ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (224)
  • Copernicus  (224)
  • American Institute of Physics
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • De Gruyter
  • Elsevier
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • Molecular Diversity Preservation International
  • Springer Nature
  • Taylor & Francis
  • 2020-2022
  • 2010-2014  (224)
  • 1985-1989
  • 1960-1964
  • 2012  (224)
  • 1986
  • 1960
  • The Cryosphere  (112)
  • 92597
  • Geologie und Paläontologie  (224)
  • Sociologie
  • Architektur, Bauingenieurwesen, Vermessung
Sammlung
  • Artikel  (224)
Verlag/Herausgeber
  • Copernicus  (224)
  • American Institute of Physics
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • De Gruyter
  • +
Erscheinungszeitraum
  • 2020-2022
  • 2010-2014  (224)
  • 1985-1989
  • 1960-1964
Jahr
Thema
  • Geologie und Paläontologie  (224)
  • Sociologie
  • Architektur, Bauingenieurwesen, Vermessung
  • Geographie  (224)
  • 1
    Publikationsdatum: 2012-03-09
    Beschreibung: Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet The Cryosphere, 6, 255-272, 2012 Author(s): M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation ( H s ). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of H s and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-03-09
    Beschreibung: Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada The Cryosphere, 6, 235-254, 2012 Author(s): K.-K. Kang, C. R. Duguay, and S. E. L. Howell Time series of brightness temperatures ( T B ) from the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) are examined to determine ice phenology variables on the two largest lakes of northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL). T B measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenology variables on GBL and GSL over seven ice seasons (2002–2009). Analysis of the spatio-temporal patterns of each variable at the pixel level reveals that: (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for several ice phenology variables derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-02-14
    Beschreibung: Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations The Cryosphere, 6, 199-209, 2012 Author(s): D. van As, A. L. Hubbard, B. Hasholt, A. B. Mikkelsen, M. R. van den Broeke, and R. S. Fausto This study uses data from six on-ice weather stations, calibrated MODIS-derived albedo and proglacial river gauging measurements to drive and validate an energy balance model. We aim to quantify the record-setting positive temperature anomaly in 2010 and its effect on mass balance and runoff from the Kangerlussuaq sector of the Greenland ice sheet. In 2010, the average temperature was 4.9 °C (2.7 standard deviations) above the 1974–2010 average in Kangerlussuaq. High temperatures were also observed over the ice sheet, with the magnitude of the positive anomaly increasing with altitude, particularly in August. Simultaneously, surface albedo was anomalously low in 2010, predominantly in the upper ablation zone. The low albedo was caused by high ablation, which in turn profited from high temperatures and low winter snowfall. Surface energy balance calculations show that the largest melt excess (∼170%) occurred in the upper ablation zone (above 1000 m), where higher temperatures and lower albedo contributed equally to the melt anomaly. At lower elevations the melt excess can be attributed to high atmospheric temperatures alone. In total, we calculate that 6.6 ± 1.0 km 3 of surface meltwater ran off the ice sheet in the Kangerlussuaq catchment in 2010, exceeding the reference year 2009 (based on atmospheric temperature measurements) by ∼150%. During future warm episodes we can expect a melt response of at least the same magnitude, unless a larger wintertime snow accumulation delays and moderates the melt-albedo feedback. Due to the hypsometry of the ice sheet, yielding an increasing surface area with elevation, meltwater runoff will be further amplified by increases in melt forcings such as atmospheric heat.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-11-10
    Beschreibung: Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models The Cryosphere, 6, 1275-1294, 2012 Author(s): J. G. L. Rae, G. Aðalgeirsdóttir, T. L. Edwards, X. Fettweis, J. M. Gregory, H. T. Hewitt, J. A. Lowe, P. Lucas-Picher, R. H. Mottram, A. J. Payne, J. K. Ridley, S. R. Shannon, W. J. van de Berg, R. S. W. van de Wal, and M. R. van den Broeke Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr −2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr −2 ), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-11-14
