et al., 2001; Bamber et al., 2009, 2013; Fretwell et al., 2013; Howat et al., 2014). Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an error of less than 3 m ± 30 m. For both ice sheets the surface elevation change rates between 2011 and 2012 are presented at a resolution of 1 km. Negative elevation changes are concentrated at the west and south-east coast of Greenland and in the Amundsen Sea embayment in West Antarctica (e.g. Pine Island and Thwaites glaciers). They agree well with the dynamic mass loss observed by ICESat between 2003 and 2008 (Pritchard et al., 2009). Thickening occurs along the main trunk of Kamb Ice Stream and in Dronning Maud Land. While the former is a consequence of an ice stream stagnated ∼150 years ago (Rose, 1979; Retzlaff and Bentley, 1993), the latter represents a known large-scale accumulation event (Lenaerts et al., 2013). This anomaly partly compensates for the observed increased volume loss in West Antarctica. In Greenland the findings reveal an increased volume loss of a factor of 2 compared to the period 2003 to 2008. The combined volume loss of Greenland and Antarctica for the period 2011 and 2012 is estimated to be −448 ± 122 km 3 yr −1 .
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-03-27
    Description: A 1-D model study of Arctic sea-ice salinity The Cryosphere Discussions, 8, 1723-1793, 2014 Author(s): P. J. Griewank and D. Notz We use a 1-D model to study how salinity evolves in Arctic sea ice. To do so, we first explore how sea-ice surface melt and flooding can be incorporated into the 1-D thermodynamic SAMSIM sea-ice model presented by Griewank and Notz (2013). We introduce flooding and a flushing parametrization which treats sea ice as a hydraulic network of horizontal and vertical fluxes. Forcing SAMSIM with 36 years of ERA-interim atmospheric reanalysis data, we obtain a modeled Arctic sea-ice salinity that agrees well with ice-core measurements. The simulations hence allow us to identify the main drivers of the observed mean salinity profile in Arctic sea ice. Our results show a 1.5–4 g kg −1 decrease of bulk salinity via gravity drainage after ice growth has ceased and before flushing sets in, which hinders approximating bulk salinity from ice thickness beyond the first growth season. In our simulations, salinity variability of first-year ice is mostly restricted to the top 20 cm. We find that ice thickness, thermal resistivity, freshwater column, and stored energy change by less than 5% on average when the full salinity parametrization is replaced with a prescribed salinity profile. We conclude that for earth system models the impact of fully parametrizing the Arctic temporal salinity evolution is too small to justify the increase in computational cost and model complexity.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-04-01
    Description: Influence of stress, temperature and crystal habit on isothermal densification and specific surface area decrease of new snow The Cryosphere Discussions, 8, 1795-1829, 2014 Author(s): S. Schleef, H. Löwe, and M. Schneebeli Laboratory-based, experimental data for the microstructural evolution of new snow is scarce, though applications would benefit from a quantitative characterization of the main mechanism underlying the initial microstructural changes. To this end we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series covering the practically relevant short time behavior within the first 24–48 h in high temporal resolution. The data set comprises natural and laboratory grown snow and experimental conditions include systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a natural snowpack. For all conditions we find a linear increase of the density with the SSA, indicating that metamorphism has a key influence for the densification of new snow. Corroborated by the analysis of the individual influences of external conditions we derive a best-fit parametrization for the SSA decrease rate and the densification rate as required for applications.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-04-03
    Description: Sensitivity of CryoSat-2 Arctic sea-ice volume trends on radar-waveform interpretation The Cryosphere Discussions, 8, 1831-1871, 2014 Author(s): R. Ricker, S. Hendricks, V. Helm, H. Skourup, and M. Davidson Several studies have shown that there is considerable evidence that the Arctic sea-ice is thinning during the last decades. When combined with the observed rapid reduction of ice-covered area this leads to a decline in sea-ice volume. The only remote sensing technique capable of quantifying this ice volume decrease at global scale is satellite altimetry. In this context the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which we use to derive sea-ice freeboard defined as the height of the ice surface above the local sea level. In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which we use to derive sea-ice freeboard defined as the height of the ice surface above the sea level. Accurate CryoSat-2 range measurements over open water and the ice surface in the order of centimeters are necessary to achieve the required accuracy of the freeboard to thickness conversion. Besides uncertainties of the actual sea-surface height and limited knowledge of ice and snow properties, the penetration of the radar signal into the snow cover and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat measurement. In this paper we apply a retracker algorithm with thresholds of 40%, 50% and 80% of the first maximum of radar echo power, spanning the range of values used in current literature. For the 40% threshold we assume that the main scattering horizon lies at a certain depth between the surface and snow-ice interface as verified through coincident CryoSat-2 and airborne laser altimetry measurements. This contrasts with the 50% and 80% thresholds where we assume the ice-snow interface as the main scattering horizon similar to other published studies. Using the selected retrackers we evaluate the uncertainties of trends in sea-ice freeboard and higher level products that arise from the choice of the retracker threshold only, independently from the uncertainties related to snow and ice properties. Our study shows that the choice of retracker thresholds does have a non-negligible impact on magnitude estimates of sea-ice freeboard, thickness and volume, but that the main trends in these parameters are less affected. Specifically we find declines of Arctic sea-ice volume of 9.7% (40% threshold), 10.9% (50% threshold) and 6.9% (80% threshold) between March 2011 and March 2013. In contrast to that we find increases in Arctic sea-ice volume of 27.88% (40% threshold), 25.71% (50% threshold) and 32.65% (80% threshold) between November 2011 and November 2013. Furthermore we obtain a significant increase of freeboard from March 2013 to November 2013 in the area for multi-seasonal sea-ice north of Greenland and the Canadian Archipelago. Since this is unlikely it gives rise to the assumption that applying different retracker thresholds depending on seasonal properties of the snow load is necessary in the future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-10-09
    Description: Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru The Cryosphere Discussions, 8, 5077-5103, 2014 Author(s): C. G. Schmitt, J. D. All, J. P. Schwarz, W. P. Arnott, R. J. Cole, E. Lapham, and A. Celestian Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May–August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated ( r 2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g −1 ) than remote glaciers (as low as 2.0 ng g −1 eBC), indicating that population centers can influence local glaciers by sourcing BC.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-10-09
    Description: Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing The Cryosphere Discussions, 8, 5035-5076, 2014 Author(s): H.-W. Jacobi, S. Lim, M. Ménégoz, P. Ginot, P. Laj, P. Bonasoni, P. Stocchi, A. Marinoni, and Y. Arnaud Black carbon (BC) in the snow in the Himalayas has recently attracted considerable interest due to its impact on snow albedo, snow and glacier melting, regional climate and water resources. A single particle soot photometer (SP2) instrument was used to measure refractory BC (rBC) in a series of surface snow samples collected in the upper Khumbu Valley in Nepal between November 2009 and February 2012. The obtained time series indicates annual cycles with maximum concentration before the onset of the monsoon season and fast decreases in rBC during the monsoon period. Measured concentrations ranged from a few ppb up to 70 ppb rBC. However, due to the handling of the samples the measured concentrations possess rather large uncertainties. Detailed modeling of the snowpack including the measured range and an estimated upper limit of rBC concentrations was performed to study the role of BC in the seasonal snowpack. Simulations were performed for three winter seasons with the snowpack model Crocus including a detailed description of the radiative transfer inside the snowpack. While the standard Crocus model strongly overestimates the height and the duration of the seasonal snowpack, a better calculation of the snow albedo with the new radiative transfer scheme enhanced the representation of the snow. However, the period with snow on the ground neglecting BC in the snow was still over-estimated between 37 and 66 days, which was further diminished by 8 to 15% and more than 40% in the presence of 100 or 300 ppb of BC. Compared to snow without BC the albedo is on average reduced by 0.027 and 0.060 in the presence of 100 and 300 ppb BC. While the impact of increasing BC in the snow on the albedo was largest for clean snow, the impact on the local radiative forcing is the opposite. Here, increasing BC caused an even larger impact at higher BC concentrations. This effect is related to an accelerated melting of the snowpack caused by a more efficient metamorphism of the snow due to an increasing size of the snow grains with increasing BC concentrations. The melting of the winter snowpack was shifted by 3 to 10 days and 17 to 27 days during the three winter seasons in the presence of 100 and 300 ppb BC compared to clean snow, while the simulated annual local radiative forcing corresponds to 3 to 4.5 and 10.5 to 13.0 W m −2 . An increased sublimation or evaporation of the snow reduces the simulated radiative forcing leading to a net forcing that is lower by 0.5 to 1.5 W m −2 , while the addition of 10 ppm dust causes an increase of the radiative forcing between 2.5 and 3 W m −2 . According to the simulations 7.5 ppm of dust has an effect equivalent to 100 ppb of BC concerning the impact on the melting of the snowpack and the local radiative forcing.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-10-29
