ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (328)
  • Copernicus  (328)
  • American Association for the Advancement of Science
  • 2010-2014  (328)
  • 1980-1984
  • 1965-1969
  • 1960-1964
  • 1925-1929
  • 2014  (328)
  • The Cryosphere  (164)
  • 92597
  • 1
    Publication Date: 2014-12-17
    Description: Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland The Cryosphere, 8, 2353-2365, 2014 Author(s): J. Todd and P. Christoffersen We use a full-Stokes 2-D model (Elmer/Ice) to investigate the flow and calving dynamics of Store Glacier, a fast-flowing outlet glacier in West Greenland. Based on a new, subgrid-scale implementation of the crevasse depth calving criterion, we perform two sets of simulations: one to identify the primary forcing mechanisms and another to constrain future stability. We find that the mixture of icebergs and sea ice, known as ice mélange or sikussak, is principally responsible for the observed seasonal advance of the ice front. On the other hand, the effect of submarine melting on the calving rate of Store Glacier appears to be limited. Sensitivity analysis demonstrates that the glacier's calving dynamics are sensitive to seasonal perturbation, but are stable on interannual timescales due to the strong topographic control on the flow regime. Our results shed light on the dynamics of calving glaciers and may help explain why neighbouring glaciers do not necessarily respond synchronously to changes in atmospheric and oceanic forcing.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-17
    Description: Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography The Cryosphere, 8, 2367-2379, 2014 Author(s): M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova Changes in the map area of 498 glaciers located on the Main Caucasus ridge (MCR) and on Mt. Elbrus in the Greater Caucasus Mountains (Russia and Georgia) were assessed using multispectral ASTER and panchromatic Landsat imagery with 15 m spatial resolution in 1999/2001 and 2010/2012. Changes in recession rates of glacier snouts between 1987–2001 and 2001–2010 were investigated using aerial photography and ASTER imagery for a sub-sample of 44 glaciers. In total, glacier area decreased by 4.7 ± 2.1% or 19.2 ± 8.7 km 2 from 407.3 ± 5.4 km 2 to 388.1 ± 5.2 km 2 . Glaciers located in the central and western MCR lost 13.4 ± 7.3 km 2 (4.7 ± 2.5%) in total or 8.5 km 2 (5.0 ± 2.4%) and 4.9 km 2 (4.1 ± 2.7%) respectively. Glaciers on Mt. Elbrus, although located at higher elevations, lost 5.8 ± 1.4 km 2 (4.9 ± 1.2%) of their total area. The recession rates of valley glacier termini increased between 1987–2000/01 and 2000/01–2010 (2000 for the western MCR and 2001 for the central MCR and Mt.~Elbrus) from 3.8 ± 0.8, 3.2 ± 0.9 and 8.3 ± 0.8 m yr −1 to 11.9 ± 1.1, 8.7 ± 1.1 and 14.1 ± 1.1 m yr −1 in the central and western MCR and on Mt. Elbrus respectively. The highest rate of increase in glacier termini retreat was registered on the southern slope of the central MCR where it has tripled. A positive trend in summer temperatures forced glacier recession, and strong positive temperature anomalies in 1998, 2006, and 2010 contributed to the enhanced loss of ice. An increase in accumulation season precipitation observed in the northern MCR since the mid-1980s has not compensated for the effects of summer warming while the negative precipitation anomalies, observed on the southern slope of the central MCR in the 1990s, resulted in stronger glacier wastage.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-11-06
    Description: Glacier-like forms on Mars The Cryosphere, 8, 2047-2061, 2014 Author(s): B. Hubbard, C. Souness, and S. Brough More than 1300 glacier-like forms (GLFs) are located in Mars' mid-latitudes. These GLFs are predominantly composed of ice–dust mixtures and are visually similar to terrestrial valley glaciers, showing signs of downhill viscous deformation and an expanded former extent. However, several fundamental aspects of their behavior are virtually unknown, including temporal and spatial variations in mass balance, ice motion, landscape erosion and deposition, and hydrology. Here, we investigate the physical glaciology of martian GLFs. We use satellite images of specific examples and case studies to build on existing knowledge relating to (i) GLF current and former extent, exemplified via a GLF located in Phlegra Montes; (ii) indicators of GLF motion, focusing on the presence of surface crevasses on several GLFs; (iii) processes of GLF debris transfer, focusing on mapping and interpreting boulder trains on one GLF located in Protonilus Mensae, the analysis of which suggests a best-estimate mean GLF flow speed of 7.5 mm a −1 ; and (iv) GLF hydrology, focusing on supra-GLF gulley networks. On the basis of this information, we summarize the current state of knowledge of the glaciology of martian GLFs and identify future research avenues.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-06
    Description: Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams The Cryosphere, 8, 2007-2029, 2014 Author(s): J. Thompson, M. Simons, and V. C. Tsai Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams, even at stations many tens of kilometers inland from the grounding line. These surveys suggest that ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude farther inland than tidal flexure of the ice stream alone. Recent models exploring the role of tidal perturbations in basal shear stress are primarily one- or two-dimensional, with the impact of the ice stream margins either ignored or parameterized. Here, we use two- and three-dimensional finite-element modeling to investigate transmission of tidal stresses in ice streams and the impact of considering more realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, exponential decay in the stress caused by resistance at the ice stream margins. This behavior is independent of basal conditions beneath the ice stream and cannot be fit to observations using either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice stream from its lateral margins. Our results suggest that a mechanism external to the ice stream is necessary to explain the tidal modulation of stresses far upstream of the grounding line for narrow ice streams. We propose a hydrologic model based on time-dependent variability in till strength to explain transmission of tidal stresses inland of the grounding line. This conceptual model can reproduce observations from Rutford Ice Stream.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-06
    Description: Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present The Cryosphere, 8, 2031-2045, 2014 Author(s): J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick Many tidewater glaciers in Greenland are known to have undergone significant retreat during the last century following their Little Ice Age maxima. Where it is possible to reconstruct glacier change over this period, they provide excellent records for comparison to climate records, as well as calibration/validation for numerical models. These glacier change records therefore allow for tests of numerical models that seek to simulate tidewater glacier behaviour over multi-decadal to centennial timescales. Here we present a detailed record of behaviour from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859 and 2012, and compare it against available oceanographic and atmospheric temperature data between 1871 and 2012. We also use these records to evaluate the ability of a well-established one-dimensional flow-band model to replicate behaviour for the observation period. The record of terminus change demonstrates that KNS has advanced/retreated in phase with atmosphere and ocean climate anomalies averaged over multi-annual to decadal timescales. Results from an ensemble of model runs demonstrate that observed dynamics can be replicated. Model runs that provide a reasonable match to observations always require a significant atmospheric forcing component, but do not necessarily require an oceanic forcing component. Although the importance of oceanic forcing cannot be discounted, these results demonstrate that changes in atmospheric forcing are likely to be a primary driver of the terminus fluctuations of KNS from 1859 to 2012. We propose that the detail and length of the record presented makes KNS an ideal site for model validation exercises investigating links between climate, calving rates, and tidewater glacier dynamics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-28
    Description: A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections The Cryosphere, 8, 2177-2194, 2014 Author(s): Y. Zhang, I. Olthof, R. Fraser, and S. A. Wolfe Spatially detailed information on permafrost distribution and change with climate is important for land use planning, infrastructure development, and environmental assessments. However, the required soil and surficial geology maps in the North are coarse, and projected climate scenarios vary widely. Considering these uncertainties, we propose a new approach to mapping permafrost distribution and change by integrating remote sensing data, field measurements, and a process-based model. Land cover types from satellite imagery are used to capture the general land conditions and to improve the resolution of existing permafrost maps. For each land cover type, field observations are used to estimate the probabilities of different ground conditions. A process-based model is used to quantify the evolution of permafrost for each ground condition under three representative climate scenarios (low, medium, and high warming). From the model results, the probability of permafrost occurrence and the most likely permafrost conditions are determined. We apply this approach at 20 m resolution to a large area in Northwest Territories, Canada. Mapped permafrost conditions are in agreement with field observations and other studies. The data requirements, model robustness, and computation time are reasonable, and this approach may serve as a practical means to mapping permafrost and changes at high resolution in other regions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-29
    Description: Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice The Cryosphere, 8, 2219-2233, 2014 Author(s): S. Arndt and M. Nicolaus Arctic sea ice has not only decreased in volume during the last decades, but has also changed in its physical properties towards a thinner and more seasonal ice cover. These changes strongly impact the energy budget, and might affect the ice-associated ecosystems. In this study, we quantify solar shortwave fluxes through sea ice for the entire Arctic during all seasons. To focus on sea-ice-related processes, we exclude fluxes through open water, scaling linearly with sea ice concentration. We present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The maximum monthly mean solar heat flux under the ice of 30 × 10 5 Jm −2 occurs in June, enough heat to melt 0.3 m of sea ice. Furthermore, our results suggest that 96% of the annual solar heat input through sea ice occurs during only a 4-month period from May to August. Applying the new parameterization to remote sensing and reanalysis data from 1979 to 2011, we find an increase in transmitted light of 1.5% yr −1 for all regions. This corresponds to an increase in potential sea ice bottom melt of 63% over the 33-year study period. Sensitivity studies reveal that the results depend strongly on the timing of melt onset and the correct classification of ice types. Assuming 2 weeks earlier melt onset, the annual transmitted solar radiation to the upper ocean increases by 20%. Continuing the observed transition from a mixed multi-year/first-year sea ice cover to a seasonal ice cover results in an increase in light transmittance by an additional 18%.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-03
    Description: Post-LIA glacier changes along a latitudinal transect in the Central Italian Alps The Cryosphere, 8, 2235-2252, 2014 Author(s): R. Scotti, F. Brardinoni, and G. B. Crosta The variability of glacier response to atmospheric temperature rise in different topo-climatic settings is still a matter of debate. To address this question in the Central Italian Alps, we compile a post-LIA (Little Ice Age) multitemporal glacier inventory (1860–1954–1990–2003–2007) along a latitudinal transect that originates north of the continental divide in the Livigno Mountains and extends south through the Disgrazia and Orobie ranges, encompassing continental-to-maritime climatic settings. In these sub-regions, we examine the area change of 111 glaciers. Overall, the total glacierized area has declined from 34.1 to 10.1 km 2 , with a substantial increase in the number of small glaciers due to fragmentation. The average annual decrease (AAD) in glacier area has risen by about 1 order of magnitude from 1860–1990 (Livigno: 0.45; Orobie: 0.42; and Disgrazia: 0.39 % a −1 ) to 1990–2007 (Livigno: 3.08; Orobie: 2.44; and Disgrazia: 2.27 % a −1 ). This ranking changes when considering glaciers smaller than 0.5 km 2 only (i.e., we remove the confounding caused by large glaciers in Disgrazia), so that post-1990 AAD follows the latitudinal gradient and Orobie glaciers stand out (Livigno: 4.07; Disgrazia: 3.57; and Orobie: 2.47 % a −1 ). More recent (2007–2013) field-based mass balances in three selected small glaciers confirm post-1990 trends showing the consistently highest retreat in continental Livigno and minimal area loss in maritime Orobie, with Disgrazia displaying transitional behavior. We argue that the recent resilience of glaciers in Orobie is a consequence of their decoupling from synoptic atmospheric temperature trends, a decoupling that arises from the combination of local topographic configuration (i.e., deep, north-facing cirques) and high winter precipitation, which ensures high snow-avalanche supply, as well as high summer shading and sheltering. Our hypothesis is further supported by the lack of correlations between glacier change and glacier attributes in Orobie, as well as by the higher variability in ELA,sub〉0 positioning, post-LIA glacier change, and interannual mass balances, as we move southward along the transect.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-15
    Description: A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland The Cryosphere, 8, 107-121, 2014 Author(s): A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones Supraglacial lakes represent an ephemeral storage buffer for meltwater runoff and lead to significant, yet short-lived, episodes of ice-flow acceleration by decanting large meltwater and energy fluxes into the ice sheet's hydrological system. Here, a methodology for calculating lake volume is used to quantify storage and drainage across Russell Glacier, West Greenland, between 2002 and 2012. Using 502 MODIS scenes, water volume at ~200 seasonally occurring lakes was derived using a depth–reflectance relationship, which was independently calibrated and field validated against lake bathymetry. The inland expansion of lakes is strongly correlated with air temperature: during the record melt years of 2010 and 2012, lakes formed and drained earlier, attaining their maximum volume 38 and 20 days earlier than the 11 yr mean, as well as occupying a greater area and forming at higher elevations (〉 1800 m) than previously. Despite occupying under 2% of the study area, lakes delay the transmission of up to 7–13% of the bulk meltwater discharged. Although the results are subject to an observational bias caused by periods of cloud cover, we estimate that across Russell Glacier, 28% of supraglacial lakes drain rapidly ( 〈 4 days). Clustering of such events in space and time suggests a synoptic trigger mechanism. Further, we find no evidence to support a unifying critical size or depth-dependent drainage threshold.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-11