    Beschreibung: Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model The Cryosphere, 6, 1323-1337, 2012 Author(s): T. M. Saloranta Daily maps of snow conditions have been produced in Norway with the seNorge snow model since 2004. The seNorge snow model operates with 1 × 1 km resolution, uses gridded observations of daily temperature and precipitation as its input forcing, and simulates, among others, snow water equivalent (SWE), snow depth (SD), and the snow bulk density (ρ). In this paper the set of equations contained in the seNorge model code is described and a thorough spatiotemporal statistical evaluation of the model performance from 1957–2011 is made using the two major sets of extensive in situ snow measurements that exist for Norway. The evaluation results show that the seNorge model generally overestimates both SWE and ρ, and that the overestimation of SWE increases with elevation throughout the snow season. However, the R 2 -values for model fit are 0.60 for (log-transformed) SWE and 0.45 for ρ, indicating that after removal of the detected systematic model biases (e.g. by recalibrating the model or expressing snow conditions in relative units) the model performs rather well. The seNorge model provides a relatively simple, not very data-demanding, yet nonetheless process-based method to construct snow maps of high spatiotemporal resolution. It is an especially well suited alternative for operational snow mapping in regions with rugged topography and large spatiotemporal variability in snow conditions, as is the case in the mountainous Norway.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2012-12-07
    Beschreibung: Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska The Cryosphere, 6, 1435-1443, 2012 Author(s): A. Gusmeroli and G. Grosse Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-12-07
    Beschreibung: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier The Cryosphere, 6, 1445-1461, 2012 Author(s): T. Mölg, F. Maussion, W. Yang, and D. Scherer Determinations of glacier-wide mass and energy balance are still scarce for the remote mountains of the Tibetan Plateau, where field measurements are challenging. Here we run and evaluate a physical, distributed mass balance model for Zhadang Glacier (central Tibet, 30° N) based on in-situ measurements over 2009–2011 and an uncertainty estimate by Monte Carlo and ensemble strategies. The model application aims to provide the first quantification of how the Indian Summer Monsoon (ISM) impacts an entire glacier over the various stages of the monsoon's annual cycle. We find a strong and systematic ISM footprint on the interannual scale. Early (late) monsoon onset causes higher (lower) accumulation, and reduces (increases) the available energy for ablation primarily through changes in absorbed shortwave radiation. By contrast, only a weak footprint exists in the ISM cessation phase. Most striking though is the core monsoon season: local mass and energy balance variability is fully decoupled from the active/break cycle that defines large-scale atmospheric variability during the ISM. Our results demonstrate quantitatively that monsoon onset strongly affects the ablation season of glaciers in Tibet. However, we find no direct ISM impact on the glacier in the main monsoon season, which has not been acknowledged so far. This result also adds cryospheric evidence that, once the monsoon is in full swing, regional atmospheric variability prevails on the Tibetan Plateau in summer.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-12-11
    Beschreibung: The first complete inventory of the local \newline glaciers and ice caps on Greenland The Cryosphere, 6, 1483-1495, 2012 Author(s): P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul Glacier inventories provide essential baseline information for the determination of water resources, glacier-specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thus highly relevant for all of the above points, a complete inventory of its glaciers was not available so far. Here we present the results and details of a new and complete inventory that has been compiled from more than 70 Landsat scenes (mostly acquired between 1999 and 2002) using semi-automated glacier mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic attributes for each glacier entity. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the ice sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and ice caps (GIC) from the ice sheet and its outlet glaciers. In total, we mapped ~ 20 300 glaciers larger than 0.05 km 2 (of which ~ 900 are marine terminating), covering an area of 130 076 ± 4032 km 2 , or 89 720 ± 2781 km 2 without the CL2 GIC. The latter value is about 50% higher than the mean value of more recent previous estimates. Glaciers smaller than 0.5 km 2 contribute only 1.5% to the total area but more than 50% (11 000) to the total number. In contrast, the 25 largest GIC (〉 500 km 2 ) contribute 28% to the total area, but only 0.1% to the total number. The mean elevation of the GIC is 1700 m in the eastern sector and around 1000 m otherwise. The median elevation increases with distance from the coast, but has only a weak dependence on mean glacier aspect.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2012-10-03
