ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (374)
  • Copernicus  (374)
  • American Association for the Advancement of Science
  • 2010-2014  (374)
  • 1980-1984
  • 1965-1969
  • 1960-1964
  • 1925-1929
  • 2011  (374)
  • The Cryosphere Discussions  (107)
  • The Cryosphere  (80)
  • 92597
  • 92598
  • 1
    Publication Date: 2011-06-23
    Description: Brief communication "Snow profile associated measurements (SPAM) – a new instrument for quick snow profile measurements" The Cryosphere Discussions, 5, 1737-1748, 2011 Author(s): P. Lahtinen A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-16
    Description: Modeling the impact of wintertime rain events on the thermal regime of permafrost The Cryosphere Discussions, 5, 1697-1736, 2011 Author(s): S. Westermann, J. Boike, M. Langer, T. V. Schuler, and B. Etzelmüller In this study, we present field measurements and numerical process modeling from Western Svalbard showing that the ground surface temperature below the snow is impacted by strong wintertime rain events. During such events, rain water percolates to the bottom of the snow pack, where it freezes and releases latent heat. In the winter season 2005/2006, on the order of 20 to 50 % of the wintertime precipitation fell as rain, thus confining the surface temperature to close to 0 °C for several weeks. The measured average ground surface temperature during the snow-covered period is −0.6 °C, despite of a snow surface temperature of on average −8.5 °C. For the considered period, the temperature threshold below which permafrost is sustainable on long timescales is exceeded. We present a simplified model of rain water infiltration in the snow coupled to a transient permafrost model. While small amounts of rain have only minor impact on the ground surface temperature, strong rain events have a long-lasting impact. We show that consecutively applying the conditions encountered in the winter season 2005/2006 results in the formation of an unfrozen zone in the soil after three to five years, depending on the prescribed soil properties. If water infiltration in the snow is disabled in the model, more time is required for the permafrost to reach a similar state of degradation.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-15
    Description: The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter The Cryosphere, 5, 509-524, 2011 Author(s): M. Langer, S. Westermann, S. Muster, K. Piel, and J. Boike In this study, we present the winter time surface energy balance at a polygonal tundra site in northern Siberia based on independent measurements of the net radiation, the sensible heat flux and the ground heat flux from two winter seasons. The latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The long-wave radiation is found to be the dominant factor in the surface energy balance. The radiative losses are balanced to about 60 % by the ground heat flux and almost 40 % by the sensible heat fluxes, whereas the contribution of the latent heat flux is small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Large spatial differences in the surface energy balance are observed between tundra soils and a small pond. The ground heat flux released at a freezing pond is by a factor of two higher compared to the freezing soil, whereas large differences in net radiation between the pond and soil are only observed at the end of the winter period. Differences in the surface energy balance between the two winter seasons are found to be related to differences in snow depth and cloud cover which strongly affect the temperature evolution and the freeze-up at the investigated pond.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-07
    Description: A full Stokes ice flow model for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric evolution The Cryosphere, 5, 495-508, 2011 Author(s): H. Seddik, R. Greve, T. Zwinger, and L. Placidi A three-dimensional, thermo-mechanically coupled ice flow model with induced anisotropy has been applied to a ~200 × 200 km domain around the Dome Fuji drill site, Antarctica. The model ("Elmer/Ice") is based on the open-source multi-physics package Elmer ( http://www.csc.fi/elmer/ ) and solves the full Stokes equations. Flow-induced anisotropy in ice is accounted for by an implementation of the C ontinuum-mechanical, A nisotropic F low model, based on an anisotropic F low E nhancement factor ("CAFFE model"). Steady-state simulations for present-day climate conditions are conducted. The main findings are: (i) the flow regime at Dome Fuji is a complex superposition of vertical compression, horizontal extension and bed-parallel shear; (ii) for an assumed geothermal heat flux of 60 mW m −2 the basal temperature at Dome Fuji reaches the pressure melting point and the basal melting rate is ~0.35 mm a −1 ; (iii) in agreement with observational data, the fabric shows a strong single maximum at Dome Fuji, and the age of the ice is decreased compared to an isotropic scenario; (iv) as a consequence of spatially variable basal melting conditions, the basal age tends to be smaller where the ice is thicker and larger where the ice is thinner. The latter result is of great relevance for the consideration of a future drill site in the area.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-13