    Description: A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data The Cryosphere, 8, 73-90, 2014 Author(s): F. Hüsler, T. Jonas, M. Riffler, J. P. Musial, and S. Wunderle Seasonal snow cover is of great environmental and socio-economic importance for the European Alps. Therefore a high priority has been assigned to quantifying its temporal and spatial variability. Complementary to land-based monitoring networks, optical satellite observations can be used to derive spatially comprehensive information on snow cover extent. For understanding long-term changes in alpine snow cover extent, the data acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensors mounted onboard the National Oceanic and Atmospheric Association (NOAA) and Meteorological Operational satellite (MetOp) platforms offer a unique source of information. In this paper, we present the first space-borne 1 km snow extent climatology for the Alpine region derived from AVHRR data over the period 1985–2011. The objective of this study is twofold: first, to generate a new set of cloud-free satellite snow products using a specific cloud gap-filling technique and second, to examine the spatiotemporal distribution of snow cover in the European Alps over the last 27 yr from the satellite perspective. For this purpose, snow parameters such as snow onset day, snow cover duration (SCD), melt-out date and the snow cover area percentage (SCA) were employed to analyze spatiotemporal variability of snow cover over the course of three decades. On the regional scale, significant trends were found toward a shorter SCD at lower elevations in the south-east and south-west. However, our results do not show any significant trends in the monthly mean SCA over the last 27 yr. This is in agreement with other research findings and may indicate a deceleration of the decreasing snow trend in the Alpine region. Furthermore, such data may provide spatially and temporally homogeneous snow information for comprehensive use in related research fields (i.e., hydrologic and economic applications) or can serve as a reference for climate models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-01-18
    Description: Corrigendum to "Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet" published in The Cryosphere, 8, 15–24, 2014 The Cryosphere, 8, 123-123, 2014 Author(s): M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq No abstract available.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-01-23
    Description: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica The Cryosphere, 8, 125-135, 2014 Author(s): J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard In this study the effects of changes in the physics package of the regional atmospheric climate model RACMO2 on the modelled surface energy balance, near-surface temperature and wind speed of Antarctica are presented. The physics package update primarily consists of an improved turbulent and radiative flux scheme and a revised cloud scheme that includes a parameterisation for ice cloud super-saturation. The ice cloud super-saturation has led to more moisture being transported onto the continent, resulting in more and optically thicker clouds and more downward long-wave radiation. Overall, the updated model better represents the surface energy balance, based on a comparison with 〉750 months of data from nine automatic weather stations located in East Antarctica. Especially the representation of the turbulent sensible heat flux and net long-wave radiative flux has improved with a decrease in biases of up to 40%. As a result, modelled surface temperatures have increased and the bias, when compared to 10 m snow temperatures from 64 ice-core observations, has decreased from −2.3 K to −1.3 K. The weaker surface temperature inversion consequently improves the representation of the sensible heat flux, whereas wind speed biases remain unchanged. However, significant model biases remain, partly because RACMO2 at a resolution of 27 km is unable to resolve steep topography.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-03-14
    Description: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model The Cryosphere, 8, 395-415, 2014 Author(s): V. Vionnet, E. Martin, V. Masson, G. Guyomarc'h, F. Naaim-Bouvet, A. Prokop, Y. Durand, and C. Lac In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-05-06
    Description: Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska The Cryosphere, 8, 815-826, 2014 Author(s): L. Liu, K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-04-29
    Description: Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change The Cryosphere, 8, 743-760, 2014 Author(s): B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban This study explores an approach that simultaneously estimates Antarctic mass balance and glacial isostatic adjustment (GIA) through the combination of satellite gravity and altimetry data sets. The results improve upon previous efforts by incorporating a firn densification model to account for firn compaction and surface processes as well as reprocessed data sets over a slightly longer period of time. A range of different Gravity Recovery and Climate Experiment (GRACE) gravity models were evaluated and a new Ice, Cloud, and Land Elevation Satellite (ICESat) surface height trend map computed using an overlapping footprint approach. When the GIA models created from the combination approach were compared to in situ GPS ground station displacements, the vertical rates estimated showed consistently better agreement than recent conventional GIA models. The new empirically derived GIA rates suggest the presence of strong uplift in the Amundsen Sea sector in West Antarctica (WA) and the Philippi/Denman sectors, as well as subsidence in large parts of East Antarctica (EA). The total GIA-related mass change estimates for the entire Antarctic ice sheet ranged from 53 to 103 Gt yr −1 , depending on the GRACE solution used, with an estimated uncertainty of ±40 Gt yr −1 . Over the time frame February 2003–October 2009, the corresponding ice mass change showed an average value of −100 ± 44 Gt yr −1 (EA: 5 ± 38, WA: −105 ± 22), consistent with other recent estimates in the literature, with regional mass loss mostly concentrated in WA. The refined approach presented in this study shows the contribution that such data combinations can make towards improving estimates of present-day GIA and ice mass change, particularly with respect to determining more reliable uncertainties.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-04-30
    Description: Sea ice and the ocean mixed layer over the Antarctic shelf seas The Cryosphere, 8, 761-783, 2014 Author(s): A. A. Petty, P. R. Holland, and D. L. Feltham An ocean mixed-layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (〉 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions leading to high-salinity shelf water (HSSW) formation, and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface processes driving the mixed-layer depth evolution, we show that the net salt flux from sea ice growth/melt dominates the evolution of the mixed layer in all regions, with a smaller contribution from the surface heat flux and a negligible input from wind stress. The Weddell and Ross shelf seas receive an annual surplus of mixing energy at the surface; the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer; and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the link between the autumn/winter mixed-layer deepening and several atmospheric variables. The Weddell and Ross shelf seas show stronger spatial correlations (temporal mean – intra-regional variability) between the autumn/winter mixed-layer deepening and several atmospheric variables compared to the Amundsen and Bellingshausen. In contrast, the Amundsen and Bellingshausen shelf seas show stronger temporal correlations (shelf sea mean – interannual variability) between the autumn/winter mixed-layer deepening and several atmospheric variables.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-03-20
    Description: Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications The Cryosphere, 8, 471-485, 2014 Author(s): S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa Gridded snow water equivalent (SWE) data sets are valuable for estimating the snow water resources and verify different model systems, e.g. hydrological, land surface or atmospheric models. However, changing data availability represents a considerable challenge when trying to derive consistent time series for SWE products. In an attempt to improve the product consistency, we first evaluated the differences between two climatologies of SWE grids that were calculated on the basis of data from 110 and 203 stations, respectively. The "shorter" climatology (2001–2009) was produced using 203 stations (map203) and the "longer" one (1971–2009) 110 stations (map110). Relative to map203, map110 underestimated SWE, especially at higher elevations and at the end of the winter season. We tested the potential of quantile mapping to compensate for mapping errors in map110 relative to map203. During a 9 yr calibration period from 2001 to 2009, for which both map203 and map110 were available, the method could successfully refine the spatial and temporal SWE representation in map110 by making seasonal, regional and altitude-related distinctions. Expanding the calibration to the full 39 yr showed that the general underestimation of map110 with respect to map203 could be removed for the whole winter. The calibrated SWE maps fitted the reference (map203) well when averaged over regions and time periods, where the mean error is approximately zero. However, deviations between the calibrated maps and map203 were observed at single grid cells and years. When we looked at three different regions in more detail, we found that the calibration had the largest effect in the region with the highest proportion of catchment areas above 2000 m a.s.l. and that the general underestimation of map110 compared to map203 could be removed for the entire snow season. The added value of the calibrated SWE climatology is illustrated with practical examples: the verification of a hydrological model, the estimation of snow resource anomalies and the predictability of runoff through SWE.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-04-25
    Description: Adjoint accuracy for the full Stokes ice flow model: limits to the transmission of basal friction variability to the surface The Cryosphere, 8, 721-741, 2014 Author(s): N. Martin and J. Monnier This work focuses on the numerical assessment of the accuracy of an adjoint-based gradient in the perspective of variational data assimilation and parameter identification in glaciology. Using noisy synthetic data, we quantify the ability to identify the friction coefficient for such methods with a non-linear friction law. The exact adjoint problem is solved, based on second-order numerical schemes, and a comparison with the so-called "self-adjoint" approximation, neglecting the viscosity dependence on the velocity (leading to an incorrect gradient), common in glaciology, is carried out. For data with a noise of 1%, a lower bound of identifiable wavelengths of 10 ice thicknesses in the friction coefficient is established, when using the exact adjoint method, while the "self-adjoint" method is limited, even for lower noise, to a minimum of 20 ice thickness wavelengths. The second-order exact gradient method therefore provides robustness and reliability for the parameter identification process. In another respect, the derivation of the adjoint model using algorithmic differentiation leads to the formulation of a generalization of the "self-adjoint" approximation towards an incomplete adjoint method , adjustable in precision and computational burden.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-01-25
    Description: A double continuum hydrological model for glacier applications The Cryosphere, 8, 137-153, 2014 Author(s): B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback The flow of glaciers and ice streams is strongly influenced by the presence of water at the interface between ice and bed. In this paper, a hydrological model evaluating the subglacial water pressure is developed with the final aim of estimating the sliding velocities of glaciers. The global model fully couples the subglacial hydrology and the ice dynamics through a water-dependent friction law. The hydrological part of the model follows a double continuum approach which relies on the use of porous layers to compute water heads in inefficient and efficient drainage systems. This method has the advantage of a relatively low computational cost that would allow its application to large ice bodies such as Greenland or Antarctica ice streams. The hydrological model has been implemented in the finite element code Elmer/Ice, which simultaneously computes the ice flow. Herein, we present an application to the Haut Glacier d'Arolla for which we have a large number of observations, making it well suited to the purpose of validating both the hydrology and ice flow model components. The selection of hydrological, under-determined parameters from a wide range of values is guided by comparison of the model results with available glacier observations. Once this selection has been performed, the coupling between subglacial hydrology and ice dynamics is undertaken throughout a melt season. Results indicate that this new modelling approach for subglacial hydrology is able to reproduce the broad temporal and spatial patterns of the observed subglacial hydrological system. Furthermore, the coupling with the ice dynamics shows good agreement with the observed spring speed-up.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-01-31
    Description: Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet The Cryosphere, 8, 195-208, 2014 Author(s): T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB–elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9%) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0%) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the "no feedback" case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-01-31
    Description: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis The Cryosphere, 8, 167-180, 2014 Author(s): C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area covered by these lakes, changes in the regional climate and weather are related to regime shifts in the ice cover of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991–2011 period and by 21–38 cm (α = 0.001) from 1950 to 2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ~24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7–18.6 days (α = 0.001).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-01-31
    Description: Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet The Cryosphere, 8, 181-194, 2014 Author(s): T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m −3 a −1 for the north, and 1.91 (1.03 to 2.61) kg m −3 a −1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m −3 a −1 in the north, and 0.07 (−0.07 to 0.59) kg m −3 a −1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-02-28
    Description: Cyclone impact on sea ice in the central Arctic Ocean: a statistical study The Cryosphere, 8, 303-317, 2014 Author(s): A. Kriegsmann and B. Brümmer This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different sub-regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration in the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the cumulative impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important contributions to the recent ice extent minima in 2007 and 2012.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-02-21
    Description: Atmosphere–ice forcing in the transpolar drift stream: results from the DAMOCLES ice-buoy campaigns 2007–2009 The Cryosphere, 8, 275-288, 2014 Author(s): M. Haller, B. Brümmer, and G. Müller During the EU research project Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES), 18 ice buoys were deployed in the region of the Arctic transpolar drift (TPD). Sixteen of them formed a quadratic grid with 400 km side length. The measurements lasted from 2007 to 2009. The properties of the TPD and the impact of synoptic weather systems on the ice drift are analysed. Within the TPD, the speed increases by a factor of almost three from the North Pole to the Fram Strait region. The hourly buoy position fixes would show that the speed is underestimated by 10–20% if positions were taken at only 1–3 day intervals as it is usually done for satellite drift estimates. The geostrophic wind factor U i / U g (i.e. the ratio of ice speed U i and geostrophic wind speed U g ), in the TPD amounts to 0.012 on average, but with regional and seasonal differences. The constant U i / U g relation breaks down for U g 〈 5 m s −1 . The impact of synoptic weather systems is studied applying a composite method. Cyclones (anticyclones) cause cyclonic (anticyclonic) vorticity and divergence (convergence) of the ice drift. The amplitudes are twice as large for cyclones as for anticyclones. The divergence caused by cyclones corresponds to a 0.1–0.5% per 6 h open water area increase based on the composite averages, but reached almost 4% within one day during a strong August 2007 storm. This storm also caused a long-lasting (over several weeks) rise of U i and U i / U g and changed the ice conditions in a way which allowed large amplitudes of inertial ice motion. The consequences of an increasing Arctic storm activity for the ice cover are discussed.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-02-21