    Beschreibung: Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing The Cryosphere, 6, 1087-1101, 2012 Author(s): B. T. Pan, G. L. Zhang, J. Wang, B. Cao, H. P. Geng, J. Wang, C. Zhang, and Y. P. Ji In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern margin of the Qinghai-Tibetan Plateau, 74 monsoonal temperate glaciers were investigated by comparing the Chinese Glacier Inventory (CGI), recorded in the 1960s, with Landsat MSS in 1974, Landsat TM in 1989, 1994, 2005, and ASTER data in 2009. The remote sensing data have been applied to map the glacier outline by threshold ratio images (TM4/TM5). Moreover, the glacier outlines were verified by GPS survey on four large glaciers (Hailuogou (HLG), Mozigou (MZG), Yanzigou (YZG), and Dagongba (DGB)) in 2009. The results show that the area dominated by the 74 glaciers has shrunk by 11.3% (29.2 km 2 ) from 1966 to 2009. Glacier area on the eastern and western slopes of the Gongga Mountains decreased by 9.8% and 14.6% since 1966, respectively. The loss in glacier area and length is, respectively, 0.8 km 2 and 1146.4 m for the HLG Glacier, 2.1 km 2 and 501.8 m for the MZG Glacier, 0.8 km 2 and 724.8 m for the YZG Glacier, and 2.4 km 2 and 1002.3 m for the DGB Glacier. Decades of climate records obtained from three meteorological stations in the Gongga Mountains were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. The mean annual temperatures over the eastern and western slopes of the Gongga Mountains have been increasing by 0.34 K decade −1 and 0.24 K decade −1 (1988–2009), respectively. Moreover, mean annual precipitation has only increased by 1% in the past 50 yr. The increasing amount of precipitation could not compensate for the glacier mass loss due to the temperature increase in the Gongga Mountains. This suggests that the warming of the climate is probably also responsible for the glacier retreat in the study region. At the region scale, glacier changes were also controlled by local topographical factors.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2012-10-13
    Beschreibung: Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century The Cryosphere, 6, 1103-1125, 2012 Author(s): A. Gardner, G. Moholdt, A. Arendt, and B. Wouters Canadian Arctic glaciers have recently contributed large volumes of meltwater to the world's oceans. To place recently observed glacier wastage into a historical perspective and to determine the region's longer-term (~50 years) contribution to sea level, we estimate mass and volume changes for the glaciers of Baffin and Bylot Islands using digital elevation models generated from airborne and satellite stereoscopic imagery and elevation postings from repeat airborne and satellite laser altimetry. In addition, we update existing glacier mass change records from GRACE satellite gravimetry to cover the period from 2003 to 2011. Using this integrated approach, we find that the rate of mass loss from the region's glaciers increased from 11.1 ± 3.4 Gt a −1 (271 ± 84 kg m −2 a −1 ) for the period 1963–2006 to 23.8 ± 6.1 Gt a −1 (581 ± 149 kg m −2 a −1 ) for the period 2003–2011. The doubling of the rate of mass loss is attributed to higher temperatures in summer with little change in annual precipitation. Through both direct and indirect effects, changes in summer temperatures accounted for 70–98% of the variance in the rate of mass loss, to which the Barnes Ice Cap was found to be 1.7 times more sensitive than either the Penny Ice Cap or the region's glaciers as a whole. This heightened sensitivity is the result of a glacier hypsometry that is skewed to lower elevations, which are shown to have a higher mass change sensitive to temperature compared to glacier surfaces at higher elevations. Between 2003 and 2011 the glaciers of Baffin and Bylot Islands contributed 0.07 ± 0.02 mm a −1 to sea level rise accounting for 16% of the total contribution from glaciers outside of Greenland and Antarctica, a rate much higher than the longer-term average of 0.03 ± 0.01 mm a −1 (1963 to 2006).
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...