    Description: Model calibration for ice sheets and glaciers dynamics: a general theory of inverse problems in glaciology The Cryosphere Discussions, 8, 5511-5537, 2014 Author(s): M. Giudici, F. Baratelli, A. Comunian, C. Vassena, and L. Cattaneo Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBCs) on ice velocity, stress and temperature; on the other hand the constitutive laws involve many physical parameters, some of which depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws. As these quantities cannot be easily measured at the study scale in the field, they are often obtained through model calibration by solving an inverse problem (IP). The objective of this paper is to provide a thorough and rigorous conceptual framework for IPs in cryospheric studies and in particular: to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed; to define and characterise identifiability, a property related to the solution to the forward problem; to study well-posedness in a correct way, without confusing instability with ill-conditioning or with the properties of the method applied to compute a solution; to cast sensitivity analysis in a general framework and to differentiate between the computation of local sensitivity indicators with a one-at-a-time approach and first-order sensitivity indicators that consider the whole possible variability of the model parameters. The conceptual framework and the relevant properties are illustrated by means of a simple numerical example of isothermal ice flow, based on the shallow-ice approximation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-10-25
    Description: Quantifying meltwater refreezing along a transect of sites on the Greenland Icesheet The Cryosphere Discussions, 8, 5485-5509, 2014 Author(s): C. Cox, N. Humphrey, and J. Harper On the Greenland ice sheet, a significant quantity of surface melt water refreezes within the firn creating uncertainty in surface mass balance estimates. This refreezing has the potential to buffer seasonal runoff to future increases in melting, but direct measurement of the process remains difficult. We present a method for quantifying refreezing at point locations using in situ firn temperature observations. A time series of sub-hourly firn temperature profiles were collected over the course of two melt seasons from 2007 to 2009 along a transect of 11 sites in the accumulation zone of Greenland. Seasonal changes in temperature profiles combined with heat flux estimates based on high temporal resolution temperature gradients, enable us to isolate the heat released by refreezing using conservation of energy. Our method is verified from winter data when no refreezing takes place, and uncertainty is estimated using a monte carlo technique. Results provide additional evidence of a significant amount of refreezing taking place at depths greater than 1 m and that runoff begins to occur above the ELA. Near the runoff limit, lateral migration of melt water significantly complicates the relationship between total surface melt and total refreezing.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-08-05
    Description: Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties The Cryosphere Discussions, 8, 4349-4395, 2014 Author(s): A. Diez and O. Eisen A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution of crystal anisotropy, to understand its contribution to ice dynamics, is mainly provided by crystal orientation fabric (COF) data from ice cores. However, the developed anisotropic fabric does not only influence the flow behaviour of ice, but also the propagation of seismic waves. Two effects are important: (i) sudden changes in COF lead to englacial reflections and (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, also recorded traveltimes. A framework is presented here to connect COF data with the elasticity tensor to determine seismic velocities and reflection coefficients for cone and girdle fabrics from ice-core data. We connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities and reflection coefficients, englacially as well as for the ice-bed contact. Our work, therefore, provides a contribution to remotely determine the state of bulk ice anisotropy.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-08-05
    Description: Seismic wave propagation in anisotropic ice – Part 2: Effects of crystal anisotropy in geophysical data The Cryosphere Discussions, 8, 4397-4430, 2014 Author(s): A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded traveltimes. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from a vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. With this validation of seismic velocities we make use of abrupt changes in COF as common reflection mechanism for seismic and radar data below the firn–ice transition to investigate their occurrence by comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic deployment to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous viscosity from preferred crystal orientations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-09-17
    Description: Thermal structure and basal sliding parametrisation at Pine Island Glacier – a 3-D full-Stokes model study The Cryosphere Discussions, 8, 4913-4957, 2014 Author(s): N. Wilkens, J. Behrens, T. Kleiner, D. Rippin, M. Rückamp, and A. Humbert Pine Island Glacier is one of the fastest changing glaciers in the Antarctic Ice Sheet and therefore in scientific focus. The glacier holds enough ice to raise global sea level significantly (∼0.5 m), when fully melted. The question addressed by numerous modelling studies of the glacier focuses on whether the observed changes are a start for an uncontrolled and accelerating retreat. The movement of the glacier is, in the fast flowing areas, dominated by basal motion. In modelling studies the parametrisation of the basal motion is therefore crucial. Inversion methods are commonly applied to reproduce the complex surface flow structure at Pine Island Glacier, which use information of the observed surface velocity field, to constrain basal sliding. We introduce two different approaches of combining a physical parameter, the basal roughness, with basal sliding parametrisations. This way basal sliding is connected again to its original formulation. We show that the basal roughness is an important and helpful parameter to consider and that many features of the flow structure could be reproduced with these approaches.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-09-19
    Description: Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes The Cryosphere Discussions, 8, 4959-5013, 2014 Author(s): A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS) at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic) to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness) as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities).
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-11-26
    Description: A process-based approach to estimate point snow instability The Cryosphere Discussions, 8, 5825-5856, 2014 Author(s): B. Reuter, J. Schweizer, and A. van Herwijnen Snow instability data provide information about the mechanical state of the snow cover and are essential for forecasting snow avalanches. So far, direct observations of instability (recent avalanches, shooting cracks or whumpf sounds) are complemented with field tests such as the rutschblock test, since no measurement method for instability exists. We propose a new approach based on snow mechanical properties derived from the snow micro-penetrometer that takes into account the two essential processes during dry-snow avalanche release: failure initiation and crack propagation. To estimate the propensity of failure initiation we define a stress-based failure criterion, whereas the propensity of crack propagation is described by the critical cut length as obtained with a propagation saw test. The input parameters include layer thickness, snow density, effective elastic modulus, strength and specific fracture energy of the weak layer – all derived from the penetration-force signal acquired with the snow micro-penetrometer. Both instability measures were validated with independent field data and correlated well with results from field tests. Comparisons with observed signs of instability clearly indicated that a snowpack is only prone to avalanche if the two separate conditions for failure initiation and crack propagation are fulfilled. To our knowledge, this is the first time that an objective method for estimating snow instability has been proposed. The approach can either be used directly based on field measurements with the snow micro-penetrometer, or be implemented in numerical snow cover models. With an objective measure of instability at hand, the problem of spatial variations of instability and its causes can now be tackled.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-11-26
    Description: Brief Communication: Contending estimates of early 21st century glacier mass balance over the Pamir-Karakoram-Himalaya The Cryosphere Discussions, 8, 5857-5874, 2014 Author(s): A. Kääb, C. Nuth, D. Treichler, and E. Berthier We present glacier thickness changes over the entire Pamir-Karakoram-Himalaya arc based on ICESat satellite altimetry data for 2003–2008. The strongest thinning ( 〈 −1 m yr −1 ) is observed for the East Nyainqêntanglha Shan. Conversely, glaciers of the West Kunlun Shan are slightly gaining volume, and Pamir and Karakoram seem to be on the western edge of an anomaly rather than its centre. For the Ganges, Indus and Brahmaputra basins, the glacier mass change reaches −22 ± 3 Gt yr −1 , about 10% of the current glacier contribution to sea-level rise. For selected catchments over the study area we estimate glacier imbalance contributions to river runoff from a few percent to far over 10%. We highlight the importance of C-band penetration for studies based on the SRTM elevation model. To the very east and west of our study area, this penetration seems to be of larger magnitude and variability than previously assumed.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-11-26
    Description: Spatiotemporal variations in the surface velocities of Antarctic Peninsula glaciers The Cryosphere Discussions, 8, 5875-5910, 2014 Author(s): J. Chen, C. Q. Ke, and Z. D. Shao Velocity is an important parameter for the estimation of glacier mass balance, which directly signals the response of glaciers to climate change. Antarctic ice sheet movement and the associated spatiotemporal velocity variations are of great significance to global sea level rise. In this study, we estimate Antarctic Peninsula glacier velocities using the co-registration of optically sensed images and correlation (hereafter referred to as COSI-Corr) based on moderate-resolution imaging spectroradiometer Level 1B data (hereafter referred to as MODIS L1B). The results show that the glaciers of Graham Land and the Larsen Ice Shelf have substantially different velocity features. The Graham Land glaciers primarily flow from the peninsula ridge towards the Weddell Sea and Bellingshausen Sea on the east and west sides, respectively. There are very large velocity variations among the different ice streams, with a minimum of 〈 20 m a −1 and a maximum of 1500 m a −1 (with an average of 100–150 m a −1 ). Over the period 2000–2012, the glaciers of Graham Land accelerated in the south but slowed down in the north. In contrast, the Larsen Ice Shelf flows in a relatively uniform direction, mainly towards the northeast into the Weddell Sea. Its average velocity is 750–800 m a −1 and the maximum is 〉 1500 m a −1 . During the period 2000–2012, the Larsen Ice Shelf experienced significant acceleration. The use of COSI-Corr based on MODIS L1B data is suitable for glacier velocity monitoring on the Antarctic Peninsula over long time series and large spatial scales. This method is clearly advantageous for analysing macro-scale spatiotemporal variations in glacier movement.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-09-06