    Description: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model The Cryosphere, 8, 257-274, 2014 Author(s): N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning The runoff from a snow cover during spring snowmelt or rain-on-snow events is an important factor in the hydrological cycle. In this study, three water balance schemes for the 1 dimensional physically-based snowpack model SNOWPACK are compared to lysimeter measurements at two alpine sites with a seasonal snow cover, but with different climatological conditions: Weissfluhjoch (WFJ) and Col de Porte (CDP). The studied period consists of 14 and 17 yr, respectively. The schemes include a simple bucket-type approach, an approximation of Richards Equation (RE), and the full RE. The results show that daily sums of snowpack runoff are strongly related to a positive energy balance of the snow cover and therefore, all water balance schemes show very similar performance in terms of Nash-Sutcliffe efficiency (NSE) coefficients (around 0.63 and 0.72 for WFJ and CDP, respectively) and r 2 values (around 0.83 and 0.72 for WFJ and CDP, respectively). An analysis of the runoff dynamics over the season showed that the bucket-type and approximated RE scheme release meltwater slower than in the measurements, whereas RE provides a better agreement. Overall, solving RE for the snow cover yields the best agreement between modelled and measured snowpack runoff, but differences between the schemes are small. On sub-daily time scales, the water balance schemes behave very differently. In that case, solving RE provides the highest agreement between modelled and measured snowpack runoff in terms of NSE coefficient (around 0.48 at both sites). At WFJ, the other water balance schemes loose most predictive power, whereas at CDP, the bucket-type scheme has an NSE coefficient of 0.39. The shallower and less stratified snowpack at CDP likely reduces the differences between the water balance schemes. Accordingly, it can be concluded that solving RE for the snow cover improves several aspects of modelling snow cover runoff, especially for deep, sub-freezing snow covers and in particular on the sub-daily time scales. The additional computational cost was found to be in the order of a factor of 1.5–2.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-02-26
    Description: Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas The Cryosphere, 8, 289-301, 2014 Author(s): H. Pang, S. Hou, S. Kaspari, and P. A. Mayewski Several ice cores have been recovered from the Dasuopu (DSP) Glacier and the East Rongbuk (ER) Glacier in the central Himalayas since the 1990s. Although the distance between the DSP and the ER ice core drilling sites is only ~ 125 km, the stable isotopic record (δ 18 O or δD) of the DSP core is interpreted in previous studies as a temperature proxy, while the ER core is interpreted as a precipitation proxy. Thus, the climatological significance of the stable isotopic records of these Himalayan ice cores remains a subject of debate. Based on analysis of regional precipitation patterns over the region, we find that remarkable discrepancy in precipitation seasonality between the two sites may account for their disparate isotopic interpretations. At the ER core site, the Indian summer monsoon (ISM) precipitation is dominating due to topographic blocking of the moisture from westerlies by the high ridges of Mt. Qomolangma (Everest), which results in a negative correlation between the ER Δ 18 O or δD record and precipitation amount along the southern slope of the central Himalayas in response to the "amount effect". At the DSP core site, in comparison with the ISM precipitation, the wintertime precipitation associated with the westerlies is likely more important owing to its local favorable topographic conditions for interacting with the western disturbances. Therefore, the DSP stable isotopic record may be primarily controlled by the westerlies. Our results have important implications for interpreting the stable isotopic ice core records recovered from different climatological regimes of the Himalayas.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-03-26
    Description: A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada The Cryosphere, 8, 503-519, 2014 Author(s): C. Kienholz, J. L. Rich, A. A. Arendt, and R. Hock This study presents a new method to derive centerlines for the main branches and major tributaries of a set of glaciers, requiring glacier outlines and a digital elevation model (DEM) as input. The method relies on a "cost grid–least-cost route approach" that comprises three main steps. First, termini and heads are identified for every glacier. Second, centerlines are derived by calculating the least-cost route on a previously established cost grid. Third, the centerlines are split into branches and a branch order is allocated. Application to 21 720 glaciers in Alaska and northwest Canada (Yukon, British Columbia) yields 41 860 centerlines. The algorithm performs robustly, requiring no manual adjustments for 87.8% of the glaciers. Manual adjustments are required primarily to correct the locations of glacier heads (7.0% corrected) and termini (3.5% corrected). With corrected heads and termini, only 1.4% of the derived centerlines need edits. A comparison of the lengths from a hydrological approach to the lengths from our longest centerlines reveals considerable variation. Although the average length ratio is close to unity, only ~ 50% of the 21 720 glaciers have the two lengths within 10% of each other. A second comparison shows that our centerline lengths between lowest and highest glacier elevations compare well to our longest centerline lengths. For 〉 70% of the 4350 glaciers with two or more branches, the two lengths are within 5% of each other. Our final product can be used for calculating glacier length, conducting length change analyses, topological analyses, or flowline modeling.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-03-28
    Description: Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia The Cryosphere, 8, 537-546, 2014 Author(s): L. Karlstrom, A. Zok, and M. Manga Supraglacial channel networks link time varying melt production and meltwater routing on temperate glaciers. Such channel networks often include components of both surface transport in streams and subsurface porous flow through near-surface ice, firn or snowpack. Although subsurface transport if present will likely control network transport efficacy, it is the most poorly characterized component of the system. We present measurements of supraglacial channel spacing and network properties on the Juneau Icefield, subsurface water table height, and time variation of hydraulic characteristics including diurnal variability in water temperature. We combine these data with modeling of porous flow in weathered ice to infer near-surface permeability. Estimates are based on an observed phase lag between diurnal water temperature variations and discharge, and independently on measurement of water table surface elevation away from a stream. Both methods predict ice permeability on a 1–10 m scale in the range of 10 −10 –10 −11 m 2 . These estimates are considerably smaller than common parameterizations of surface water flow on bare ice in the literature, as well as smaller than most estimates of snowpack permeability. For supraglacial environments in which porosity/permeability creation in the subsurface is balanced by porous flow of meltwater, our methods provide an estimate of microscale hydraulic properties from observations of supraglacial channel spacing.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-03-28
    Description: Modeling bulk density and snow water equivalent using daily snow depth observations The Cryosphere, 8, 521-536, 2014 Author(s): J. L. McCreight and E. E. Small Bulk density is a fundamental property of snow relating its depth and mass. Previously, two simple models of bulk density (depending on snow depth, date, and location) have been developed to convert snow depth observations to snow water equivalent (SWE) estimates. However, these models were not intended for application at the daily time step. We develop a new model of bulk density for the daily time step and demonstrate its improved skill over the existing models. Snow depth and density are negatively correlated at short (10 days) timescales while positively correlated at longer (90 days) timescales. We separate these scales of variability by modeling smoothed, daily snow depth (long timescales) and the observed positive and negative anomalies from the smoothed time series (short timescales) as separate terms. A climatology of fit is also included as a predictor variable. Over half a million daily observations of depth and SWE at 345 snowpack telemetry (SNOTEL) sites are used to fit models and evaluate their performance. For each location, we train the three models to the neighboring stations within 70 km, transfer the parameters to the location to be modeled, and evaluate modeled time series against the observations at that site. Our model exhibits improved statistics and qualitatively more-realistic behavior at the daily time step when sufficient local training data are available. We reduce density root mean square error (RMSE) by 9.9 and 4.5% compared to previous models while increasing R 2 from 0.46 to 0.52 to 0.56 across models. Focusing on the 21-day window around peak SWE in each water year, our model reduces density RMSE by 24 and 17.4% relative to the previous models, with R 2 increasing from 0.55 to 0.58 to 0.71 across models. Removing the challenge of parameter transfer over the full observational record increases R 2 scores for both the existing and new models, but the gain is greatest for the new model ( R 2 = 0.75). Our model shows general improvement over existing models when data are more frequent than once every 5 days and at least 3 stations are available for training.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-04-04
    Description: Brief Communication: On the magnitude and frequency of Khurdopin glacier surge events The Cryosphere, 8, 571-574, 2014 Author(s): D. J. Quincey and A. Luckman The return periods of Karakoram glacier surges are poorly quantified. Here, we present evidence of an historic surge of the Khurdopin Glacier that began in the mid-1970s and peaked in 1979. Measured surface displacements reached 〉5 km a −1 , two orders of magnitude faster than during quiescence. The Khurdopin Glacier next surged in the late 1990s, equating to a return period of 20 years. Surge evolution in the two events shows remarkable similarity suggesting a common trigger. Surge activity in the Karakoram needs to be better understood if accurate mass balance assessments of Hindu-Kush–Karakoram–Himalaya glaciers are to be made.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-04-04
    Description: Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach The Cryosphere, 8, 547-569, 2014 Author(s): J. Veitinger, B. Sovilla, and R. S. Purves In alpine terrain, the snow-covered winter surface deviates from its underlying summer terrain due to the progressive smoothing caused by snow accumulation. Terrain smoothing is believed to be an important factor in avalanche formation and avalanche dynamics, and it affects surface heat transfer, energy balance as well as snow depth distribution. To assess the effect of snow on terrain, we use an adequate roughness definition. We developed a method to quantify terrain smoothing by combining roughness calculations of snow surfaces and their corresponding underlying terrain with snow depth measurements. To this end, elevation models of winter and summer terrain in three selected alpine basins in the Swiss Alps characterized by low, medium and high terrain roughness were derived from high-resolution measurements performed by airborne and terrestrial lidar. The preliminary results in the selected basins reveal that, at basin scale, terrain smoothing depends not only on mean snow depth in the basin but also on its variability. The multi-temporal analysis over three winter seasons in one basin suggests that terrain smoothing can be modelled as a function of mean snow depth and its standard deviation using a power law. However, a relationship between terrain smoothing and snow depth was not found at pixel scale. Further, we show that snow surface roughness is to some extent persistent, even in-between winter seasons. Those persistent patterns might be very useful to improve the representation of a winter terrain without modelling of the snow cover distribution. This can for example improve avalanche release area definition and, in the long term, natural hazard management strategies.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-09-16
    Description: Changes in Imja Tsho in the Mount Everest region of Nepal The Cryosphere, 8, 1661-1671, 2014 Author(s): M. A. Somos-Valenzuela, D. C. McKinney, D. R. Rounce, and A. C. Byers Imja Tsho, located in the Sagarmatha (Everest) National Park of Nepal, is one of the most studied and rapidly growing lakes in the Himalayan range. Compared with previous studies, the results of our sonar bathymetric survey conducted in September of 2012 suggest that its maximum depth has increased from 90.5 to 116.3 ± 5.2 m since 2002, and that its estimated volume has grown from 35.8 ± 0.7 to 61.7 ± 3.7 million m 3 . Most of the expansion of the lake in recent years has taken place in the glacier terminus–lake interface on the eastern end of the lake, with the glacier receding at about 52 m yr −1 and the lake expanding in area by 0.04 km 2 yr −1 . A ground penetrating radar survey of the Imja–Lhotse Shar glacier just behind the glacier terminus shows that the ice is over 200 m thick in the center of the glacier. The volume of water that could be released from the lake in the event of a breach in the damming moraine on the western end of the lake has increased to 34.1 ± 1.08 million m 3 from the 21 million m 3 estimated in 2002.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-09-18
    Description: Present and future variations in Antarctic firn air content The Cryosphere, 8, 1711-1723, 2014 Author(s): S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke A firn densification model (FDM) is used to assess spatial and temporal (1979–2200) variations in the depth, density and temperature of the firn layer covering the Antarctic ice sheet (AIS). A time-dependent version of the FDM is compared to more commonly used steady-state FDM results. Although the average AIS firn air content (FAC) of both models is similar (22.5 m), large spatial differences are found: in the ice-sheet interior, the steady-state model underestimates the FAC by up to 2 m, while the FAC is overestimated by 5–15 m along the ice-sheet margins, due to significant surface melt. Applying the steady-state FAC values to convert surface elevation to ice thickness (i.e., assuming flotation at the grounding line) potentially results in an underestimation of ice discharge at the grounding line, and hence an underestimation of current AIS mass loss by 23.5% (or 16.7 Gt yr −1 ) with regard to the reconciled estimate over the period 1992–2011. The timing of the measurement is also important, as temporal FAC variations of 1–2 m are simulated within the 33 yr period (1979–2012). Until 2200, the Antarctic FAC is projected to change due to a combination of increasing accumulation, temperature, and surface melt. The latter two result in a decrease of FAC, due to (i) more refrozen meltwater, (ii) a higher densification rate, and (iii) a faster firn-to-ice transition at the bottom of the firn layer. These effects are, however, more than compensated for by increasing snowfall, leading to a 4–14% increase in FAC. Only in melt-affected regions, future FAC is simulated to decrease, with the largest changes (−50 to −80%) on the ice shelves in the Antarctic Peninsula and Dronning Maud Land. Integrated over the AIS, the increase in precipitation results in a similar volume increase due to ice and air (both ~150 km 3 yr −1 until 2100). Combined, this volume increase is equivalent to a surface elevation change of +2.1 cm yr −1 , which shows that variations in firn depth remain important to consider in future mass balance studies using satellite altimetry.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-09-18