    Description: Investigating changes in basal conditions of Variegated Glacier prior and during its 1982–1983 surge The Cryosphere Discussions, 5, 1461-1494, 2011 Author(s): M. Jay-Allemand, F. Gillet-Chaulet, O. Gagliardini, and M. Nodet The Variegated Glacier (Alaska) is known to surge periodically after a sufficient amount of cumulative mass balance is reached, but this observation is difficult to link with changes in the basal conditions. Here, using a 10-year dataset, consisting in surface topography and surface velocity observations along a flow line for 25 dates, we have reconstructed the evolution of the basal conditions prior and during the 1982–1983 surge. The model solves the full-Stokes problem along the central flow line using the finite element method. For the 25 dates of the dataset, the basal friction parameter distribution is inferred using the inverse method proposed by Arthern and Gudmundson (2010). This method is here slightly modified by incorporating a regularisation term in the cost function to avoid short wave length changes in the friction parameter. Our results indicate that dramatic changes in the basal conditions occurred between 1973 to 1983. Prior to the surge, periodical changes can be observed between winter and summer, with a regular increase of the sliding from 1973 to 1982. During the surge, the basal friction decreased dramatically and an area of very low friction moved from the upper part of the glacier to its terminus. Using a more complex friction law, these changes in basal sliding are then interpreted in terms of basal water pressure. It confirms that dramatic changes took place in the subglacial drainage system of Variegated Glacier, moving from a relatively efficient drainage system prior to the surge to an inefficient one during the surge. By reconstructing the water pressure evolution at the base of the glacier it is possible to infer realistic scenarios for the hydrological history leading to the occurrence of a surge.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-26
    Description: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain The Cryosphere, 5, 431-443, 2011 Author(s): S. Gubler, J. Fiddes, M. Keller, and S. Gruber Measurements of environmental variables are often used to validate and calibrate physically-based models. Depending on their application, the models are used at different scales, ranging from few meters to tens of kilometers. Environmental variables can vary strongly within the grid cells of these models. Validating a model with a single measurement is therefore delicate and susceptible to induce bias in further model applications. To address the question of uncertainty associated with scale in permafrost models, we present data of 390 spatially-distributed ground surface temperature measurements recorded in terrain of high topographic variability in the Swiss Alps. We illustrate a way to program, deploy and refind a large number of measurement devices efficiently, and present a strategy to reduce data loss reported in earlier studies. Data after the first year of deployment is presented. The measurements represent the variability of ground surface temperatures at two different scales ranging from few meters to some kilometers. On the coarser scale, the dependence of mean annual ground surface temperature on elevation, slope, aspect and ground cover type is modelled with a multiple linear regression model. Sampled mean annual ground surface temperatures vary from −4 °C to 5 °C within an area of approximately 16 km 2 subject to elevational differences of approximately 1000 m. The measurements also indicate that mean annual ground surface temperatures vary up to 6 °C (i.e., from −2 °C to 4 °C) even within an elevational band of 300 m. Furthermore, fine-scale variations can be high (up to 2.5 °C) at distances of less than 14 m in homogeneous terrain. The effect of this high variability of an environmental variable on model validation and applications in alpine regions is discussed.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-05-06