    Description: Area, volume and mass changes of southeast Vatnajökull ice cap, Iceland, from the Little Ice Age maximum in the late 19th century to 2010 The Cryosphere Discussions, 8, 4681-4735, 2014 Author(s): H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and S. Guðmundsson Area and volume changes and the average geodetic mass balance of the non-surging outlet glaciers of southeast Vatnajökull ice cap, Iceland, during different time periods between ~1890 and 2010, are derived from a multi-temporal glacier inventory. A series of digital elevation models (DEMs) (∼1890, 1904, 1936, 1945, 1989, 2002, 2010) have been compiled from glacial geomorphological features, historical photographs, maps, aerial images, DGPS measurements and a LiDAR survey. Given the mapped bedrock topography we estimate relative volume changes since the end of the Little Ice Age (LIA) ~1890. The variable dynamic response of the outlets, assumed to have experienced similar climate forcing, is related to their different hypsometry, bedrock topography, and the presence of proglacial lakes. In the post-LIA period the glacierized area decreased by 164 km 2 and the glaciers had lost 10–30% of their ~1890 area by 2010. The glacier surface lowered by 150–270 m near the terminus and the outlet glaciers collectively lost 60 ± 8 km 3 of ice, which is equivalent to 0.154 ± 0.02 mm of sea level rise. The relative volume loss of individual glaciers was in the range of 15–50%, corresponding to a geodetic mass balance between −0.70 and −0.32 m w.e. a −1 . The rate of mass loss was most negative in the period 2002–2010, on average −1.34 ± 0.12 m w.e. a −1 , which lists among the most negative mass balance values recorded worldwide in the early 21st century. From the data set of volume and area of the outlets, spanning the 120 years post-LIA period, we evaluate the parameters of a volume-area power law scaling relationship.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-09-06
    Description: The influence of surface characteristics, topography, and continentality on mountain permafrost in British Columbia The Cryosphere Discussions, 8, 4779-4822, 2014 Author(s): A. Hasler, M. Geertsema, V. Foord, S. Gruber, and J. Noetzli Thermal offset and surface offset are terms that describe the deviation of the mean annual ground temperature from the mean annual air temperature. These offsets are controlled by surface characteristics and topo-climatic factors on a micro- and meso-scales. Macro-climatic conditions may, however, influence the effectiveness of the responsible processes. Existing knowledge on surface- and topography-specific offsets is not easily transferable and limits the applicability of empirical permafrost distribution models over large areas with macro-climatic gradients. In this paper we describe surface and thermal offsets derived from distributed measurements at seven field sites in British Columbia. Key findings are (i) a surprisingly small variation of the surface offsets between different surface types and small thermal offsets in general (excluding wetlands and peat), (ii) a clear influence of the micro-topography at wind exposed sites (snow cover erosion), (iii) a north–south difference of the surface offset of 4 °C in near-vertical bedrock and of 1.5–3 °C on open (no canopy) gentle slopes, (iv) only small macro-climatic differences caused by the reverse influence of snow cover thickness and annual air temperature amplitude. These findings suggest, that empirical permafrost models based on topo-climatic variables may be applicable across regions with significant macro-climatic differences.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-09-06
    Description: Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet The Cryosphere Discussions, 8, 4737-4778, 2014 Author(s): S. E. Moustafa, A. K. Rennermalm, L. C. Smith, M. A. Miller, and J. R. Mioduszewski Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325–1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10–14 and 20–24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-09-11
    Description: Recent summer Arctic atmospheric circulation anomalies in a historical perspective The Cryosphere Discussions, 8, 4823-4847, 2014 Author(s): A. Belleflamme, X. Fettweis, and M. Erpicum A significant increase in the summertime occurrence of a high pressure area over the Beaufort Sea and Greenland has been observed from the beginning of the 2000's, and particularly between 2007 and 2012. These circulation anomalies are likely partly responsible for the enhanced Greenland ice sheet melt as well as the Arctic sea ice loss observed since 2007. Therefore, it is interesting to analyse whether similar conditions might have happened since the late 19th century over the Arctic region. We have used an atmospheric circulation type classification based on daily mean sea level pressure and 500 hPa geopotential height data from four reanalysis datasets (ERA-Interim, ERA-40, NCEP/NCAR, and 20CRv2) to put the recent circulation anomalies in perspective with the atmospheric circulation variability since 1871. We found that circulation conditions similar to 2007–2012 have occurred in the past, despite a higher uncertainty of the reconstructed circulation before 1940. But the recent anomalies largely exceed the interannual variability of the atmospheric circulation of the Arctic region. These circulation anomalies are linked with the North Atlantic Oscillation suggesting that they are not limited to the Arctic. Finally, they favour summertime Arctic sea ice loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-09-12
    Description: Glacier topography and elevation changes from Pléiades very high resolution stereo images The Cryosphere Discussions, 8, 4849-4883, 2014 Author(s): E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, and P. Wagnon In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of Pléiades sub-meter stereo imagery to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five validation sites are located in Iceland, the European Alps, the Central Andes, Nepal and Antarctica. For all sites, nearly simultaneous field measurements were collected to evaluate the Pléiades DEMs. For Iceland, the Pléiades DEM is also compared to a Lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 6 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1-sigma confidence level). We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better. The negative glacier-wide mass balances of the Argentière Glacier and Mer de Glace (−1.21 ± 0.16 and −1.19 ± 0.16 m.w.e. yr −1 , respectively) are revealed by differencing SPOT5 and Pléiades DEMs acquired in August 2003 and 2012 demonstrating the continuing rapid glacial wastage in the Mont-Blanc area.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-09-13
    Description: Interaction of marine ice-sheet instabilities in two drainage basins: simple scaling of geometry and transition time The Cryosphere Discussions, 8, 4885-4912, 2014 Author(s): J. Feldmann and A. Levermann Recent regional simulations and observations suggest a destabilization of the Amundsen Sea sector of West Antarctica. Whether the initiated ice drainage will be limited to Pine Island and Thwaites basin or extend to the Filchner–Ronne basin depends on the possibility of an interaction of the different drainage basins. Using a conceptional flow-line geometry, we investigate the possibility of whether a marine ice-sheet instability (MISI) can be triggered from the direction of the ice divide as opposed to coastal forcing and investigate the interaction between connected basins. We find that the initiation of a MISI in one basin can induce a destabilization in the other. The underlying mechanism of basin interaction is based on dynamic thinning and a consecutive motion of the ice divide which induces a thinning in the adjacent basin and a successive initiation of the instability. Our simplified and symmetric topographic set-up allows to scale both the geometry and the transition time between both instabilities. We find that the ice profile follows a universal shape that is scaled with the horizontal extent of the ice sheet and that the same exponent of 1/2 applies for the scaling relation between central surface elevation and horizontal extent as in the pure Shallow Ice Approximation (Vialov profile). Altering the central bed elevation we find that the extent of grounding line retreat in one basin determines the degree of interaction with the other. We conclude that for the three-dimensional case the possibility of such drainage basin interaction cannot be excluded and hence needs further investigation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-12-02
    Description: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last two decades (1994–2013) The Cryosphere Discussions, 8, 5911-5959, 2014 Author(s): F. Salerno, N. Guyennon, S. Thakuri, G. Viviano, E. Romano, E. Vuillermoz, P. Cristofanelli, P. Stocchi, G. Agrillo, Y. Ma, and G. Tartari Studies on recent climate trends from the Himalayan range are limited, and even completely absent at high elevation. This contribution specifically explores the southern slopes of Mt. Everest (central Himalaya), analyzing the minimum, maximum, and mean temperature and precipitation time series reconstructed from seven stations located between 2660 and 5600m a.s.l. over the last twenty years (1994–2013). We complete this analysis with data from all the existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period. Overall we observe that the main and more significant increase in temperature is concentrated outside of the monsoon period. At higher elevations minimum temperature (0.072 ± 0.011 °C a −1 , p 〈 0.001) increased far more than maximum temperature (0.009 ± 0.012 °C a −1 , p 〉 0.1), while mean temperature increased by 0.044 ± 0.008 °C a −1 , p 〈 0.05. Moreover, we note a substantial precipitation weakening (9.3 ± 1.8mm a −1 , p 〈 0.01 during the monsoon season). The annual rate of decrease at higher elevation is similar to the one at lower altitudes on the southern side of the Koshi Basin, but here the drier conditions of this remote environment make the fractional loss much more consistent (47% during the monsoon period). This study contributes to change the perspective on which climatic driver (temperature vs. precipitation) led mainly the glacier responses in the last twenty years. The main implications are the following: (1) the negative mass balances of glaciers observed in this region can be more ascribed to less accumulation due to weaker precipitation than to an increase of melting processes. (2) The melting processes have only been favored during winter and spring months and close to the glaciers terminus. (3) A decreasing of the probability of snowfall has significantly interested only the glaciers ablation zones (10%, p 〈 0.05), but the magnitude of this phenomenon is decidedly lower than the observed decrease of precipitation. (4) The lesser accumulation could be the cause behind the observed lower glacier flow velocity and the current stagnation condition of tongues, which in turn could have trigged melting processes under the debris glacier coverage, leading to the formation of numerous supraglacial and proglacial lakes that have characterized the region in the last decades. Without demonstrating the causes that could have led to the climate change pattern observed at high elevation, we conclude by listing the recent literature on hypotheses that accord with our observations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-12-06