    Description: Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years The Cryosphere, 8, 1699-1710, 2014 Author(s): H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. Schodlok, and A. Khazendar Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next 50 yr in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-10-02
    Description: The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland The Cryosphere, 8, 1801-1806, 2014 Author(s): K. Keegan, M. R. Albert, and I. Baker Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present, which can alter transport dynamics and therefore reduce the accuracy of reconstructed climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. These ice layers were found to have permeability values of 3.0 and 4.0 × 10 −10 m 2 , and are therefore not impermeable layers. However, the shallower ice layer was found to be significantly less permeable than the surrounding firn, and can therefore retard gas transport. Large closed bubbles were found in the deeper ice layer, which will have an altered gas composition than that expected because they were closed near the surface after the water phase was present. The bubbles in this layer represent 12% of the expected closed porosity of this firn layer after the firn-ice transition depth is reached, and will therefore bias the future ice core gas record. The permeability and thickness of the ice layers at the North Greenland Eemian Ice Drilling (NEEM) site suggest that they do not disrupt the firn-air concentration profiles and that they do not need to be accounted for in gas transport models at NEEM.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-10-09
    Description: Surface velocity and mass balance of Livingston Island ice cap, Antarctica The Cryosphere, 8, 1807-1823, 2014 Author(s): B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr −1 , equivalent to −0.73 ± 0.38 m w.e. yr −1 over the ice cap area of 697 km 2 ) and surface ablation (−0.73 ± 0.10 m w.e. yr −1 ) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr −1 ). Total mass change (δ M = −0.67 ± 0.40 m w.e. yr −1 ) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr −1 ). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr −1 ; −0.34 m w.e. yr −1 ) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-10-10
    Description: Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow The Cryosphere, 8, 1825-1838, 2014 Author(s): S. Schleef, H. Löwe, and M. Schneebeli Laboratory-based, experimental data for the microstructural evolution of new snow are scarce, though applications would benefit from a quantitative characterization of the main influences. To this end, we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series. In contrast to previous measurements on isothermal metamorphism on time scales of weeks to months, we analyzed the initial 24–48 h of snow evolution at a high temporal resolution of 3 hours. The data set comprised natural and laboratory-grown snow, and experimental conditions included systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a snowpack. For all conditions, we found a linear relation between density and SSA, indicating that metamorphism has an immediate influence for the densification of new snow. The slope of the linear relation, however, depends on the other parameters which were analyzed individually to derive a best-fit parameterization for the SSA decrease rate and densification rate. In the investigated parameter range, we found that the initial value of the SSA constituted the main morphological influence on the SSA decrease rate. In turn, the SSA decrease rate constituted the main influence on the densification rate.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-10-21
    Description: Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR The Cryosphere, 8, 1871-1883, 2014 Author(s): B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-10-24
    Description: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0) The Cryosphere, 8, 1935-1950, 2014 Author(s): S. Karra, S. L. Painter, and P. C. Lichtner Degradation of near-surface permafrost due to changes in the climate is expected to impact the hydrological, ecological and biogeochemical responses of the Arctic tundra. From a hydrological perspective, it is important to understand the movement of the various phases of water (gas, liquid and ice) during the freezing and thawing of near-surface soils. We present a new non-isothermal, single-component (water), three-phase formulation that treats air as an inactive component. This single component model works well and produces similar results to a more complete and computationally demanding two-component (air, water) formulation, and is able to reproduce results of previously published laboratory experiments. A proof-of-concept implementation in the massively parallel subsurface flow and reactive transport code PFLOTRAN is summarized, and parallel performance of that implementation is demonstrated. When water vapor diffusion is considered, a large effect on soil moisture dynamics is seen, which is due to dependence of thermal conductivity on ice content. A large three-dimensional simulation (with around 6 million degrees of freedom) of seasonal freezing and thawing is also presented.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-10-23
    Description: Using daily air temperature thresholds to evaluate snow melting occurrence and amount on Alpine glaciers by T -index models: the case study of the Forni Glacier (Italy) The Cryosphere, 8, 1921-1933, 2014 Author(s): A. Senese, M. Maugeri, E. Vuillermoz, C. Smiraglia, and G. Diolaiuti Glacier melt conditions (i.e., null surface temperature and positive energy budget) can be assessed by analyzing data acquired by a supraglacial automatic weather station (AWS), such as the station installed on the surface of Forni Glacier (Italian Alps). When an AWS is not present, the assessment of actual melt conditions and the evaluation of the melt amount is more difficult and simple methods based on T -index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 0 °C. In this paper, we applied both energy budget and T -index approaches with the aim of solving this issue. We start by distinguishing between the occurrence of snowmelt and the reduction in snow depth due to actual ablation (from snow depth data recorded by a sonic ranger). Then we find the daily average temperature thresholds (by analyzing temperature data acquired by an AWS on Forni Glacier) which, on the one hand, best capture the occurrence of significant snowmelt conditions and, on the other, make it possible, using the T -index, to quantify the actual snow ablation amount. Finally we investigated the applicability of the mean tropospheric lapse rate to reproduce air temperature conditions at the glacier surface starting from data acquired by weather stations located outside the glacier area. We found that the mean tropospheric lapse rate allows for a good and reliable reconstruction of glacier air temperatures and that the choice of an appropriate temperature threshold in T -index models is a very important issue. From our study, the application of the +0.5 °C temperature threshold allows for a consistent quantification of snow ablation while, instead, for detecting the beginning of the snow melting processes a suitable threshold has proven to be at least −4.6 °C.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-10-23
    Description: Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues The Cryosphere, 8, 1905-1919, 2014 Author(s): H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory A total of 3 years of blowing-snow observations and associated meteorology along a 7 m mast at site D17 in coastal Adélie Land are presented. The observations are used to address three atmospheric-moisture issues related to the occurrence of blowing snow, a feature which largely affects many regions of Antarctica: (1) blowing-snow sublimation raises the moisture content of the surface atmosphere close to saturation, and atmospheric models and meteorological analyses that do not carry blowing-snow parameterizations are affected by a systematic dry bias; (2) while snowpack modelling with a parameterization of surface-snow erosion by wind can reproduce the variability of snow accumulation and ablation, ignoring the high levels of atmospheric-moisture content associated with blowing snow results in overestimating surface sublimation, affecting the energy budget of the snowpack; (3) the well-known profile method of calculating turbulent moisture fluxes is not applicable when blowing snow occurs, because moisture gradients are weak due to blowing-snow sublimation, and the impact of measurement uncertainties are strongly amplified in the case of strong winds.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-10-28
    Description: 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model The Cryosphere, 8, 1975-1987, 2014 Author(s): X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-10-28
    Description: Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard The Cryosphere, 8, 1951-1973, 2014 Author(s): M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger Understanding the response of fast flowing ice streams or outlet glaciers to changing climate is crucial in order to make reliable projections of sea level change over the coming decades. Motion of fast outlet glaciers occurs largely through basal motion governed by physical processes at the glacier bed, which are not yet fully understood. Various subglacial mechanisms have been suggested for fast flow but common to most of the suggested processes is the requirement of presence of liquid water, and thus temperate conditions. We use a combination of modelling, field, and remote observations in order to study links between different heat sources, the thermal regime and basal sliding in fast flowing areas on Vestfonna ice cap. A special emphasis lies on Franklinbreen, a fast flowing outlet glacier which has been observed to accelerate recently. We use the ice flow model Elmer/Ice including a Weertman type sliding law and a Robin inverse method to infer basal friction parameters from observed surface velocities. Firn heating, i.e. latent heat release through percolation of melt water, is included in our model; its parameterisation is calibrated with the temperature record of a deep borehole. We found that strain heating is negligible, whereas friction heating is identified as one possible trigger for the onset of fast flow. Firn heating is a significant heat source in the central thick and slow flowing area of the ice cap and the essential driver behind the ongoing fast flow in all outlets. Our findings suggest a possible scenario of the onset and maintenance of fast flow on the Vestfonna ice cap based on thermal processes and emphasise the role of latent heat released through refreezing of percolating melt water for fast flow. However, these processes cannot yet be captured in a temporally evolving sliding law. In order to simulate correctly fast flowing outlet glaciers, ice flow models not only need to account fully for all heat sources, but also need to incorporate a sliding law that is not solely based on the basal temperature, but also on hydrology and/or sediment physics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-10-29
    Description: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence The Cryosphere, 8, 1989-2006, 2014 Author(s): J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano In this study we analyzed the relations between terrain characteristics and snow depth distribution in a small alpine catchment located in the central Spanish Pyrenees. Twelve field campaigns were conducted during 2012 and 2013, which were years characterized by very different climatic conditions. Snow depth was measured using a long range terrestrial laser scanner and analyses were performed at a spatial resolution of 5 m. Pearson's r correlation, multiple linear regressions (MLRs) and binary regression trees (BRTs) were used to analyze the influence of topography on the snow depth distribution. The analyses were used to identify the topographic variables that best explain the snow distribution in this catchment, and to assess whether their contributions were variable over intra- and interannual timescales. The topographic position index (index that compares the relative elevation of each cell in a digital elevation model to the mean elevation of a specified neighborhood around that cell with a specific shape and searching distance), which has rarely been used in these types of studies, most accurately explained the distribution of snow. The good capability of the topographic position index (TPI) to predict snow distribution has been observed in both, MLRs and BRTs for all analyzed days. Other variables affecting the snow depth distribution included the maximum upwind slope, elevation and northing. The models developed to predict snow distribution in the basin for each of the 12 survey days were similar in terms of the explanatory variables. However, the variance explained by the overall model and by each topographic variable, especially those making a lesser contribution, differed markedly between a year in which snow was abundant (2013) and a year when snow was scarce (2012), and also differed between surveys in which snow accumulation or melting conditions dominated in the preceding days. The total variance explained by the models clearly decreased for those days on which the snowpack was thinner and more patchily. Despite the differences in climatic conditions in the 2012 and 2013 snow seasons, similarities in snow distributions patterns were observed which are directly related to terrain topographic characteristics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-08-05
    Description: Importance of basal processes in simulations of a surging Svalbard outlet glacier The Cryosphere, 8, 1393-1405, 2014 Author(s): R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore The outlet glacier of Basin 3 (B3) of Austfonna ice cap, Svalbard, is one of the fastest outlet glaciers in Svalbard, and shows dramatic changes since 1995. In addition to previously observed seasonal summer speed-up associated with the melt season, the winter speed of B3 has accelerated approximately fivefold since 1995. We use the Elmer/Ice full-Stokes model for ice dynamics to infer spatial distributions of basal drag for the winter seasons of 1995, 2008 and 2011. This "inverse" method is based on minimising discrepancy between modelled and observed surface velocities, using satellite remotely sensed velocity fields. We generate steady-state temperature distributions for 1995 and 2011. Frictional heating caused by basal sliding contributes significantly to basal temperatures of the B3 outlet glacier, with heat advection (a longer-timescale process than frictional heating) also being important in the steady state. We present a sensitivity experiment consisting of transient simulations under present-day forcing to demonstrate that using a temporally fixed basal drag field obtained through inversion can lead to thickness change errors of the order of 2 m year −1 . Hence it is essential to incorporate the evolution of basal processes in future projections of the evolution of B3. Informed by a combination of our inverse method results and previous studies, we hypothesise a system of processes and feedbacks involving till deformation and basal hydrology to explain both the seasonal accelerations (short residence time pooling of meltwater at the ice–till interface) and the ongoing interannual speed-up (gradual penetration of water into the till, reducing till strength).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-08-23