    Description: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models The Cryosphere, 5, 359-375, 2011 Author(s): X. Fettweis, M. Tedesco, M. van den Broeke, and J. Ettema To study near-surface melt changes over the Greenland ice sheet (GrIS) since 1979, melt extent estimates from two regional climate models were compared with those obtained from spaceborne microwave brightness temperatures using two different remote sensing algorithms. The results from the two models were consistent with those obtained with the remote sensing algorithms at both daily and yearly time scales, encouraging the use of the models for analyzing melting trends before the satellite era (1958–1979), when forcing data is available. Differences between satellite-derived and model-simulated results still occur and are used here to identify (i) biases in the snow models (notably in the albedo parametrization, in the thickness of a snow layer, in the maximum liquid water content within the snowpack and in the snowfall impacting the bare ice appearance in summer) and (ii) limitations in the use of passive microwave data for snowmelt detection at the edge of the ice sheet due to mixed pixel effect (e.g., tundra or rock nearby the ice sheet). The results from models and spaceborne microwave sensors confirm a significant (p-value = 0.01) increase in GrIS surface melting since 1979. The melt extent recorded over the last years (1998, 2003, 2005 and 2007) is unprecedented in the last 50 yr with the cumulated melt area in the 2000's being, on the average, twice that of the 1980's.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-06
    Description: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions The Cryosphere Discussions, 5, 1335-1364, 2011 Author(s): P. Christoffersen, R. I. Mugford, K. J. Heywood, I. Joughin, J. A. Dowdeswell, J. P. M. Syvitski, A. Luckman, and T. J. Benham Hydrographic data acquired in Kangerlugssuaq Fjord and adjacent seas in 1993 and 2004 are used together with ocean reanalysis to elucidate water mass change and ice-ocean-atmosphere interactions in East Greenland. The hydrographic data show substantial warming of fjord waters between 1993 and 2004 and warm subsurface conditions coincide with the rapid retreat of Kangerlugssuaq Glacier in 2004–2005. The ocean reanalysis shows that the warm properties of fjord waters in 2004 are related to a major peak in oceanic shoreward heat flux into a cross-shelf trough on the outer continental shelf. The heat flux into this trough varies according to seasonal exchanges with the atmosphere as well as from deep seasonal intrusions of subtropical waters. Both mechanisms contribute to high (low) shoreward heat flux when winds from the northeast are weak (strong). The combined effect of surface heating and inflow of subtropical waters is seen in the hydrographic data, which were collected after periods when along-shore coastal winds from the north were strong (1993) and weak (2004). We show that coastal winds vary according to the pressure gradient defined by a semi-permanent atmospheric pressure system over Greenland and a persistent atmospheric low situated near Iceland. The magnitude of this pressure gradient is controlled by longitudinal variability in the position of the Icelandic Low.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-06
    Description: Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline The Cryosphere Discussions, 5, 1311-1334, 2011 Author(s): L. H. Smedsrud, A. Sirevaag, K. Kloster, A. Sorteberg, and S. Sandven Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79° N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s −1 , and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-05-07
    Description: Spatio-temporal measurements and analysis of snow depth in a rock face The Cryosphere Discussions, 5, 1383-1418, 2011 Author(s): V. Wirz, M. Schirmer, S. Gruber, and M. Lehning Snow in rock faces plays a key role in the alpine environment for permafrost distribution, snow water storage or run off in spring. However, a detailed assessment of snow depths in steep rock walls has never been attempted. To understand snow distribution in rock walls a high-resolution terrestrial laser scanner (TLS), including a digital camera, was used to obtain snow depth (HS) data with a resolution of one metre. The mean HS, the snow covered area and their evolution in the rock face were compared to a neighbouring smoother catchment and a flat field station at similar elevation. Further we analyzed the patterns of HS distribution in the rock face after different periods and investigated the main factors contributing to them. In a first step we could show that with TLS reliable information on surface data of a steep rocky surface can be obtained. In comparison to the flatter sites in the vicinity, mean HS in the rock face was lower during the entire winter, but trends of snow depth changes were similar. We observed repeating accumulation and ablation patterns in the rock face, while maximum snow depth loss always occurred at those places with maximum snow depth gain. Further analysis of the main factors contributing to the snow depth distribution in the rock face revealed terrain-wind-interaction processes to be dominant. Processes related to slope angle seem to play a role, but no linear function of slope angle and snow depth was found. Further analyses should involve measurements in rock faces with other characteristics and higher temporal resolutions to be able to distinguish individual processes better. Additionally the relation of spatial and temporal distribution of snow depth to terrain-wind interactions should be tested.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-05-07