    Description: Ice-shelf forced vibrations modelled with a full 3-D elastic model The Cryosphere Discussions, 8, 6059-6078, 2014 Author(s): Y. V. Konovalov Ice-shelf forced vibrations modelling was performed using a full 3-D finite-difference elastic model, which takes into account sub-ice seawater flow. The sub-ice seawater flow was described by the wave equation, so the ice-shelf flexures result from the hydrostatic pressure perturbations in sub-ice seawater layer. The numerical experiments were performed for idealized ice-shelf geometry, which was considered in the numerical experiments in Holdsworth and Glynn (1978). The ice-plate vibrations were modelled for harmonic ingoing pressure perturbations and for a wide spectrum of the ocean swell periodicities, ranging from infragravity wave periods down to periods of a few seconds (0.004–0.2 Hz). The spectrums for the vibration amplitudes were obtained in this range and are published in this manuscript. The spectrums contain distinct resonant peaks, which corroborate the ability of resonant-like motion in suitable conditions of the forcing. The impact of local irregularities in the ice-shelf geometry to the amplitude spectrums was investigated for idealized sinusoidal perturbations of the ice surface and the sea bottom. The results of the numerical experiments presented in this manuscript, are approximately in agreement with the results obtained by the thin-plate model in the research carried out by Holdsworth and Glynn (1978). In addition, the full model allows to observe 3-D effects, for instance, vertical distribution of the stress components in the plate. In particular, the model reveals the increasing in shear stress, which is neglected in the thin-plate approximation, from the terminus towards the grounding zone with the maximum at the grounding line in the case of considered high-frequency forcing. Thus, the high-frequency forcing can reinforce the tidal impact to the ice-shelf grounding zone additionally exciting the ice fracture there.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-12-11
    Description: Sensitivity of airborne geophysical data to sublacustrine permafrost thaw The Cryosphere Discussions, 8, 6079-6116, 2014 Author(s): B. J. Minsley, T. P. Wellman, M. A. Walvoord, and A. Revil A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM) data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake talik formation. Several scenarios are evaluated that consider the response to variable hydrologic forcing from different lake depths and hydrologic gradients. The model includes a physical property relationship that connects the dynamic distribution of subsurface electrical resistivity based on lithology as well as ice-saturation and temperature outputs from the SUTRA groundwater simulator with freeze/thaw physics. Electrical resistivity models are used to simulate AEM data in order to explore the sensitivity of geophysical observations to permafrost thaw. Simulations of sublacustrine talik formation over a 1000 year period modeled after conditions found in the Yukon Flats, Alaska, are evaluated. Synthetic geophysical data are analyzed with a Bayesian Markov chain Monte Carlo algorithm that provides a probabilistic assessment of geophysical model uncertainty and resolution. Major lithological and permafrost features are well resolved in the examples considered. The subtle geometry of partial ice-saturation beneath lakes during talik formation cannot be resolved using AEM data, but the gross characteristics of sub-lake resistivity models reflect bulk changes in ice content and can be used to determine the presence of a talik. A final example compares AEM and ground-based electromagnetic responses for their ability to resolve shallow permafrost and thaw features in the upper 1–2 m below ground.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-12-12
    Description: Role of rainwater induced subsurface flow in water-level dynamics and thermoerosion of shallow thermokarst ponds on the Northeastern Qinghai–Tibet Plateau The Cryosphere Discussions, 8, 6117-6146, 2014 Author(s): X. Pan, Q. Yu, and Y. You Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai–Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-12-24
    Description: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013 The Cryosphere Discussions, 8, 6271-6301, 2014 Author(s): J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a −1 in 2007 to 1.72 Gt a −1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38%, respectively 45%, higher than in 1995.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-10-14
    Description: Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming The Cryosphere Discussions, 8, 5169-5193, 2014 Author(s): M. P. Lüthi, C. Ryser, L. C. Andrews, G. A. Catania, M. Funk, R. L. Hawley, M. J. Hoffman, and T. A. Neumann Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-10-17
    Description: Brief Communication: Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet The Cryosphere Discussions, 8, 5361-5374, 2014 Author(s): I. M. Howat, C. Porter, M. J. Noh, B. E. Smith, and S. Jeong We report on the appearance of a 2 km wide, 70 m deep circular depression located 50 km inland of the southwestern margin of the Greenland Ice Sheet that provides the first direct evidence for concentrated, long-term storage, and sudden release, of meltwater at the bed. Drainage of the lake may have been triggered by the recent increase in meltwater runoff. The abundance of such lakes and their potential importance to the ice sheet's hydrologic system and flow regime remain unknown.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-10-18
    Description: Improving semi-automated glacial mapping with a multi-method approach: areal changes in Central Asia The Cryosphere Discussions, 8, 5433-5483, 2014 Author(s): T. Smith, B. Bookhagen, and F. Cannon Central Asia has been strongly impacted by climate change, and will continue to be impacted by diverse climate stressors in the coming decades. This study aims to decipher the impact of climate change on glaciers in the central Tien Shan Mountain Range, a large and understudied region located northeast from the Pamir Knot. To address glacier characteristics over a wide swath of Central Asia, the authors designed and implemented a glacial mapping algorithm which delineates both clean glacial ice – methods which are well documented – and glacial debris tongues, which often require extensive manual digitization. This research improves upon methods developed to automatically delineate glacial areas using spectral, topographic, velocity, and spatial relationships. The authors found that the algorithm misclassifies between 2 and 10% of glacial areas, as compared to a ~750 glacier control dataset. After validating the algorithm against multiple manually digitized control datasets, the authors applied it to a study area encompassing eight Landsat scene footprints stretching from the central Pamir through the central Tien Shan. A statistically significant, though minor, gradient in glacier area loss was found, where glaciers in the west of the study area have shrunk less than those glaciers in the east. This gradient is explained by differences in regional climate, where extratropical cyclones propagating from the west weaken and disband under continued topographic influence, as well as differences in topography, where high-elevation glaciers are thermally insulated from some of the impacts of changing temperatures in the region.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-10-18
    Description: Modelling glacier change in the Everest region, Nepal Himalaya The Cryosphere Discussions, 8, 5375-5432, 2014 Author(s): J. M. Shea, W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya In this study, we apply a glacier mass balance and ice redistribution model to simulate historical and future glacier change in the Everest region of Nepal. High-resolution temperature and precipitation fields derived from gridded APHRODITE data, and validated against independent station observations from the EVK2CNR network, are used to drive the historical model from 1961 to 2007. The model is calibrated against geodetically derived estimates of net glacier mass change from 1992 to 2008, termini position of four large glaciers at the end of the calibration period, average velocities observed on selected debris-covered glaciers, and total glacierized area. We integrate field-based observations of glacier mass balance and ice thickness with remotely-sensed observations of decadal glacier change to validate the model. Between 1961 and 2007, the mean modelled volume change over the Dudh Kosi basin is −6.4 ± 1.5 km 3 , a decrease of 15.6% from the original estimated ice volume in 1961. Modelled glacier area change between 1961 and 2007 is −101.0 ± 11.4 km 2 , a decrease of approximately 20% from the initial extent. Scenarios of future climate change, based on CMIP5 RCP4.5 and RCP8.5 end members, suggest that glaciers in the Everest region will continue to lose mass through the 21st century. Glaciers in the basin are concentrated between 5000 and 6000 m of elevation, and are thus expected to be sensitive to changes in temperature and equilibrium line altitude (ELA). Glacier volume reductions between −35 to −62% are possible by 2050, and sustained temperature increases to 2100 may result in total glacier volume losses of between −73 and −96%.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-10-14
    Description: Geophysical mapping of palsa peatland permafrost The Cryosphere Discussions, 8, 5137-5168, 2014 Author(s): Y. Sjöberg, P. Marklund, R. Pettersson, and S. W. Lyon Permafrost peatlands are hydrological and biogeochemical hotspots in the discontinuous permafrost zone. Non-intrusive geophysical methods offer possibility to map current permafrost spatial distributions in these environments. In this study, we estimate the depths to the permafrost table surface and base across a peatland in northern Sweden, using ground penetrating radar and electrical resistivity tomography. Seasonal thaw frost tables (at ~0.5 m depth), taliks (2.1–6.7 m deep), and the permafrost base (at ~16 m depth) could be detected. Higher occurrences of taliks were discovered at locations with a lower relative height of permafrost landforms indicative of lower ground ice content at these locations. These results highlight the added value of combining geophysical techniques for assessing spatial distribution of permafrost within the rapidly changing sporadic permafrost zone. For example, based on a simple thought experiment for the site considered here, we estimated that the thickest permafrost could thaw out completely within the next two centuries. There is a clear need, thus, to benchmark current permafrost distributions and characteristics particularly in under studied regions of the pan-arctic.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-10-16