    Description: How much snow falls on the Antarctic ice sheet? The Cryosphere, 8, 1577-1587, 2014 Author(s): C. Palerme, J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but it is not yet available. Satellite observations of precipitation by active sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here, we use two CloudSat products to generate the first multi-year, model-independent climatology of Antarctic precipitation. The first product is used to determine the frequency and the phase of precipitation, while the second product is used to assess the snowfall rate. The mean snowfall rate from August 2006 to April 2011 is 171 mm year −1 over the Antarctic ice sheet, north of 82° S. While uncertainties on individual precipitation retrievals from CloudSat data are potentially large, the mean uncertainty should be much smaller, but cannot be easily estimated. There are no in situ measurements of Antarctic precipitation to directly assess the new climatology. However, distributions of both precipitation occurrences and rates generally agree with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data set, the production of which is constrained by various in situ and satellite observations, but does not use any data from CloudSat. The new data set thus offers unprecedented capability to quantitatively assess Antarctic precipitation statistics and rates in climate models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-09-18
    Description: Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry The Cryosphere, 8, 1725-1740, 2014 Author(s): R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen Mass changes of the Greenland Ice Sheet may be estimated by the input–output method (IOM), satellite gravimetry, or via surface elevation change rates (d H /d t ). Whereas the first two have been shown to agree well in reconstructing ice-sheet wide mass changes over the last decade, there are few decadal estimates from satellite altimetry and none that provide a time-evolving trend that can be readily compared with the other methods. Here, we interpolate radar and laser altimetry data between 1995 and 2009 in both space and time to reconstruct the evolving volume changes. A firn densification model forced by the output of a regional climate model is used to convert volume to mass. We consider and investigate the potential sources of error in our reconstruction of mass trends, including geophysical biases in the altimetry, and the resulting mass change rates are compared to other published estimates. We find that mass changes are dominated by surface mass balance (SMB) until about 2001, when mass loss rapidly accelerates. The onset of this acceleration is somewhat later, and less gradual, compared to the IOM. Our time-averaged mass changes agree well with recently published estimates based on gravimetry, IOM, laser altimetry, and with radar altimetry when merged with airborne data over outlet glaciers. We demonstrate that, with appropriate treatment, satellite radar altimetry can provide reliable estimates of mass trends for the Greenland Ice Sheet. With the inclusion of data from CryoSat-2, this provides the possibility of producing a continuous time series of regional mass trends from 1992 onward.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-08-29
    Description: Sensitivity of lake ice regimes to climate change in the Nordic region The Cryosphere, 8, 1589-1605, 2014 Author(s): S. Gebre, T. Boissy, and K. Alfredsen A one-dimensional process-based multi-year lake ice model, MyLake, was used to simulate lake ice phenology and annual maximum lake ice thickness for the Nordic region comprising Fennoscandia and the Baltic countries. The model was first tested and validated using observational meteorological forcing on a candidate lake (Lake Atnsjøen) and using downscaled ERA-40 reanalysis data set. To simulate ice conditions for the contemporary period of 1961–2000, the model was driven by gridded meteorological forcings from ERA-40 global reanalysis data downscaled to a 25 km resolution using the Rossby Centre Regional Climate Model (RCA). The model was then forced with two future climate scenarios from the RCA driven by two different general circulation models (GCMs) based on the Special Report on Emissions Scenarios (SRES) A1B. The two climate scenarios correspond to two future time periods namely the 2050s (2041–2070) and the 2080s (2071–2100). To take into account the influence of lake morphometry, simulations were carried out for four different hypothetical lake depths (5 m, 10 m, 20 m, 40 m) placed at each of the 3708 grid cells. Based on a comparison of the mean predictions in the future 30-year periods with the control (1961–1990) period, ice cover durations in the region will be shortened by 1 to 11 weeks in 2041–2070, and 3 to 14 weeks in 2071–2100. Annual maximum lake ice thickness, on the other hand, will be reduced by a margin of up to 60 cm by 2041–2070 and up to 70 cm by 2071–2100. The simulated changes in lake ice characteristics revealed that the changes are less dependent on lake depths though there are slight differences. The results of this study provide a regional perspective of anticipated changes in lake ice regimes due to climate warming across the study area by the middle and end of this century.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-09-26
    Description: Insights into ice stream dynamics through modelling their response to tidal forcing The Cryosphere, 8, 1763-1775, 2014 Author(s): S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green The tidal forcing of ice streams at their ocean boundary can serve as a natural experiment to gain an insight into their dynamics and constrain the basal sliding law. A nonlinear 3-D viscoelastic full Stokes model of coupled ice stream ice shelf flow is used to investigate the response of ice streams to ocean tides. In agreement with previous results based on flow-line modelling and with a fixed grounding line position, we find that a nonlinear basal sliding law can qualitatively reproduce long-period modulation of tidal forcing found in field observations. In addition, we show that the inclusion of lateral drag, or allowing the grounding line to migrate over the tidal cycle, does not affect these conclusions. Further analysis of modelled ice stream flow shows a varying stress-coupling length scale of boundary effects upstream of the grounding line. We derive a viscoelastic stress-coupling length scale from ice stream equations that depends on the forcing period and closely agrees with model output.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-09-27
    Description: The effect of changing sea ice on the physical vulnerability of Arctic coasts The Cryosphere, 8, 1777-1799, 2014 Author(s): K. R. Barnhart, I. Overeem, and R. S. Anderson Sea ice limits the interaction of the land and ocean water in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic, the open-water season is increasing in duration and summertime sea-ice extents are decreasing. Sea ice provides a first-order control on the physical vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructures by ocean water. We ask how the changing sea-ice cover has influenced coastal erosion over the satellite record. First, we present a pan-Arctic analysis of satellite-based sea-ice concentration specifically along the Arctic coasts. The median length of the 2012 open-water season, in comparison to 1979, expanded by between 1.5 and 3-fold by Arctic Sea sector, which allows for open water during the stormy Arctic fall. Second, we present a case study of Drew Point, Alaska, a site on the Beaufort Sea, characterized by ice-rich permafrost and rapid coastal-erosion rates, where both the duration of the open-water season and distance to the sea-ice edge, particularly towards the northwest, have increased. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open-water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water-level setup have increased consistently with increasing fetch.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-09-26
    Description: Brief Communication: Trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013 The Cryosphere, 8, 1757-1762, 2014 Author(s): A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma An analysis of Special Sensor Microwave/Imager (SSM/I) satellite data reveals that the Whaler's Bay polynya north of Svalbard was considerably larger in the three winters from 2012 to 2014 compared to the previous 20 years. This increased polynya size leads to strong atmospheric convection during cold air outbreaks in a region north of Svalbard that was typically ice-covered in the last decades. The change in ice cover can strongly influence local temperature conditions. Dropsonde measurements from March 2013 show that the unusual ice conditions generate extreme convective boundary layer heights that are larger than the regional values reported in previous studies.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-11-25
    Description: Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation The Cryosphere, 8, 2119-2134, 2014 Author(s): A. P. Wright, A. M. Le Brocq, S. L. Cornford, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, T. A. Jordan, A. J. Payne, D. M. Rippin, N. Ross, and M. J. Siegert A recent ocean modelling study indicates that possible changes in circulation may bring warm deep-ocean water into direct contact with the grounding lines of the Filchner–Ronne ice streams, suggesting the potential for future ice losses from this sector equivalent to ~0.3 m of sea-level rise. Significant advancements have been made in our knowledge of both the basal topography and ice velocity in the Weddell Sea sector, and the ability to accurately model marine ice sheet dynamics, thus enabling an assessment to be made of the relative sensitivities of the diverse collection of ice streams feeding the Filchner–Ronne Ice Shelf. Here we use the BISICLES ice sheet model, which employs adaptive-mesh refinement to resolve grounding line dynamics, to carry out such an assessment. The impact of realistic perturbations to the surface and sub-shelf mass balance forcing fields from our 2000-year "reference" model run indicate that both the Institute and Möller ice streams are highly sensitive to changes in basal melting either near to their respective grounding lines, or in the region of the ice rises within the Filchner–Ronne Ice Shelf. These same perturbations have little impact, however, on the Rutford, Carlson or Foundation ice streams, while the Evans Ice Stream is found to enter a phase of unstable retreat only after melt at its grounding line has increased by 50% of likely present-day values.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-10-21
    Description: Glacier area and length changes in Norway from repeat inventories The Cryosphere, 8, 1885-1903, 2014 Author(s): S. H. Winsvold, L. M. Andreassen, and C. Kienholz In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+-derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from three time ranges: 1947 to 1985 (GI n50 ), 1988 to 1997 (GI 1990 ), and 1999 to 2006 (GI 2000 ). For the northernmost regions, we include an additional inventory (GI 1900 ) based on historic maps surveyed between 1895 and 1907. Area and length changes are assessed per glacier unit, 36 subregions, and for three main parts of Norway: southern, central, and northern. The results show a decrease in the glacierized area from 2994 km 2 in GI n50 to 2668 km 2 in GI 2000 (total 2722 glacier units), corresponding to an area reduction of −326 km 2 , or −11% of the initial GI n50 area. The average length change for the full epoch (within GI n50 and GI 2000 ) is −240 m. Overall, the comparison reveals both area and length reductions as general patterns, even though some glaciers have advanced. The three northernmost subregions show the highest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several factors such as glacier geometry, elevation, and continentality, especially in southern Norway.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-11-25
    Description: Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats The Cryosphere, 8, 2135-2145, 2014 Author(s): T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander The northern Antarctic Peninsula (nAP, 〈 66° S) is one of the most rapidly changing glaciated regions on earth, yet the spatial patterns of its ice mass loss at the glacier basin scale have to date been poorly documented. We use satellite laser altimetry and satellite stereo-image topography spanning 2001–2010, but primarily 2003–2008, to map ice elevation change and infer mass changes for 33 glacier basins covering the mainland and most large islands in the nAP. Rates of ice volume and ice mass change are 27.7± 8.6 km 3 a −1 and 24.9± 7.8 Gt a −1 , equal to −0.73 m a −1 w.e. for the study area. Mass loss is the highest for eastern glaciers affected by major ice shelf collapses in 1995 and 2002, where twelve glaciers account for 60% of the total imbalance. However, losses at smaller rates occur throughout the nAP, at both high and low elevation, despite increased snow accumulation along the western coast and ridge crest. We interpret the widespread mass loss to be driven by decades of ice front retreats on both sides of the nAP, and extended throughout the ice sheet due to the propagation of kinematic waves triggered at the fronts into the interior.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-11-26
    Description: First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR – Part 2: Scaling in situ to Radarsat-2 The Cryosphere, 8, 2163-2176, 2014 Author(s): R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber Sea ice melt pond fraction ( f p ), linked with lower sea ice surface albedo and increased light transmittance to the ocean, is inadequately parameterised in sea ice models due to a lack of observations. In this paper, results from a multi-scale remote-sensing program dedicated to the retrieval of level first-year sea ice (FYI) f p from dual co- and cross-polarisation C-band synthetic aperture radar (SAR) backscatter are detailed. Models which utilise the dominant effect of free-water melt ponds on the VV / HH (vertical transmit and vertical receive / horizontal transmit and horizontal receive) polarisation ratio at high incidence angles are tested for their ability to provide estimates of the subscale f p . Retrieved f p from noise-corrected Radarsat-2 quad-polarisation scenes are in good agreement with observations from coincident aerial survey data, with root mean square errors (RMSEs) of 0.05–0.07 obtained during intermediate and late stages of ponding. Weak model performance is attributed to the presence of wet snow and slush during initial ponding, and a synoptically driven freezing event causing ice lids to form on ponds. The HV / HH (horizontal transmit and vertical receive / horizontal transmit and horizontal receive) ratio explains a greater portion of variability in f p , compared to VV / HH, when ice lids are present. Generally low HV channel intensity suggests limited applications using dual cross-polarisation data, except with systems that have exceptionally low noise floors. Results demonstrate the overall potential of dual-polarisation SAR for standalone or complementary observations of f p for process-scale studies and improvements to model parameterisations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-11-26
    Description: First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR – Part 1: In situ observations The Cryosphere, 8, 2147-2162, 2014 Author(s): R. K. Scharien, J. Landy, and D. G. Barber Understanding the evolution of melt ponds on Arctic sea ice is important for climate model parameterisations, weather forecast models and process studies involving mass, energy and biogeochemical exchanges across the ocean–sea ice–atmosphere interface. A field campaign was conducted in a region of level first-year sea ice (FYI) in the central Canadian Arctic Archipelago (CAA), during the summer of 2012, to examine the potential for estimating melt pond fraction ( f p ) from satellite synthetic aperture radar (SAR). In this study, 5.5 GHz (C-band) dual co- (HH + VV – horizontal transmit and horizontal receive + vertical transmit and vertical receive) and cross-polarisation (HV + HH – horizontal transmit and vertical receive + horizontal transmit and horizontal receive) radar scatterometer measurements of melt-pond-covered FYI are combined with ice and pond properties to analyse the effects of in situ physical and morphological changes on backscatter parameters. Surface roughness statistics of ice and ponds are characterised and compared to the validity domains of the Bragg and integral equation model (IEM) scattering models. Experimental and model results are used to outline the potential and limitations of the co-polarisation ratio (VV / HH) for retrieving melt pond information, including f p , at large incidence angles (≥35°). Despite high variability in cross-polarisation ratio (HV / HH) magnitudes, increases at small incidence angles (
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-12-04