    Description: Utility of late summer transient snowline migration rate on Taku Glacier, Alaska The Cryosphere Discussions, 5, 1365-1382, 2011 Author(s): M. Pelto On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient is determined from the difference in elevation and SWE from the TSL to snowpits at 1000 m from 1998–2010 and ranges from 2.6–3.8 mm m −1 . Probing transects from 950 m–1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3–3.8 mm m −1 . TSL is identified in MODIS and Landsat 4 and 7 Thematic Mapper imagery for 31 dates during the 2004–2010 period on Taku Glacier to assess the consistency of its rate of rise and usefulness in assessing mass balance. In 2010, the TSL rose from 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and to 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m −1 and TSL rise was 3.7 m day −1 , yielding an ablation rate of 12.2 mm day −1 on Taku Glacier from mid-July to mid-September. A comparison of the TSL rise in the region from 750–1100 m on Taku Glacier during eleven different periods of more than 14 days during the ablation season with repeat imagery indicates a mean TSL rise of 3.7 m day −1 on Taku Glacier, the rate of rise is relatively consistent ranging from 3.0 to 4.8 m day −1 . This is useful for ascertaining the final ELA if imagery or observations are not available within a week or two of the end of the ablation season. From mid-July-mid-September the mean ablation from 750–1100 m determined from the TSL rise and the observed balance gradient varied from 11 to 18 mm day −1 on Taku Glacier during the 2004–2010 period.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-03-30
    Description: Isotope hydrological studies of the perennial ice deposit of Saarhalle, Mammuthöhle, Dachstein Mts, Austria The Cryosphere, 5, 291-298, 2011 Author(s): Z. Kern, I. Fórizs, R. Pavuza, M. Molnár, and B. Nagy A 5.28 m-long ice core was extracted from a major cave ice body in the Mammuthöhle cave system. The upper ~1.2 m of ice most likely originate from precipitation fallen before the 1960s (based on
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-03-30
    Description: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change The Cryosphere, 5, 271-290, 2011 Author(s): C. Nuth and A. Kääb There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) check for higher-order, sensor-specific biases. A simple, analytic and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand) or limited (case study Svalbard). The method is demonstrated using the three global elevation data sets available to date, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After 3-D co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track) were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite jitter , most apparent in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM), we recommend to co-register all elevation data to ICESat as a global vertical reference system.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-04-01
    Description: Present dynamics and future prognosis of a slowly surging glacier The Cryosphere, 5, 299-313, 2011 Author(s): G. E. Flowers, N. Roux, S. Pimentel, and C. G. Schoof Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism) may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km 2 ) valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance) calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed topography in controlling ice dynamics, as observed in many other glacier systems.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-09
    Description: Spatial and temporal variability of snow accumulation in Dronning Maud Land, East Antarctica, including two deep ice coring sites at Dome Fuji and EPICA DML The Cryosphere Discussions, 5, 2061-2114, 2011 Author(s): S. Fujita, P. Holmlund, I. Andersson, I. Brown, H. Enomoto, Y. Fujii, K. Fujita, K. Fukui, T. Furukawa, M. Hansson, K. Hara, Y. Hoshina, M. Igarashi, Y. Iizuka, S. Imura, S. Ingvander, T. Karlin, H. Motoyama, F. Nakazawa, H. Oerter, L. E. Sjöberg, S. Sugiyama, S. Surdyk, J. Ström, R. Uemura, and F. Wilhelms To better understand the spatio-temporal variability of the glaciological environment in Dronning Maud Land (DML), East Antarctica, investigations were carried out along the 2800-km-long Japanese-Swedish IPY 2007/2008 traverse. The route covers ice sheet ridges and two deep ice coring sites at Dome Fuji and EPICA DML. The surface mass balance (SMB) distribution was derived based on analysis of isochrones within snow pits, firn cores and subsurface radar signals. The SMB averaged over various time scales in the Holocene was determined. This was then compared with various glaciological data. We find that the large-scale distribution of the SMB depends on the surface elevation, continentality and interactions between ice sheet ridges and the prevailing counterclockwise windfield in DML. A different SMB is found for the windward and leeward sides of the ridges. Local-scale variability in the SMB is essentially governed by bedrock topography which determines the local surface topography. In the eastern part of DML, the accumulation rate in the second half of the 20th century is found to be higher by 15 % compared to averages over longer periods of 722 a or 7.9 ka before AD 2008. A similar trend has been reported for many inland plateau sites in East Antarctica.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-05-28