    Description: Paleo-ice flow directions of the Northern Antarctic Peninsula ice sheet based upon a new synthesis of seabed imagery The Cryosphere Discussions, 8, 5321-5360, 2014 Author(s): C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas We present a new seafloor map for the northern Antarctic Peninsula (AP), including swath multibeam data sets from five national programs. Our map allows for the examination and interpretation of Last Glacial Maximum (LGM) paleo-ice sheet/stream flow directions developed upon the seafloor from the preservation of: mega-scale glacial lineations, drumlinized features, and selective linear erosion. We combine this with terrestrial observations of flow direction to place constraints on ice divides and accumulation centers (ice domes) on the AP continental shelf. The results show a flow bifurcation as ice exits the Larsen-B embayment. Flow emanating off the Seal Nunataks (including Robertson Island) is directed toward the southeast, then eastward as the flow transits toward the Robertson Trough. A second, stronger "streaming flow" is directed toward the southeast then southward, as ice overflowed the tip of the Jason Peninsula to reach the southern perimeter of the embayment. Our reconstruction also refines the extent of at least five other distinct paleo-ice stream systems which, in turn, serve to delineate seven broad regions where contemporaneous ice domes must have been centered on the continental shelf during the LGM time interval. Our reconstruction is more detailed than other recent compilations because we followed specific flow indicators and have kept tributary flow paths parallel.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-10-16
    Description: Assessment of permafrost distribution maps in the Hindu Kush–Himalayan region using rock glaciers mapped in Google Earth The Cryosphere Discussions, 8, 5293-5319, 2014 Author(s): M.-O. Schmid, P. Baral, S. Gruber, S. Shahi, T. Shrestha, D. Stumm, and P. Wester The extent and distribution of permafrost in the mountainous parts of the Hindu Kush–Himalayan (HKH) region have barely been investigated and are largely unknown. Only on the Tibetan Plateau a long tradition of permafrost research on rather gentle relief exists. Two permafrost maps are available that cover the HKH and provide estimates of permafrost extent, i.e. the areal proportion of permafrost: the manually delineated Circum-Arctic Map of Permafrost and Ground Ice Conditions (Brown et al., 1998) and the Global Permafrost Zonation Index, based on a computer model (Gruber, 2012). This article provides first-order assessment of permafrost maps of the HKH region based on the mapping of rock glaciers. Rock glaciers were used as a proxy, because they are visual indicators of permafrost, often occurring near the lowermost regional occurrence of permafrost in mountains, and because they can be delineated based on high-resolution remote sensing imagery freely available on Google Earth. For the mapping 4000 square samples (approx. 30 km 2 ) were randomly distributed over the HKH region. Every sample was investigated and rock glaciers were mapped by two independent researchers following precise mapping instructions. Samples with insufficient image quality were recorded but not mapped. It is shown that mapping of rock glaciers in Google Earth can be used as first-order evidence for permafrost in mountain areas with severely limited ground truth. The minimum elevation of rock glaciers varies between 3500 and 5500 m a.s.l. within the region. The Circum-Arctic Map of Permafrost and Ground Ice Conditions does not reproduce mapped conditions in the HKH region adequately, whereas the Global Permafrost Zonation Index appears to be a reasonable first-order prediction of permafrost in the HKH. Only in the central part of the region a considerable deviation exists that needs further investigations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-10-16
    Description: The melt pond fraction and spectral sea ice albedo retrieval from MERIS data: validation and trends of sea ice albedo and melt pond fraction in the Arctic for years 2002–2011 The Cryosphere Discussions, 8, 5227-5292, 2014 Author(s): L. Istomina, G. Heygster, M. Huntemann, P. Schwarz, G. Birnbaum, R. Scharien, C. Polashenski, D. Perovich, E. Zege, A. Malinka, A. Prikhach, and I. Katsev The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences on the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear ice of high ice concentrations (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to complicated surface conditions and ice drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002–2011) show pronounced and reasonable spatial features of melt pond fractions and sea ice albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear ice area, north to the Queen Elizabeth Islands and North Greenland.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-10-16
    Description: Tracing glacial disintegration from the LIA to the present using a LIDAR-based hi-res glacier inventory The Cryosphere Discussions, 8, 5195-5226, 2014 Author(s): A. Fischer, B. Seiser, M. Stocker-Waldhuber, C. Mitterer, and J. Abermann Glacier inventories provide the basis for further studies on mass balance and volume change, relevant for local hydrological issues as well as for global calculation of sea level rise. In this study, a new Austrian glacier inventory updating data from 1969 (GI I) and 1998 (GI II) has been compiled, based on high resolution LiDAR DEMs and orthophotos dating from 2004 to 2011 (GI III). To expand the time series of digital glacier inventories in the past, the glacier inventory of the Little Ice Age maximum state (LIA) has been digitalized based on the LiDAR DEM. The resulting glacier area for GI III of 415.11 ± 11.18 km 2 is 44% of the LIA area. The area losses show high regional variability, ranging from 11% annual relative loss to less than 1% for the latest period. The glacier sizes reduced from LIA to the latest period, so that in GI III 47% of the glaciers' areas are smaller than 0.1 km 2 .
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-10-11
    Description: On producing sea ice deformation dataset from SAR-derived sea ice motion The Cryosphere Discussions, 8, 5105-5135, 2014 Author(s): S. Bouillon and P. Rampal We propose a method to compute nearly noise-free sea ice deformation fields from SAR-derived motion and present the results of its application to RGPS sea ice trajectories. The method is based on two steps. The first step consists of using a triangulation of the positions taken from the sea ice trajectories to define a mesh on which a first estimate of sea ice deformation is computed. The second step consists of applying a specific smoother to the deformation field to reduce the artificial noise that arises along discontinuities in the sea ice motion field. From the comparison between unfiltered and filtered fields, we estimate that the artificial noise causes an overestimation of about 60% of opening and closing. The artificial noise also has a strong impact on the statistical distribution of the deformation and on the scaling exponents estimated with multi-fractal analysis. These findings may have serious implications for previous studies as the constant overestimation of the opening and closing could lead to a large overestimation of freezing in leads, salt rejection and sea ice ridging.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-09-27
    Description: The organic carbon pool of permafrost regions on the Qinghai–Xizang (Tibetan) Plateau The Cryosphere Discussions, 8, 5015-5033, 2014 Author(s): M. Cuicui, Z. Tingjun, P. Xiaoqing, C. Bin, Z. Xiankai, W. Qingbai, and C. Guodong Presently, Northern Circumpolar Soil Carbon Database was not involved permafrost organic carbon storage on the Qinghai–Xizang (Tibetan) Plateau (QXP). Here we reported a new estimation of soil organic carbon (SOC) pools of the permafrost regions on the QXP at different layers from the top 1 to 25 m depth using a total of 706 soil profiles. The SOC pools were estimated to be 15.29 Pg for the 0–1 m, 4.84 Pg for the 1–2 m, 3.89 Pg for the 2–3 m and 43.19 Pg for the layer of 3–25 m. The percentage (64.3%) of SOC storage in deep layer (3–25 m) on the QXP was larger than that (38.8%) in the northern circumpolar permafrost region. In total, permafrost region on the QXP contains approximately 67.2 Pg SOC, of which approximately 47.08 Pg (70.1%) stores in perennially frozen soils and deposits. The present study suggested that the permafrost organic carbon pools of Northern Hemisphere should be updated from 1672 to 1739 Pg.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-05-24
    Description: On the interest of positive degree day models for mass balance modeling in the inner tropics The Cryosphere Discussions, 8, 2637-2684, 2014 Author(s): L. Maisincho, V. Favier, P. Wagnon, R. Basantes Serrano, B. Francou, M. Villacis, A. Rabatel, L. Mourre, V. Jomelli, and B. Cáceres A positive degree-day (PDD) model was tested on Antizana Glacier 15α (0.28 km 2 ; 0°28' S, 78°09' W) to assess to what extent this approach is suitable for studying glacier mass balance in the inner tropics. Cumulative positive temperatures were compared with field measurements of melting amount and with surface energy balance computations. A significant link was revealed when a distinction was made between the snow and ice comprising the glacier surface. Significant correlations allowed degree-day factors to be retrieved for snow, and clean and dirty ice. The relationship between melt amount and temperature was mainly explained by the role of net shortwave radiation in both melting and in the variations in the temperature of the surface layer. However, this relationship disappeared from June to October (Period 1), because high wind speeds and low humidity cause highly negative turbulent latent heat fluxes. However, this had little impact on the computed total amount of melting at the annual time scale because temperatures are low and melting is generally limited during Period 1. At the daily time scale, melting starts when daily temperature means are still negative, because around noon incoming shortwave radiation is very high, and compensates for energy losses when the air is cold. The PDD model was applied to the 2000–2008 period using meteorological inputs measured on the glacier foreland. Results were compared to the glacier-wide mass balances measured in the field and were good, even though the melting factor should be adapted to the glacier surface state and may vary with time. Finally, the model was forced with precipitation and temperature data from the remote Izobamba station and NCEP-NCAR reanalysis data, also giving good results and showing that temperature variations are homogenous at the regional scale, meaning glacier mass balances can be modelled over large areas.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-05-27