    Description: Corrigendum to "A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections" published in The Cryosphere, 8, 2177–2194, 2014 The Cryosphere, 8, 2253-2253, 2014 Author(s): Y. Zhang, I. Olthof, R. Fraser, and S. A. Wolfe No abstract available.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-09-04
    Description: The effect of snow/sea ice type on the response of albedo and light penetration depth ( e -folding depth) to increasing black carbon The Cryosphere, 8, 1625-1638, 2014 Author(s): A. A. Marks and M. D. King The optical properties of snow/sea ice vary with age and by the processes they were formed, giving characteristic types of snow and sea ice. The response of albedo and light penetration depth ( e -folding depth) to increasing mass ratio of black carbon is shown to depend on the snow and sea ice type and the thickness of the snow or sea ice. The response of albedo and e -folding depth of three different types of snow (cold polar snow, wind-packed snow and melting snow) and three sea ice (multi-year ice, first-year ice and melting sea ice) to increasing mass ratio of black carbon is calculated using a coupled atmosphere–snow/sea ice radiative-transfer model (TUV-snow), over the optical wavelengths of 300–800 nm. The snow and sea ice types are effectively defined by a scattering cross-section, density and asymmetry parameter. The relative change in albedo and e -folding depth of each of the three snow and three sea ice types with increasing mass ratio of black carbon is considered relative to a base case of 1 ng g −1 of black carbon. The relative response of each snow and sea ice type is intercompared to examine how different types of snow and sea ice respond relative to each other. The relative change in albedo of a melting snowpack is a factor of four more responsive to additions of black carbon compared to cold polar snow over a black carbon increase from 1 to 50 ng g −1 , while the relative change in albedo of a melting sea ice is a factor of two more responsive to additions of black carbon compared to multi-year ice for the same increase in mass ratio of black carbon. The response of e -folding depth is effectively not dependent on snow/sea ice type. The albedo of sea ice is more responsive to increasing mass ratios of black carbon than snow.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-09-06
    Description: A sea ice concentration estimation algorithm utilizing radiometer and SAR data The Cryosphere, 8, 1639-1650, 2014 Author(s): J. Karvonen We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR) segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP) neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2) polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI) ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice) algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea–land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-09-10
    Description: Healing of snow surface-to-surface contacts by isothermal sintering The Cryosphere, 8, 1651-1659, 2014 Author(s): E. A. Podolskiy, M. Barbero, F. Barpi, G. Chambon, M. Borri-Brunetto, O. Pallara, B. Frigo, B. Chiaia, and M. Naaim Natural sintering in ice is a fundamental process determining mechanical properties of various ice forms. According to the literature, limited data are available about the complex subjects of snow sintering and bond formation. Here, through cold laboratory mechanical tests with a new shear apparatus we demonstrate time-dependent effects of isothermal sintering on interface strengthening at various normal pressures. Measurements showed that interfacial strength evolved rapidly, conforming to a power law (mean exponent ≈ 0.21); higher pressure corresponded to higher initial strength and sintering rates. Our findings are consistent with observations on homogeneous snow, provide unique records essential for slope stability models and indicate the significant importance of normal load on data interpretation.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-11-28
    Description: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements The Cryosphere, 8, 2195-2217, 2014 Author(s): M. F. Azam, P. Wagnon, C. Vincent, AL. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal Some recent studies revealed that Himalayan glaciers were shrinking at an accelerated rate since the beginning of the 21st century. However, the climatic causes for this shrinkage remain unclear given that surface energy balance studies are almost nonexistent in this region. In this study, a point-scale surface energy balance analysis was performed using in situ meteorological data from the ablation zone of Chhota Shigri Glacier over two separate periods (August 2012 to February 2013 and July to October 2013) in order to understand the response of mass balance to climatic variables. Energy balance numerical modelling provides quantification of the surface energy fluxes and identification of the factors affecting glacier mass balance. The model was validated by comparing the computed and observed ablation and surface temperature data. During the summer-monsoon period, net radiation was the primary component of the surface energy balance accounting for 80 % of the total heat flux followed by turbulent sensible (13%), latent (5%) and conductive (2%) heat fluxes. A striking feature of the energy balance is the positive turbulent latent heat flux, suggesting re-sublimation of moist air at the glacier surface, during the summer-monsoon characterized by relatively high air temperature, high relative humidity and a continual melting surface. The impact of the Indian Summer Monsoon on Chhota Shigri Glacier mass balance has also been assessed. This analysis demonstrates that the intensity of snowfall events during the summer-monsoon plays a key role on surface albedo (melting is reduced in the case of strong snowfalls covering the glacier area), and thus is among the most important drivers controlling the annual mass balance of the glacier. The summer-monsoon air temperature, controlling the precipitation phase (rain versus snow and thus albedo), counts, indirectly, also among the most important drivers.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-12-06
    Description: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy The Cryosphere, 8, 2255-2274, 2014 Author(s): N. Calonne, F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the micro- or macroscale.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-12-11
    Description: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images The Cryosphere, 8, 2275-2291, 2014 Author(s): E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, and P. Wagnon In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (−1.04 ± 0.23 m a −1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-12-16
    Description: Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model) The Cryosphere, 8, 2335-2351, 2014 Author(s): E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and A. Khazendar We present a new data assimilation method within the Ice Sheet System Model (ISSM) framework that is capable of assimilating surface altimetry data from missions such as ICESat (Ice Cloud and land Elevation Satellite) into reconstructions of transient ice flow. The new method relies on algorithmic differentiation to compute gradients of objective functions with respect to model forcings. It is applied to the Northeast Greenland Ice Stream, where surface mass balance and basal friction forcings are temporally inverted, resulting in adjusted modeled surface heights that best fit existing altimetry. This new approach allows for a better quantification of basal and surface processes and a better understanding of the physical processes currently missing in transient ice-flow models to better capture the important intra- and interannual variability in surface altimetry. It also demonstrates that large spatial and temporal variability is required in model forcings such as surface mass balance and basal friction, variability that can only be explained by including more complex processes such as snowpack compaction at the surface and basal hydrology at the bottom of the ice sheet. This approach is indeed a first step towards assimilating the wealth of high spatial resolution altimetry data available from EnviSat, ICESat, Operation IceBridge and CryoSat-2, and that which will be available in the near future with the launch of ICESat-2.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-12-12
    Description: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013) The Cryosphere, 8, 2293-2312, 2014 Author(s): P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatio-temporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare ice albedo. MODIS albedo, RCM outputs, and in situ observations consistently indicate a decrease in albedo of −0.03 to −0.06 per decade over the period 2003–2013 for the GrIS ablation area. Nevertheless, satellite products show a decline in JJA albedo of −0.03 to −0.04 per decade for regions within the accumulation area that is not confirmed by either the model or in situ observations. These findings appear to contradict a previous study that found an agreement between in situ and MODIS trends for individual months. The results indicate a need for further evaluation of high elevation albedo trends, a reconciliation of MODIS mean albedo at high latitudes, and the importance of accurately simulating bare ice albedo in RCMs.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-12-13
    Description: Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods The Cryosphere, 8, 2313-2333, 2014 Author(s): H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel Ice volume estimates are crucial for assessing water reserves stored in glaciers. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan–Karakoram (HK) region. In this study, different existing methodologies are used to estimate the ice reserves: three area–volume relations, one slope-dependent volume estimation method, and two ice-thickness distribution models are applied to a recent, detailed, and complete glacier inventory of the HK region, spanning over the period 2000–2010 and revealing an ice coverage of 40 775 km 2 . An uncertainty and sensitivity assessment is performed to investigate the influence of the observed glacier area and important model parameters on the resulting total ice volume. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 to 4737 km 3 , depending on the approach. This range is lower than most previous estimates. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses. However, total volume estimates from area-related relations are larger than those from other approaches. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-12-24
    Description: Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea The Cryosphere, 8, 2409-2418, 2014 Author(s): U. Löptien and L. Axell The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-10-17
    Description: Representativeness and seasonality of major ion records derived from NEEM firn cores The Cryosphere, 8, 1855-1870, 2014 Author(s): G. Gfeller, H. Fischer, M. Bigler, S. Schüpbach, D. Leuenberger, and O. Mini The seasonal and annual representativeness of ionic aerosol proxies (among others, calcium, sodium, ammonium and nitrate) in various firn cores in the vicinity of the NEEM drill site in northwest Greenland have been assessed. Seasonal representativeness is very high as one core explains more than 60% of the variability within the area. The inter-annual representativeness, however, can be substantially lower (depending on the species) making replicate coring indispensable to derive the atmospheric variability of aerosol species. A single core at the NEEM site records only 30% of the inter-annual atmospheric variability in some species, while five replicate cores are already needed to cover approximately 70% of the inter-annual atmospheric variability in all species. The spatial representativeness is very high within 60 cm, rapidly decorrelates within 10 m but does not diminish further within 3 km. We attribute this to wind reworking of the snow pack leading to sastrugi formation. Due to the high resolution and seasonal representativeness of the records we can derive accurate seasonalities of the measured species for modern (AD 1990–2010) times as well as for pre-industrial (AD 1623–1750) times. Sodium and calcium show similar seasonality (peaking in February and March respectively) for modern and pre-industrial times, whereas ammonium and nitrate are influenced by anthropogenic activities. Nitrate and ammonium both peak in May during modern times, whereas during pre-industrial times ammonium peaked during July–August and nitrate during June–July.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-10-11
    Description: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness The Cryosphere, 8, 1839-1854, 2014 Author(s): J. Stroeve, A. Barrett, M. Serreze, and A. Schweiger Arctic sea ice thickness distributions from models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated against observations from submarines, aircraft and satellites. While it is encouraging that the mean thickness distributions from the models are in general agreement with observations, the spatial patterns of sea ice thickness are poorly represented in most models. The poor spatial representation of thickness patterns is associated with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. The climate models as a whole also tend to underestimate the rate of ice volume loss from 1979 to 2013, though the multimodel ensemble mean trend remains within the uncertainty of that from the Pan-Arctic Ice Ocean Modeling and Assimilation System. Although large uncertainties in observational products complicate model evaluations, these results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may become a reality.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-05-17
    Description: Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 2: Initial product analysis The Cryosphere, 8, 915-930, 2014 Author(s): L. Brucker, E. P. Dinnat, and L. S. Koenig Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-05-17
    Description: The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study The Cryosphere, 8, 891-904, 2014 Author(s): S. Willmes, M. Nicolaus, and C. Haas Satellite observations of microwave brightness temperatures between 19 GHz and 85 GHz are the main data sources for operational sea-ice monitoring and retrieval of ice concentrations. However, microwave brightness temperatures depend on the emissivity of snow and ice, which is subject to pronounced seasonal variations and shows significant hemispheric contrasts. These mainly arise from differences in the rate and strength of snow metamorphism and melt. We here use the thermodynamic snow model SNTHERM forced by European Re-Analysis (ERA) interim data and the Microwave Emission Model of Layered Snowpacks (MEMLS), to calculate the sea-ice surface emissivity and to identify the contribution of regional patterns in atmospheric conditions to its variability in the Arctic and Antarctic. The computed emissivities reveal a pronounced seasonal cycle with large regional variability. The emissivity variability increases from winter to early summer and is more pronounced in the Antarctic. In the pre-melt period (January–May, July–November) the standard deviations in surface microwave emissivity due to diurnal, regional and inter-annual variability of atmospheric forcing reach up to Δε = 0.034, 0.043, and 0.097 for 19 GHz, 37 GHz and 85 GHz channels, respectively. Between 2000 and 2009, small but significant positive emissivity trends were observed in the Weddell Sea during November and December as well as in Fram Strait during February, potentially related to earlier melt onset in these regions. The obtained results contribute to a better understanding of the uncertainty and variability of sea-ice concentration and snow-depth retrievals in regions of high sea-ice concentrations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-05-17
    Description: Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 1: Product description The Cryosphere, 8, 905-913, 2014 Author(s): L. Brucker, E. P. Dinnat, and L. S. Koenig Passive and active observations at L band (frequency ~1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50° are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km × 156 km and 74 km × 122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html .