    Description: Comparing C- and L-band SAR images for sea ice motion estimation The Cryosphere Discussions, 8, 2721-2757, 2014 Author(s): J. Lehtiranta, S. Siiriä, and J. Karvonen Pairs of consecutive C-band SAR images are routinely used for sea ice motion estimation. In addition to the surface roughness L-band SAR imagery provides information of the seasonal sea ice inner structure, which is especially useful in the Baltic Sea lacking multiyear ice and icebergs. In this work, L-band SAR images are investigated for sea ice motion estimation using the well-established maximal cross-correlation approach. This work provides the first comparison of L-band and C-band SAR images for the purpose of motion estimation. The cross-correlation calculations are hardware accelerated using new OpenCL-based source code, which is made available through the author's web site. It is found that L-band images are preferable for motion estimation over C-band images. It is also shown that motion estimation is possible between a C-band and an L-band image using the maximal cross-correlation technique.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-06-04
    Description: The GAMDAM Glacier Inventory: a quality controlled inventory of Asian glaciers The Cryosphere Discussions, 8, 2799-2829, 2014 Author(s): T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita We present a new glacier inventory for the high mountain Asia named "Glacier Area Mapping for Discharge from the Asian Mountains" (GAMDAM). Glacier outlines were delineated manually using more than 226 Landsat ETM+ scenes from the period 1999–2003, in conjunction with a digital elevation model (DEM) and high-resolution Google Earth imagery. Geolocations are consistent between the Landsat imagery and DEM due to systematic radiometric and geometric corrections made by the United States Geological Survey. We performed repeated delineation tests and rigorous peer review of all scenes used in order to maintain the consistency and quality of the inventory. Our GAMDAM Glacier Inventory (GGI) includes 82776 glaciers covering a total area of 87507 ± 13126 km 2 in the high mountain Asia. Thus, our inventory represents a greater number (+4%) of glaciers but significantly less surface area (−31%) than a recent global glacier inventory (Randolph Glacier Inventory, RGI). The employed definition of the upper boundaries of glaciers, glacier recession since the 1970s, and misinterpretation of seasonal snow cover are likely causes of discrepancies between the inventories, though it is difficult to evaluate these effects quantitatively. The GGI will help improve the temporal consistency of the RGI, which incorporated glacier outlines from the 1970s for the Tibetan Plateau, and will provide new opportunities to study Asian glaciers.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-06-05
    Description: Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l.) The Cryosphere Discussions, 8, 2831-2866, 2014 Author(s): F. Magnin, P. Deline, L. Ravanel, J. Noetzli, and P. Pogliotti Permafrost and related thermo-hydro-mechanical processes are regarded as crucial factors in rock wall stability in high alpine areas, but a lack of field measurements means that the characteristics of such locations and the processes to which they are subjected are poorly understood. To help remedy this situation, in 2005 work began to install a monitoring system at the Aiguille du Midi (3842 m a.s.l.). This paper presents temperature records from nine surface sensors (eight years of records) and three 10 m-deep boreholes (four years of records), installed at locations with different surface and bedrock characteristics. Annual and seasonal offsets between mean surface temperatures and air temperatures suggest that snow cover and slope aspect are also important factors governing bedrock surface temperatures in steep terrain. Snow-free sensors revealed additional effects of microtopography and micrometeorology. Active layer thicknesses ranged from 〈 2 m to nearly 6 m, depending on sun-exposure and interannual variations in atmospheric conditions. Warm and cold permafrost (about −1.5 °C to −4.5 °C at 10 m-depth) coexists within the Aiguille du Midi, resulting in high lateral heat fluxes. A temperature inflection associated with a fracture provided evidence of non-conductive processes, most notably cooling due to air ventilation and some intermittent and local warming. Our field data, the first to be obtained from an Alpine permafrost site where temperatures are below −4 °C, confirm the results of previous studies of permafrost in steep bedrock slopes and highlight the importance of factors such as snow cover and fracturing.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-07-16
    Description: Assessing spatio-temporal variability and trends (2000–2013) of modelled and measured Greenland ice sheet albedo The Cryosphere Discussions, 8, 3733-3783, 2014 Author(s): P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the crucial role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo (during June, July, and August) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatiotemporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products and in situ measurements by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare-ice albedo. MODIS albedo, RCM outputs and in situ observations consistently point to a~decrease in albedo of −0.03 to −0.06 per decade over the period 2003–2013 for the GrIS ablation zone (where there is a net loss of mass at the GrIS surface). Nevertheless, satellite products show a~decline in albedo of −0.03 to −0.04 per decade for regions within the accumulation zone (where there is a net gain of mass at the surface) that is not confirmed by either the model or in situ observations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-07-17
    Description: Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming The Cryosphere Discussions, 8, 3851-3905, 2014 Author(s): J. J. Fürst, H. Goelzer, and P. Huybrechts Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade, both increased surface melting and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr −1 to global sea-level rise, roughly in shares of respectively 60 and 40 per cent. Here we use a higher-order ice flow model, initialised to the present state, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the ice flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of ten Atmosphere and Ocean General Circulation Models and four Representative Concentration Pathway scenarios, the projected sea-level rise lies in the range of +1.4 to +16.6 cm by the year 2100. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to either abate when the warming already peaks in this century, allowing to preserve the ice sheet in a geometry close to the present-day state, or to remain at a constant level over three hundred years under moderate warming. The volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin reducing the ice–ocean contact area. The effect of enhanced basal lubrication on the volume evolution is found to be negligible on centennial time scales. The presented projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. The results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, and not from ice dynamics.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-07-17
    Description: Future permafrost conditions along environmental gradients in Zackenberg, Greenland The Cryosphere Discussions, 8, 3907-3948, 2014 Author(s): S. Westermann, B. Elberling, S. Højlund Pedersen, M. Stendel, B. U. Hansen, and G. E. Liston The future development of ground temperatures in permafrost areas is determined by a number of factors varying on different spatial and temporal scales. For sound projections of impacts of permafrost thaw, scaling procedures are of paramount importance. We present numerical simulations of present and future ground temperatures at 10 m resolution for a 4 km long transect across the lower Zackenberg valley in NE Greenland. The results are based on stepwise downscaling of General Circulation Model-derived future projections using observational data, snow redistribution modeling, remote sensing data and a ground thermal model. Comparison to in-situ measurements of thaw depths at two CALM sites and 10 m ground temperatures in two boreholes suggest agreement within 0.10 m for the maximum thaw depth and 1°C for annual average ground temperature. Until 2100, modeled ground temperatures at 10 m depth warm by about 5° and the active layer thickness increases by about 30%, in conjunction with a warming of average near-surface summer soil temperatures by 2°. While permafrost remains thermally stable until 2100 in most model grid cells, the thaw threshold is exceeded for a few model years and grid cells at the end of this century. The ensemble of all 10 m model grid cells highlights the significant spatial variability of the ground thermal regime which is not accessible in traditional coarse-scale modeling approaches.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-06-19
    Description: Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats The Cryosphere Discussions, 8, 3237-3261, 2014 Author(s): T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander The northern Antarctic Peninsula (nAP, 〈 66° S) is one of the most rapidly changing glaciated regions on Earth, yet the spatial patterns of its ice mass loss at the glacier basin scale has to date been poorly documented. We use satellite laser altimetry and satellite stereo-image topography spanning 2001–2010 to map ice elevation change and infer mass changes for 33 glacier basins. Rates of ice volume and ice mass change are 27.7 ± 8.6 km 3 a −1 and 24.9 ± 7.8 Gt a −1 . This mass loss is compatible with recent gravimetric assessments, but it implies that almost all the gravimetry-inferred loss lies in the nAP sector. Mass loss is highest for eastern glaciers affected by major ice shelf collapses in 1995 and 2002, where twelve glaciers account for 60% of the total imbalance. However, losses at smaller rates occur throughout the nAP, and at high and low elevation, despite increased snow accumulation along the western coast and at high elevations. We interpret the widespread mass loss to be driven by decades of ice front retreats on both sides of the nAP, and by the propagation of kinematic waves triggered at the fronts into the interior.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-06-24
    Description: Impact of snow cover on CO 2 dynamics in Antarctic pack ice The Cryosphere Discussions, 8, 3263-3295, 2014 Author(s): N.-X. Geilfus, J.-L. Tison, S. F. Ackley, S. Rysgaard, L. A. Miller, and B. Delille Temporal evolution of p CO 2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows that the CO 2 system in the ice was primarily controlled by physical and thermodynamic processes. During the survey, a succession of warming and cold events strongly influenced the physical, chemical and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We confirm that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon ( T CO 2 ), and in situ brine and bulk ice CO 2 partial pressures ( p CO 2 ). Thicker snow covers muted these changes, suggesting that snow influences changes in the sea ice carbonate system through its impact on the temperature and salinity of the sea ice cover. During this survey, p CO 2 was undersaturated with respect to the atmosphere both in situ, in the bulk ice (from 10 to 193 μatm), and in the brine (from 65 to 293 μatm), and the ice acted as a sink for atmospheric CO 2 (up to 2.9 mmol m −2 d −1 ), despite the underlying supersaturated seawater (up to 462 μatm).
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-07-12
    Description: Climate regime of Asian glaciers revealed by GAMDAM Glacier Inventory The Cryosphere Discussions, 8, 3629-3663, 2014 Author(s): A. Sakai, T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in High Mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. We estimated precipitation contributing to glacier mass at median elevation of glaciers, which is presumed to be at equilibrium-line altitude (ELA) so that mass balance is zero at that elevation, by tuning adjustment parameters of precipitation. We also made comparisons between median elevation of glaciers, including the effect of drifting snow and avalanche, and eliminated those local effects. Then, we could obtain median elevation of glaciers depending only on climate to estimate glacier surface precipitation. The calculated precipitation contributing to glacier mass can elucidate that glaciers in the arid High Mountain Asia have very less precipitation, while much precipitation contribute to glacier mass in the Hindu Kush, the Himalayas, and the Hengduan Shan due to not only direct precipitation amount but also avalanche nourishment. We classified glaciers in High Mountain Asia into summer-accumulation type and winter-accumulation type using the summer accumulation ratio, and confirmed that summer-accumulation type glaciers have a higher sensitivity than winter-accumulation type glaciers.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-07-12
    Description: Regional albedo of Arctic first-year drift ice in advanced stages of melt from the combination of in situ measurements and aerial imagery The Cryosphere Discussions, 8, 3699-3732, 2014 Author(s): D. V. Divine, M. A. Granskog, S. R. Hudson, C. A. Pedersen, T. I. Karlsen, S. A. Divina, and S. Gerland The paper presents a case study of the regional (≈ 150 km) broadband albedo of first year Arctic sea ice in advanced stages of melt, estimated from a combination of in situ albedo measurements and aerial imagery. The data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 82.3° N from 26 July to 3 August 2012. The study uses in situ albedo measurements representative of the four main surface types: bare ice, dark melt ponds, bright melt ponds and open water. Images acquired by a helicopter borne camera system during ice survey flights covered about 28 km 2 . A subset of 〉 8000 images from the area of homogeneous melt with open water fraction of ≈ 0.11 and melt pond coverage of ≈ 0.25 used in the upscaling yielded a regional albedo estimate of 0.40 (0.38; 0.42). The 95% confidence interval on the estimate was derived using the moving block bootstrap approach applied to sequences of classified sea ice images and albedo of the four surface types treated as random variables. Uncertainty in the mean estimates of surface type albedo from in situ measurements contributed some 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt, when the optical properties of sea ice undergo substantial changes, which existing sea ice models have significant diffuculty accurately reproducing.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-07-16
    Description: Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China The Cryosphere Discussions, 8, 3785-3809, 2014 Author(s): T. Zhang, K. Wang, and X. Zhong The near-surface soil freeze/thaw status is an important indicator of climate change. Using data from 636 meteorological stations, with a 0 °C threshold, we investigated the long-term spatiotemporal variations of the first date of the near-surface soil freeze, the last date of the freeze, the duration of the freeze, and the number of freezing days across China over the period 1956–2006 (with a baseline period of July 1971 through June 2001). The results reveal the responses of the near-surface soil freeze to warming climate. The first date of soil freeze was delayed 5 days (0.10 ± 0.03 day yr −1 ) and the last datewas advanced 7 days (0.15 ± 0.02 day yr −1 ) over this period. The duration of the near-surface soil freeze decreased 13 days from 1956 through 2006, and the number of near-surface soil freeze days fell by ~10 days. All of these climate indicators have varied sharply since the early 1990s. Climate indicators in west China generally vary more than those measured in east China. Altitude plays an important role in soil freeze/thaw dynamics in west China, and latitude is critical in the eastern portion of the country. Air temperature significantly affects near-surface soil freeze, especially the duration of freeze and number of freeze days.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-07-16
    Description: GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet The Cryosphere Discussions, 8, 3829-3850, 2014 Author(s): B. Hasholt, S. A. Khan, and A. B. Mikkelsen The elastic respond of the Earth's surface to mass changes has been measured with Global Positioning System (GPS). Mass loss as accumulated runoff and sediment transport from a 10 000 km 2 segment of the Greenland Ice Sheet (GrIS) correlated very well ( R 2 = 0.83) with GPS measured uplift. Accumulated winter precipitation correlated fairly well with surface depression ( R 2 = 0.69). The relationships are based on seven years of runoff and sediment transport observations from the Watson River (2007–2013), winter precipitation from Kangerlussuaq Airport and GPS observations at Kellyville. GPS recordings of surface subsidence and uplift from 1996–2013 are used to calculate 18 years time series of annual runoff, sediment and solute transport and winter precipitation. Runoff and related transport of sediment and solutes increase over the period, while winter precipitation (land depression) tends to decrease. Based on the entire GPS record (1996–2013), it is shown that until 2005–2006 the mass balance of this segment of the GrIS was rather stable – since then there has been an increasing loss of mass, culminating in 2012.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-07-16
    Description: Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea The Cryosphere Discussions, 8, 3811-3828, 2014 Author(s): U. Löptien and L. Axell The Baltic Sea is a seasonally ice covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, several ice properties are allocated, but their actual usefulness is difficult to measure and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the Automatic Identification System (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed effect model. This statistical fit is based on a test region in the Bothnian Bay during the severe winter 2011 and employes 15 to 25 min averages of ship speed.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-07-12
    Description: Elevation dependency of mountain snow depth The Cryosphere Discussions, 8, 3665-3698, 2014 Author(s): T. Grünewald, Y. Bühler, and M. Lehning Elevation strongly affects quantity and distribution of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation – snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales ranging from the complete data sets by km-scale sub-catchments to slope transects. We show that most elevation – snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-02-07
    Description: Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica with airborne observations of snow accumulation The Cryosphere Discussions, 8, 953-998, 2014 Author(s): B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen In Antarctica, uncertainties in mass input and output translate directly into uncertainty in glacier mass balance and thus in sea level impact. While remotely sensed observations of ice velocity and thickness over the major outlet glaciers have improved our understanding of ice loss to the ocean, snow accumulation over the vast Antarctic interior remains largely unmeasured. Here, we show that an airborne radar system, combined with ice-core glaciochemical analysis, provide the means necessary to measure the accumulation rate at the catchment-scale along the Amundsen Sea Coast of West Antarctica. We used along-track radar-derived accumulation to generate a 1985–2009 average accumulation grid that resolves moderate- to large-scale features (〉 25 km) over the Pine Island-Thwaites glacier drainage system. Comparisons with estimates from atmospheric models and gridded climatologies generally show our results as having less accumulation in lower-elevation coastal zone but greater accumulation in the interior. Ice discharge, measured over discrete time intervals between 1994 and 2012, combined with our catchment-wide accumulation rates provide an 18 yr mass balance history for the sector. While Thwaites Glacier lost the most ice in the mid-1990s, Pine Island Glacier's losses increased substantially by 2006, overtaking Thwaites as the largest regional contributor to sea-level rise. The trend of increasing discharge for both glaciers, however, appears to have leveled off since 2008.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-02-07
    Description: The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice The Cryosphere Discussions, 8, 999-1022, 2014 Author(s): D. Price, W. Rack, P. J. Langhorne, C. Haas, G. Leonard, and K. Barnsdale This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice–ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-02-18
    Description: Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization The Cryosphere Discussions, 8, 1151-1189, 2014 Author(s): R. Calov, A. Robinson, M. Perrette, and A. Ganopolski In this paper, we propose a new sub-grid scale parameterization for the ice discharge into the ocean through outlet glaciers and inspect the role of different observational and palaeo constraints for the choice of an optimal set of model parameters. This parameterization was introduced into the polythermal ice-sheet model SICOPOLIS, which is coupled to the regional climate model of intermediate complexity REMBO. Using the coupled model, we performed large ensemble simulations over the last two glacial cycles. We exploit two major parameters: a melt parameter in the surface melt scheme of REMBO and an ice discharge parameter in our parameterization of ice discharge. Our constraints are the present-day Greenland ice sheet surface elevation, surface mass balance partition (ratio between ice discharge and total precipitation) and the Eemian interglacial elevation drop relative to present-day in the vicinity of the NEEM ice core. We show that the ice discharge parameterization enables us to simulate both the correct ice-sheet shape and mass balance partition at the same time without explicitly resolving the Greenland outlet glaciers. For model verification, we compare simulated total and sectoral ice discharge with those from other findings, including observations. For the model versions, which are inside the range of observational and palaeo constraints, our simulated Greenland ice sheet contribution to Eemian sea level rise relative to present-day amounts to 1.4 m on average (in the range of 0.6 and 2.5 m).