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-05-24
    Description: Glacier changes in the Karakoram region mapped by multimission satellite imagery The Cryosphere, 8, 977-989, 2014 Author(s): M. Rankl, C. Kienholz, and M. Braun Positive glacier-mass balances in the Karakoram region during the last decade have fostered stable and advancing glacier termini positions, while glaciers in the adjacent mountain ranges have been affected by glacier recession and thinning. In addition to fluctuations induced solely by climate, the Karakoram is known for a large number of surge-type glaciers. The present study provides an updated and extended inventory on advancing, stable, retreating, and surge-type glaciers using Landsat imagery from 1976 to 2012. Out of 1219 glaciers the vast majority showed a stable terminus (969) during the observation period. Sixty-five glaciers advanced, 93 glaciers retreated, and 101 surge-type glaciers were identified, of which 10 are new observations. The dimensional and topographic characteristics of each glacier class were calculated and analyzed. Ninety percent of nonsurge-type glaciers are shorter than 10 km, whereas surge-type glaciers are, in general, longer. We report short response times of glaciers in the Karakoram and suggest a shift from negative to balanced/positive mass budgets in the 1980s or 1990s. Additionally, we present glacier surface velocities derived from different SAR (synthetic aperture radar) sensors and different years for a Karakoram-wide coverage. High-resolution SAR data enables the investigation of small and relatively fast-flowing glaciers (e.g., up to 1.8 m day −1 during an active phase of a surge). The combination of multitemporal optical imagery and SAR-based surface velocities enables an improved, Karakoram-wide glacier inventory and hence, provides relevant new observational information on the current state of glaciers in the Karakoram.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-06-04
    Description: Physical controls on the storage of methane in landfast sea ice The Cryosphere, 8, 1019-1029, 2014 Author(s): J. Zhou, J.-L. Tison, G. Carnat, N.-X. Geilfus, and B. Delille We report on methane (CH 4 ) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH 4 concentrations in under-ice water ranged from 25.9 to 116.4 nmol L −1 sw , indicating a supersaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH 4 concentrations in sea ice ranged from 3.4 to 17.2 nmol L −1 ice and the deduced CH 4 concentrations in brine from 13.2 to 677.7 nmol L −1 brine . We investigated the processes underlying the difference in CH 4 concentrations between sea ice, brine and under-ice water and suggest that biological controls on the storage of CH 4 in ice were minor in comparison to the physical controls. Two physical processes regulated the storage of CH 4 in our landfast ice samples: bubble formation within the ice and sea ice permeability. Gas bubble formation due to brine concentration and solubility decrease favoured the accumulation of CH 4 in the ice at the beginning of ice growth. CH 4 retention in sea ice was then twice as efficient as that of salt; this also explains the overall higher CH 4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient, CH 4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marked the end of CH 4 storage.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-06-19
    Description: Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries The Cryosphere, 8, 1057-1068, 2014 Author(s): Y. Gong, S. L. Cornford, and A. J. Payne The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-07-12
    Description: Thermokarst lake waters across the permafrost zones of western Siberia The Cryosphere, 8, 1177-1193, 2014 Author(s): R. M. Manasypov, O. S. Pokrovsky, S. N. Kirpotin, and L. S. Shirokova This work describes the hydrochemical composition of thermokarst lake and pond ecosystems, which are observed in various sizes with different degrees of permafrost influence and are located in the northern part of western Siberia within the continuous and discontinuous permafrost zones. We analysed the elemental chemical composition of the lake waters relative to their surface areas (from 10 to 10 6 m 2 ) and described the elemental composition of the thermokarst water body ecosystems in detail. We revealed significant correlations between the Fe, Al, dissolved organic carbon (DOC) and various chemical elements across a latitude gradient covering approximately 900 km. Several groups of chemical elements that reflect the evolution of the studied water bodies were distinguished. Combining the data for the studied latitude profile with the information available in the current literature demonstrated that the average dissolved elemental concentrations in lakes with different areas depend specifically on the latitudinal position, which is presumably linked to (1) the elements leached from frozen peat, which is the main source of the solutes in thermokarst lakes, (2) marine atmospheric aerosol depositions, particularly near the sea border and (3) short-range industrial pollution by certain metals from the largest Russian Arctic smelter. We discuss the evolution of the chemical compositions observed in thermokarst lakes during their formation and drainage and predict the effect that changing the permafrost regime in western Siberia has on the hydrochemistry of the lakes.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-07-16
    Description: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting The Cryosphere, 8, 1217-1237, 2014 Author(s): N. T. Kurtz, N. Galin, and M. Studinger We develop a physical model capable of simulating the mean echo power of CryoSat-2 SAR- and SARIn-mode waveforms over sea-ice-covered regions. The model simulations are used to show the importance of variations in the radar backscatter coefficient with incidence angle and surface roughness for the retrieval of surface elevation of both sea ice floes and leads. The physical model is used to fit CryoSat-2 waveforms to enable retrieval of surface elevation through the use of lookup tables and a bounded trust region Newton least-squares fitting approach. The use of a model to fit returns from sea ice regions offers advantages over currently used threshold retracking methods, which are here shown to be sensitive to the combined effect of bandwidth-limited range resolution and surface roughness variations. Laxon et al. (2013) have compared ice thickness results from CryoSat-2 and IceBridge, and found good agreement; however consistent assumptions about the snow depth and density of sea ice were not used in the comparisons. To address this issue, we directly compare ice freeboard and thickness retrievals from the waveform-fitting and threshold tracker methods of CryoSat-2 to Operation IceBridge data using a consistent set of parameterizations. The purpose of the comparison is to highlight the physical basis between differences in the retracking methods. For three IceBridge campaign periods from March 2011 to March 2013, mean differences (CryoSat-2 – IceBridge) of 0.144 and 1.351 m are found between the freeboard and thickness retrievals, respectively, using a 50% sea ice floe threshold retracker, while mean differences of 0.019 and 0.182 m are found when using the waveform-fitting method. This suggests the waveform-fitting technique is capable of better reconciling the sea ice thickness data record from laser and radar altimetry data sets through the usage of consistent physical assumptions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-07-12
    Description: Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs The Cryosphere, 8, 1195-1204, 2014 Author(s): P. J. Hezel, T. Fichefet, and F. Massonnet Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the representative concentration pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all nine models. RCP4.5 demonstrates continued summer Arctic sea ice decline after the forcing stabilizes due to continued warming on longer timescales. Based on the analysis of these two scenarios, we suggest that Arctic summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in seven of nine models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and the reversibility of declines in seasonal sea ice extent.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-07-15
    Description: The growth of sublimation crystals and surface hoar on the Antarctic plateau The Cryosphere, 8, 1205-1215, 2014 Author(s): J.-C. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun On the Antarctic plateau, precipitation quantities are so low that the surface mass budget is for an important part determined by exchanges of water vapor between the snow surface and the atmosphere surface. At Dome C (75° S, 123° E), we have frequently observed the growth of crystals on the snow surface under calm sunny weather. Here we present the time variations of specific surface area (SSA) and density of these crystals. Using the detailed snow model Crocus, we conclude that the formation of these crystals was very likely due to the nighttime formation of surface hoar crystals and to the daytime formation of sublimation crystals. These latter crystals form by processes similar to those involved in the formation of frost flowers on young sea ice. The formation of these crystals impacts the albedo, mass and energy budget of the Antarctic plateau. In particular, the SSA variations of the surface layer can induce an instantaneous forcing at the snow surface up to −10 W m −2 at noon, resulting in a surface temperature drop of 0.45 K. This result confirms that snow SSA is a crucial variable to consider in the energy budget and climate of snow-covered surfaces.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-02-07
    Description: Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images The Cryosphere, 8, 215-228, 2014 Author(s): C. J. Legleiter, M. Tedesco, L. C. Smith, A. E. Behar, and B. T. Overstreet Recent melt events on the Greenland ice sheet (GrIS) accentuate the need to constrain estimates of sea level rise through improved characterization of meltwater pathways. This effort will require more precise estimates of the volume of water stored on the surface of the GrIS. We assessed the potential to obtain such information by mapping the bathymetry of supraglacial lakes and streams from WorldView2 (WV2) satellite images. Simultaneous in situ observations of depth and reflectance from two streams and a lake with measured depths up to 10.45 m were used to test a spectrally based depth retrieval algorithm. We performed optimal band ratio analysis (OBRA) of continuous field spectra and spectra convolved to the bands of the WV2, Landsat 7 (ETM+), MODIS, and ASTER sensors. The field spectra yielded a strong relationship with depth ( R 2 = 0.94), and OBRA R 2 values were nearly as high (0.87–0.92) for convolved spectra, suggesting that these sensors' broader bands would be sufficient for depth retrieval. Our field measurements thus indicated that remote sensing of supraglacial bathymetry is not only feasible but potentially highly accurate. OBRA of spectra from 2 m-pixel WV2 images acquired within 3–72 h of our field observations produced an optimal R 2 value of 0.92 and unbiased, precise depth estimates, with mean and root mean square errors 〈 1% and 10–25% of the mean depth. Bathymetric maps produced by applying OBRA relations revealed subtle features of lake and channel morphology. In addition to providing refined storage volume estimates for lakes of various sizes, this approach can help provide estimates of the transient flux of meltwater through streams.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-02-18
    Description: Diffusive equilibration of N 2 , O 2 and CO 2 mixing ratios in a 1.5-million-years-old ice core The Cryosphere, 8, 245-256, 2014 Author(s): B. Bereiter, H. Fischer, J. Schwander, and T. F. Stocker In the framework of the International Partnerships in Ice Core Sciences, one of the most important targets is to retrieve an Antarctic ice core that extends over the last 1.5 million years (i.e. an ice core that enters the climate era when glacial–interglacial cycles followed the obliquity cycles of the earth). In such an ice core the annual layers of the oldest ice would be thinned by a factor of about 100 and the climatic information of a 10 000 yr interval would be contained in less than 1 m of ice. The gas record in such an Antarctic ice core can potentially reveal the role of greenhouse gas forcing on these 40 000 yr cycles. However, besides the extreme thinning of the annual layers, also the long residence time of the trapped air in the ice and the relatively high ice temperatures near the bedrock favour diffusive exchanges. To investigate the changes in the O 2 / N 2 ratio, as well as the trapped CO 2 concentrations, we modelled the diffusive exchange of the trapped gases O 2 , N 2 and CO 2 along the vertical axis. However, the boundary conditions of a potential drilling site are not yet well constrained and the uncertainties in the permeation coefficients of the air constituents in the ice are large. In our simulations, we have set the drill site ice thickness at 2700 m and the bedrock ice temperature at 5–10 K below the ice pressure melting point. Using these conditions and including all further uncertainties associated with the drill site and the permeation coefficients, the results suggest that in the oldest ice the precessional variations in the O 2 / N 2 ratio will be damped by 50–100%, whereas CO 2 concentration changes associated with glacial–interglacial variations will likely be conserved (simulated damping 5%). If the precessional O 2 / N 2 signal will have disappeared completely in this future ice core, orbital tuning of the ice-core age scale will be limited.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-02-15
    Description: Sea-ice extent and its trend provide limited metrics of model performance The Cryosphere, 8, 229-243, 2014 Author(s): D. Notz We examine how the evaluation of modelled sea-ice coverage against reality is affected by uncertainties in the retrieval of sea-ice coverage from satellite, by the usage of sea-ice extent to overcome these uncertainties, and by internal variability. We find that for Arctic summer sea ice, model biases in sea-ice extent can be qualitatively different from biases in sea-ice area. This is because about half of the CMIP5 models and satellite retrievals based on the Bootstrap and the ASI algorithm show a compact ice cover in summer with large areas of high-concentration sea ice, while the other half of the CMIP5 models and satellite retrievals based on the NASA Team algorithm show a loose ice cover. For the Arctic winter sea-ice cover, differences in grid geometry can cause synthetic biases in sea-ice extent that are larger than the observational uncertainty. Comparing the uncertainty arising directly from the satellite retrievals with those that arise from internal variability, we find that the latter by far dominates the uncertainty estimate for trends in sea-ice extent and area: most of the differences between modelled and observed trends can simply be explained by internal variability. For absolute sea-ice area and sea-ice extent, however, internal variability cannot explain the difference between model and observations for about half the CMIP5 models that we analyse here. All models that we examined have regional biases, as expressed by the root-mean-square error in concentration, that are larger than the differences between individual satellite algorithms.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-05-01
    Description: Snow density climatology across the former USSR The Cryosphere, 8, 785-799, 2014 Author(s): X. Zhong, T. Zhang, and K. Wang Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for linking snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density (bulk density) climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.22 ± 0.05 g cm −3 over the study area. The maximum and minimum monthly mean snow density was about 0.33 g cm −3 in June, and 0.14 g cm −3 in October, respectively. Maritime and ephemeral snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, on the coast of Arctic Russia, and the Kamchatka Peninsula, while the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966–2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. There was a high correlation of snow density with elevation for tundra snow and snow density was highly correlated with latitude for prairie snow.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-05-01
    Description: Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation The Cryosphere, 8, 801-814, 2014 Author(s): J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg This paper presents autonomous drifting snow observations performed on the Greenland Ice Sheet in the fall of 2012. High-frequency snow particle counter (SPC) observations at ~ 1 m above the surface provided drifting snow number fluxes and size distributions; these were combined with meteorological observations at six levels. We identify two types of drifting snow events: katabatic events are relatively cold and dry, with prevalent winds from the southeast, whereas synoptic events are short lived, warm and wet. Precipitating snow during synoptic events disturbs the drifting snow measurements. Output of the regional atmospheric climate model RACMO2, which includes the drifting snow routine PIEKTUK-B, agrees well with the observed near-surface climate at the site, as well as with the frequency and timing of drifting snow events. Direct comparisons with the SPC observations at 1 m reveal that the model overestimates the horizontal snow transport at this level, which can be related to an overestimation of saltation and the typical size of drifting snow particles.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-07-02
    Description: Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores The Cryosphere, 8, 1129-1138, 2014 Author(s): M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat Fabric (distribution of crystallographic orientations) along the full NEEM ice core, Greenland was measured in the field by an automatic ice texture analyzer every 10 m, from 33 m down to 2461 m depth. The fabric evolves from a slightly anisotropic fabric at the top, toward a strong single maximum at about 2300 m, which is typical of a deformation pattern mostly driven by uniaxial compression and simple shearing. A sharp increase in the fabric strengthening rate is observed at the Holocene to Wisconsin (HW) climatic transition. From a simple model we estimate that this depth is located at a transition from a state dominated by vertical compression to a state dominated by vertical shear. Comparisons are made to two others ice cores drilled along the same ridge; the GRIP ice core, drilled at the summit of the ice sheet, and the NGRIP ice core, drilled 325 km to the NNW of the summit along the ridge, and 365 km upstream from NEEM. This comparison tends to demonstrate that the ice viscosity change with the HW climatic transition must be associated with the shear-dominated state to induce the abrupt fabric strengthening observed at NEEM. This comparison therefore reflects the increasing role of shear deformation on the coring site when moving NW along the ridge from GRIP to NGRIP and NEEM. The difference in fabric profiles between NEEM and NGRIP also evidences a stronger lateral extension associated with a sharper ridge at NGRIP. Further along the core, centimeter scale abrupt texture (fabric and microstructure) variations are observed in the bottom part of the core. Their positions are in good agreement with the observed folding layers in Dahl-Jensen et al. (2013).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-03-19
    Description: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback The Cryosphere, 8, 453-470, 2014 Author(s): H. Goosse and V. Zunz The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight of the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a positive ice–ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice, and thus of freshwater, that stabilizes the water column. A second stabilizing mechanism at interannual timescales is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintaining a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to the ice–ocean feedback. Initial conditions also have an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-03-19
    Description: Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations The Cryosphere, 8, 439-451, 2014 Author(s): M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50° are found and used to develop an empirical retrieval algorithm sensitive to thin sea ice up to 50 cm thickness. The algorithm shows high correlation with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze-up period.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-03-01
    Description: Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties The Cryosphere, 8, 319-328, 2014 Author(s): A. C. Adolph and M. R. Albert The physical structure of polar firn plays a key role in the mechanisms by which glaciers and ice sheets preserve a natural archive of past atmospheric composition. This study presents the first measurements of gas diffusivity and permeability along with microstructural information measured from the near-surface firn through the firn column to pore close-off. Both fine- and coarse-grained firn from Summit, Greenland are included in this study to investigate the variability in firn caused by seasonal and storm-event layering. Our measurements reveal that the porosity of firn (derived from density) is insufficient to describe the full profiles of diffusivity and permeability, particularly at porosity values above 0.5. Thus, even a model that could perfectly predict the density profile would be insufficient for application to issues involving gas transport. The measured diffusivity profile presented here is compared to two diffusivity profiles modeled from firn air measurements from Summit. Because of differences in scale and in firn processes between the true field situation, firn modeling, and laboratory measurements, the results follow a similar overall pattern but do not align; our results constitute a lower bound on diffusive transport. In comparing our measurements of both diffusivity and permeability to previous parameterizations from numerical 3-D lattice-Boltzmann modeling, it is evident that the previous relationships to porosity are likely site-specific. We present parameterizations relating diffusivity and permeability to porosity as a possible tool, though use of direct measurements would be far more accurate when feasible. The relationships between gas transport properties and microstructural properties are characterized and compared to existing relationships for general porous media, specifically the Katz–Thompson (KT), Kozeny–Carman (KC), and Archie's law approximations. While those approximations can capture the general trend of gas transport relationships, they result in high errors for individual samples and fail to fully describe firn variability, particularly the differences between coarse- and fine-grained firn. We present a direct power law relationship between permeability and gas diffusivity based on our co-located measurements; further research will indicate if this type of relationship is site-specific. This set of measurements and relationships contributes a unique starting point for future investigations in developing more physically based models of firn gas transport.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-03-04
    Description: Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru The Cryosphere, 8, 359-376, 2014 Author(s): M. N. Hanshaw and B. Bookhagen Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far), yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 158 multi-spectral satellite images spanning almost 4 decades, from 1975 to 2012, to obtain glacial- and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. Additionally, we have estimated the snow-line altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: first, since 1988 glacial areas throughout the Cordillera Vilcanota (1988 glacial area: 361 km 2 ) have been declining at a rate of 3.99 ± 1.15 km 2 yr −1 (22 year average, 1988–2010, with 95% confidence interval (CI), n = 8 images). Since 1980, the Quelccaya Ice Cap (1980 glacial area: 63.1 km 2 ) has been declining at a rate of 0.57 ± 0.10 km 2 yr −1 (30 year average, 1980–2010, with 95% CI, n = 14). Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000–2010) as compared to the preceding decade (1988–1999) with an average increase from 37.5 to 42.3 × 10 −3 km 2 yr −1 km −2 (13%). Third, glaciers with lower median elevations are declining at higher rates than those with higher median elevations. Specifically, glaciers with median elevations around 5200 m a.s.l. are retreating to higher elevations at a rate of ~1 m yr −1 faster than glaciers with median elevations around 5400 m a.s.l. Fourth, as glacial regions have decreased, 77% of lakes connected to glacial watersheds have either remained stable or shown a roughly synchronous increase in lake area, while 42% of lakes not connected to glacial watersheds have declined in area (58% have remained stable). Our new and detailed data on glacial and lake areas over 37 years provide an important spatiotemporal assessment of climate variability in this area. These data can be integrated into further studies to analyze inter-annual glacial and lake-area changes and assess hydrologic dependence and consequences for downstream populations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-03-04
    Description: What drives basin scale spatial variability of snowpack properties in northern Colorado? The Cryosphere, 8, 329-344, 2014 Author(s): G. A. Sexstone and S. R. Fassnacht This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow density and snow water equivalent (SWE) variability at the basin scale (100s to 1000s km 2 ). Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE near peak snow accumulation. Bivariate relations and multiple linear regression models were developed to understand the relation of snow density and SWE with terrain variables (derived using a geographic information system (GIS)). Snow density variability was best explained by day of year, snow depth, UTM Easting, and elevation. Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance, and model validation suggests the model is transferable to independent data within the bounds of the original data set. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time-consuming measurements of SWE are often not feasible. A comparison with a previously developed snow density model shows that calibrating a snow density model to a specific basin can provide improvement of SWE estimation at this scale, and should be considered for future basin scale analyses. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and/or UTM Northing) were the most important SWE model variables, suggesting that orographic precipitation and storm track patterns are likely driving basin scale SWE variability. Terrain curvature was also shown to be an important variable, but to a lesser extent at the scale of interest.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-03-04
    Description: A range correction for ICESat and its potential impact on ice-sheet mass balance studies The Cryosphere, 8, 345-357, 2014 Author(s): A. A. Borsa, G. Moholdt, H. A. Fricker, and K. M. Brunt We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or "G-C" offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods ≤ 1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of −0.92 to −1.90 cm yr −1 , depending on the time period considered. Using ICESat data over the Ross and Filchner–Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat. We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-03-12
    Description: Limitations of using a thermal imager for snow pit temperatures The Cryosphere, 8, 387-394, 2014 Author(s): M. Schirmer and B. Jamieson Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale ( 〈 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-03-18
    Description: Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model The Cryosphere, 8, 417-437, 2014 Author(s): C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud In the SURFEX/ISBA-Crocus multi-layer snowpack model, the snow microstructure has up to now been characterised by the grain size and by semi-empirical shape variables which cannot be measured easily in the field or linked to other relevant snow properties. In this work we introduce a new formulation of snow metamorphism directly based on equations describing the rate of change of the optical diameter ( d opt ). This variable is considered here to be equal to the equivalent sphere optical diameter, which is inversely proportional to the specific surface area (SSA). d opt thus represents quantitatively some of the geometric characteristics of a porous medium. Different prognostic rate equations of d opt , including a re-formulation of the original Crocus scheme and the parameterisations from Taillandier et al. (2007) and Flanner and Zender (2006), were evaluated by comparing their predictions to field measurements carried out at Summit Camp (Greenland) in May and June 2011 and at Col de Porte (French Alps) during the 2009/10 and 2011/12 winter seasons. We focused especially on results in terms of SSA. In addition, we tested the impact of the different formulations on the simulated density profile, the total snow height, the snow water equivalent (SWE) and the surface albedo. Results indicate that all formulations perform well, with median values of the RMSD between measured and simulated SSA lower than 10 m 2 kg −1 . Incorporating the optical diameter as a fully fledged prognostic variable is an important step forward in the quantitative description of the snow microstructure within snowpack models, because it opens the way to data assimilation of various electromagnetic observations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-04-15
    Description: Soil erosion and organic carbon export by wet snow avalanches The Cryosphere, 8, 651-658, 2014 Author(s): O. Korup and C. Rixen Many mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse literature, we sampled sediment concentrations of n = 28 river-spanning snow-avalanche deposits (snow bridges) in the area around Davos, eastern Swiss Alps, and inferred an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km −2 yr −1 , and 0.04 to 131 t C km −2 yr −1 , respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, such variability is inherent to the geometric scaling used for computing specific yields. Moreover, the widely applied method of linearly extrapolating plot scale sample data may be prone to substantial under- or overestimates. A comparison of our inferred yields with previously published work demonstrates the relevance of wet snow avalanches as prominent agents of soil erosion and transporters of biogeochemical constituents to mountain rivers. Given that a number of snow bridges persisted below the insulating debris cover well into the summer months, snow-avalanche deposits also contribute to regulating in-channel sediment and organic debris storage on seasonal timescales. Finally, our results underline the potential shortcomings of neglecting erosional processes in the winter and spring months in mountainous terrain subjected to prominent snow cover.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-04-15
    Description: Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations The Cryosphere, 8, 639-650, 2014 Author(s): M. P. Lüthi Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA) for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO) index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-04-16
    Description: A data set of worldwide glacier length fluctuations The Cryosphere, 8, 659-672, 2014 Author(s): P. W. Leclercq, J. Oerlemans, H. J. Basagic, I. Bushueva, A. J. Cook, and R. Le Bris Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of past climate change. To study these subjects, long-term information of glacier change is needed. In this paper we present a data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length worldwide, including both measured and reconstructed glacier length fluctuations. All 471 length series start before 1950 and cover at least four decades. The longest record starts in 1535, but the majority of time series start after 1850. The number of available records decreases again after 1962. The data set has global coverage including records from all continents. However, the Canadian Arctic is not represented in the data set. The available glacier length series show relatively small fluctuations until the mid-19th century, followed by a global retreat. The retreat was strongest in the first half of the 20th century, although large variability in the length change of the different glaciers is observed. During the 20th century, calving glaciers retreated more than land-terminating glaciers, but their relative length change was approximately equal. Besides calving, the glacier slope is the most important glacier property determining length change: steep glaciers have retreated less than glaciers with a gentle slope.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-04-12
    Description: Surge dynamics in the Nathorstbreen glacier system, Svalbard The Cryosphere, 8, 623-638, 2014 Author(s): M. Sund, T. R. Lauknes, and T. Eiken Nathorstbreen glacier system (NGS) recently experienced the largest surge in Svalbard since 1936, and this was examined using spatial and temporal observations from DEM differencing, time series of surface velocities from satellite synthetic aperture radar (SAR) and other sources. The upper basins with maximum accumulation during quiescence corresponded to regions of initial lowering. Initial speed-up exceeded quiescent velocities by a factor of several tens. This suggests that polythermal glacier surges are initiated in the temperate area before mass is displaced downglacier. Subsequent downglacier mass displacement coincided with areas where glacier velocity increased by a factor of 100–200 times (stage 2). After more than 5 years, the joint NGS terminus advanced abruptly into the fjord during winter, increasing velocities even more. The advance was followed by up-glacier propagation of crevasses, indicating the middle and subsequently the upper part of the glaciers reacting to the mass displacement. NGS advanced ~15 km, while another ~3 km length was lost due to calving. Surface lowering of ~50 m was observed in some up-glacier areas, and in 5 years the total glacier area increased by 20%. Maximum measured flow rates were at least 25 m d −1 , 2500 times quiescent velocity, while average velocities were about 10 m d −1 . The surges of Zawadzkibreen cycle with ca. 70-year periods.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-04-18
    Description: Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach The Cryosphere, 8, 689-703, 2014 Author(s): A. Gilbert, C. Vincent, D. Six, P. Wagnon, L. Piard, and P. Ginot Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy balance (SEB) model accounting for water percolation and radiation penetration in firn was applied to identify the main processes that control the subsurface temperatures in cold firn. Results agree well with subsurface temperatures measured at Col du Dôme (4250 m above sea level (a.s.l.)), France. In the second step, a simplified model using only daily mean air temperature and potential solar radiation was developed. This model properly simulates the spatial variability of surface melting and subsurface firn temperatures and was used to accurately reconstruct the deep borehole temperature profiles measured at Col du Dôme. Results show that percolation and refreezing are efficient processes for the transfer of energy from the surface to underlying layers. However, they are not responsible for any higher energy uptake at the surface, which is exclusively triggered by increasing energy flux from the atmosphere due to SEB changes when surface temperatures reach 0 °C. The resulting enhanced energy uptake makes cold accumulation zones very vulnerable to air temperature rise.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-03-25
    Description: Evaluation of the snow regime in dynamic vegetation land surface models using field measurements The Cryosphere, 8, 487-502, 2014 Author(s): E. Kantzas, S. Quegan, M. Lomas, and E. Zakharova An increasing number of studies have demonstrated significant climatic and ecological changes occurring in the northern latitudes over the past decades. As coupled Earth-system models attempt to describe and simulate the dynamics and complex feedbacks of the Arctic environment, it is important to reduce their uncertainties in short-term predictions by improving the description of both system processes and its initial state. This study focuses on snow-related variables and makes extensive use of a historical data set (1966–1996) of field snow measurements acquired across the extent of the former Soviet Union to evaluate a range of simulated snow metrics produced by several land surface models, most of them embedded in IPCC-standard climate models. We reveal model-specific failings in simulating snowpack properties such as magnitude, inter-annual variability, timings of snow water equivalent and evolution of snow density. We develop novel and model-independent methodologies that use the field snow measurements to extract the values of fresh snow density and snowpack sublimation, and exploit them to assess model outputs. By directly forcing the surface heat exchange formulation of a land surface model with field data on snow depth and snow density, we evaluate how inaccuracies in simulating snow metrics affect soil temperature, thaw depth and soil carbon decomposition. We also show how field data can be assimilated into models using optimization techniques in order to identify model defects and improve model performance.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-04-08
    Description: Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland Ice Sheet The Cryosphere, 8, 575-585, 2014 Author(s): I. Rogozhina and D. Rau This study aims to demonstrate that the spatial and seasonal effects of daily temperature variability in positive degree-day (PDD) models play a decisive role in shaping the modeled surface mass balance (SMB) of continental-scale ice masses. Here we derive monthly fields of daily temperature standard deviation (SD) across Greenland from the ERA-40 (European Centre for Medium-Range Weather Forecasts 40 yr Reanalysis) reanalysis spanning from 1958 to 2001 and apply these fields to model recent surface responses of the Greenland Ice Sheet (GIS). Neither the climate data set analyzed nor in situ measurements taken in Greenland support the range of commonly used spatially and temporally uniform SD values (~ 5 °C). In this region, the SD distribution is highly inhomogeneous and characterized by low values during summer months (~ 1 to 2.5 °C) in areas where most surface melting occurs. As a result, existing SMB parameterizations using uniform, high SD values fail to capture both the spatial pattern and amplitude of the observed surface responses of the GIS. Using realistic SD values enables significant improvements in the modeled regional and total SMB with respect to existing estimates from recent satellite observations and the results of a high-resolution regional model. In addition, this resolves large uncertainties associated with other major parameters of a PDD model, namely degree-day factors. The model appears to be nearly insensitive to the choice of degree-day factors after adopting the realistic SD distribution.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...