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-02-18
    Description: A high-resolution bedrock map for the Antarctic Peninsula The Cryosphere Discussions, 8, 1191-1225, 2014 Author(s): M. Huss and D. Farinotti Assessing and projecting the dynamic response of glaciers on the Antarctic Peninsula to changed atmospheric and oceanic forcing requires high-resolution ice thickness data as an essential geometric constraint for ice flow models. Here, we derive a complete bedrock data set for the Antarctic Peninsula north of 70° S on a 100 m grid. We calculate distributed ice thickness based on surface topography and simple ice dynamic modelling. Our approach is constrained with all available thickness measurements from Operation IceBridge and gridded ice flow speeds for the entire study region. The new data set resolves the rugged subglacial topography in great detail, indicates deeply incised troughs, and shows that 34% of the ice volume is grounded below sea level. The Antarctic Peninsula has the potential to raise global sea level by 71 ± 5 mm. In comparison to Bedmap2, covering all Antarctica on a 1 km grid, a significantly higher mean ice thickness (+48%) is found.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-02-06
    Description: A data-constrained model for compatibility check of remotely sensed basal melting with the hydrography in front of Antarctic ice shelves The Cryosphere Discussions, 8, 919-951, 2014 Author(s): D. Olbers, H. H. Hellmer, and F. F. J. H. Buck The ice shelf caverns around Antarctica are sources of cold and fresh water which contributes to the formation of Antarctic bottom water and thus to the ventilation of the deep basins of the World Ocean. While a realistic simulation of the cavern circulation requires high resolution, because of the complicated bottom topography and ice shelf morphology, the physics of melting and freezing at the ice shelf base is relatively simple. We have developed an analytically solvable box model of the cavern thermohaline state, using the formulation of melting and freezing as in Olbers and Hellmer (2010). There is high resolution along the cavern's path of the overturning circulation whereas the cross-path resolution is fairly coarse. The circulation in the cavern is prescribed and used as a tuning parameter to constrain the solution by attempting to match observed ranges for outflow temperature and salinity at the ice shelf front as well as of the mean basal melt rate. The method, tested for six Antarctic ice shelves, can be used for a quick estimate of melt/freeze rates and the overturning rate in particular caverns, given the temperature and salinity of the inflow and the above mentioned constrains for outflow and melting. In turn, the model can also be used for testing the compatibility of remotely sensed basal mass loss with observed cavern inflow characteristics.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-02-15
    Description: Combining damage and fracture mechanics to model calving The Cryosphere Discussions, 8, 1111-1150, 2014 Author(s): J. Krug, J. Weiss, O. Gagliardini, and G. Durand Calving of icebergs is a major negative component of polar ice-sheet mass balance. We present a new calving modeling framework relying on both continuum damage mechanics and linear elastic fracture mechanics. This combination accounts for both the slow sub-critical surface crevassing and fast propagation of crevasses when calving occurs. First, damage of the ice occurs over long timescales and enhances the viscous flow of ice. Then brittle fracture propagation happens downward, over very short timescales, in ice considered as an elastic medium. The model is validated on Helheim Glacier, South-West Greenland, one of the most monitored fast-flowing outlet glacier. This allows to identify sets of model parameters giving a consistent response of the model and producing a dynamic equilibrium in agreement with observed stable position of the Helheim ice front between 1930 and today.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-04-24
    Description: Simulating more accurate snow maps for Norway with MCMC parameter estimation method The Cryosphere Discussions, 8, 1973-2003, 2014 Author(s): T. M. Saloranta The seNorge snow model produces daily updated maps (1 km × 1 km resolution) of snow conditions for Norway which are used by the national flood, avalanche and landslide forecasting services, among others. The snow model uses gridded observations of daily temperature and precipitation as its input forcing. In this paper the revisions made to the new seNorge snow model code (v.1.1.1) are described, and a systematic model analysis is performed by first revealing the most influential key parameters by the Extended FAST sensitivity analysis and then estimating their probability distributions by the MCMC simulation method, using 565 observations of snow water equivalent (SWE) and snow density (ρ). The MCMC simulation resulted in rather narrow posterior distributions for the four estimated model parameters, and enhanced the model performance and snow map quality significantly, mainly by removing the known significant overestimation biases in SWE and ρ. In the new model version (v.1.1.1) the Nash–Sutcliffe (NS) model performance values are now well positive (NS = 0.61 for SWE and NS = 0.30 for ρ), in contrast to the much lower negative NS-values of the previous model (v.1.1). Moreover, the model evaluation against approximately 400 000 point measurements of snow depth shows improvement in the simulated percentage of "good match"-stations (76–84% before April, and still 65% at the end of April). Future research efforts should focus on decreasing the variability in the model fit with observations (i.e. model precision) by further improvements in the seNorge snow model and its important fundament, the gridded meteorological input data set used as its forcing.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-04-29
    Description: Using records from submarine, aircraft and satellite to evaluate climate model simulations of Arctic sea ice thickness The Cryosphere Discussions, 8, 2179-2212, 2014 Author(s): J. Stroeve, A. Barrett, M. Serreze, and A. Schweiger Arctic sea ice thickness distributions from models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 are evaluated against observations from submarines, aircraft and satellites. While it's encouraging that the mean thickness distributions from the models are in general agreement with observations, the spatial patterns of sea ice thickness are poorly represented in most models. The poor spatial representation of thickness patterns is associated with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. The climate models as a whole also tend to underestimate the rate of ice volume loss from 1979 to 2013, though the multi-model ensemble mean trend remains within the uncertainty of that from the Pan-Arctic Ice Ocean Modeling and Assimilation System. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and project the timing of when a seasonally ice-free Arctic may be realized.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-04-29
    Description: A sea ice concentration estimation algorithm utilizing radiometer and SAR data The Cryosphere Discussions, 8, 2213-2241, 2014 Author(s): J. Karvonen We have studied the possibility of combining the high-resolution SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a MLP neural network which has the AMSR-2 radiometer polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded FMI ice chart concentrations and high-resolution AMSR-2 ASI algorithm concentrations provided by University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The results when compared to FMI ice charts were very promising.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-07-02
    Description: Low soil organic carbon storage in a subarctic alpine permafrost environment The Cryosphere Discussions, 8, 3493-3524, 2014 Author(s): M. Fuchs, P. Kuhry, and G. Hugelius This study investigates the soil organic carbon (SOC) storage in Tarfala Valley, Northern Sweden. Field inventories upscaled based on land cover show that this alpine permafrost environment does not store large amounts of SOC, with an estimate mean of 0.9 ± 0.2 kg C m −2 for the upper meter of soil. This is one to two orders of magnitude lower than what has been reported for lowland permafrost terrain. The SOC storage varies for different land cover classes and ranges from 0.05 kg C m −2 for stone-dominated to 8.4 kg C m −2 for grass-dominated areas. No signs of organic matter burial through cryoturbation or slope processes were found and radiocarbon dated SOC is generally of recent origin (
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-07-02
    Description: What glaciers are telling us about Earth's changing climate The Cryosphere Discussions, 8, 3475-3491, 2014 Author(s): W. Tangborn and M. Mosteller A glacier monitoring system has been developed to systematically observe and document changes in the size and extent of a representative selection of the world's 160 000 mountain glaciers (entitled the PTAAGMB Project). Its purpose is to assess the impact of climate change on human societies by applying an established relationship between glacier ablation and global temperatures. Two sub-systems were developed to accomplish this goal: (1) a mass balance model that produces daily and annual glacier balances using routine meteorological observations, (2) a program that uses Google Maps to display satellite images of glaciers and the graphical results produced by the glacier balance model. The recently developed PTAA glacier balance model is described and applied to eight glaciers to produce detailed mass balance reports. Comparing annual balances produced by the model to traditional manual measurements for 50–60 years yields R 2 values of 0.50–0.60. The model also reveals an unusual but statistically significant relationship between the average ablation of Wrangell Range glaciers and global temperatures that have been derived from temperature data at 7000 stations in the Northern Hemisphere. This glacier ablation/global temperature relationship provides the means to use worldwide ablation results to anticipate problems caused by climate change.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-07-03
    Description: Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Gletscher, West Greenland The Cryosphere Discussions, 8, 3525-3561, 2014 Author(s): J. Todd and P. Christoffersen We use a full-Stokes 2-D model (Elmer/Ice) to investigate the flow and calving dynamics of Store Gletscher, a fast flowing outlet glacier in West Greenland. Based on a new, subgrid-scale implementation of the crevasse depth calving criterion, we perform two sets of simulations; one to identify the primary forcing mechanisms and another to constrain future stability. We find that the mixture of icebergs and sea-ice, known as ice mélange or sikussak, is principally responsible for the observed seasonal advance of the ice front, whereas submarine melting plays a secondary role. Sensitivity analysis demonstrates that the glacier's calving dynamics are sensitive to seasonal perturbation, but are stable on interannual timescales due to the glacier's topographic setting. Our results shed light on the dynamics of calving glaciers while explaining why neighbouring glaciers do not necessarily respond synchronously to changes in atmospheric and oceanic forcing.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-03-19
    Description: Air temperature thresholds to evaluate snow melting at the surface of Alpine glaciers by T-index models: the case study of Forni Glacier (Italy) The Cryosphere Discussions, 8, 1563-1587, 2014 Author(s): A. Senese, M. Maugeri, E. Vuillermoz, C. Smiraglia, and G. Diolaiuti The glacier melt conditions (i.e.: null surface temperature and positive energy budget) can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present the assessment of actual melting conditions and the evaluation of the melt amount is difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K. In this paper, to detect the most indicative threshold witnessing melt conditions in the April–June period, we have analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS set up at 2631 m a.s.l. on the ablation tongue of the Forni Glacier (Italian Alps), and by a weather station located outside the studied glacier (at Bormio, a village at 1225 m a.s.l.). Moreover we have evaluated the glacier energy budget and the Snow Water Equivalent (SWE) values during this time-frame. Then the snow ablation amount was estimated both from the surface energy balance (from supraglacial AWS data) and from T-index method (from Bormio data, applying the mean tropospheric lapse rate and varying the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of glacier air temperatures and the major uncertainty in the computation of snow melt is driven by the choice of an appropriate temperature threshold. From our study using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the most reliable reconstruction of glacier melt.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...