    Description: In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft The Cryosphere, 5, 445-452, 2011 Author(s): M. Tedesco and N. Steiner Supraglacial lakes form from meltwater on the Greenland ice sheet in topographic depressions on the surface, affecting both surface and sub-glacial processes. As the reflectance in the visible and near-infrared regions of a column of water is modulated by its height, retrieval techniques using spaceborne remote sensing data (e.g. Landsat, MODIS) have been proposed in the literature for the detection of lakes and estimation of their volume. These techniques require basic assumptions on the spectral properties of the water as well as the bottom of the lake, among other things. In this study, we report results obtained from the analysis of concurrent in-situ multi-spectral and depth measurements collected over a supraglacial lake during early July 2010 in West Greenland (Lake Olivia, 69°36'35" N, 49°29'40" W) and aim to assess some of the underlying hypotheses in remote sensing based bathymetric approaches. In particular, we focus our attention on the analysis of the lake bottom albedo and of the water attenuation coefficient. The analysis of in-situ data (collected by means of a remotely controlled boat equipped with a GPS, a sonar and a spectrometer) highlights the exponential trend of the water-leaving reflectance with lake depth. The values of the attenuation factor obtained from in-situ data are compared with those computed using approaches proposed in the literature. Also, the values of the lake bottom albedo from in-situ measurements are compared with those obtained from the analysis of reflectance of shallow waters. Finally, we quantify the error between in-situ measured and satellite-estimated lake depth values for the lake under study.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-10-05
    Description: Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers The Cryosphere Discussions, 5, 2571-2604, 2011 Author(s): T. N. Venkatesh, A. V. Kulkarni, and J. Srinivasan A majority of glaciers in the Himalayas have been retreating. In this paper, we show that there are two major factors which control the advance/retreat of the Himalayan glaciers. They are the slope of the glacier and changes in the equilibrium line altitude. While it is well known, that these factors are important, we propose a new way of combining them and use it to predict retreat. Our model has been applied to the movement of eight Himalayan glaciers during the past 25 years. The model explains why the Gangotri glacier is retreating while Zemu of nearly the same length is stationary, even though they are subject to similar environmental changes. The model has also been applied to a larger set of glaciers in the Parbati basin, for which retreat based on satellite data is available, though over a shorter time period.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-11-12
    Description: Brief Communication: Can recent ice discharges following the Larsen-B ice-shelf collapse be used to infer the driving mechanisms of millennial-scale variations of the Laurentide ice sheet? The Cryosphere Discussions, 5, 3113-3127, 2011 Author(s): J. Alvarez-Solas, A. Robinson, and C. Ritz The effects of an ice-shelf collapse on inland glacier dynamics have recently been widely studied, especially since the breakup of Antarctic Peninsula's Larsen-B ice shelf in 2002. Several studies have documented acceleration of the ice streams that were flowing into the former ice shelf. The mechanism responsible for such a speed-up lies with the removal of the ice-shelf backforce. Independently, it is also well documented that during the last glacial period, the Northern Hemisphere ice sheets experienced large discharges into the ocean, likely reflecting ice flow acceleration episodes on the millennial time scale. The classic interpretation of the latter is based on the existence of an internal thermo-mechanical feedback with the potential to generate oscillatory behavior in the ice sheets. Here we would like to widen the debate by considering that Larsen-B-like glacial analog episodes could have contributed significantly to the registered millennial-scale variablity.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-11-11
    Description: Temperature variability and offset in steep alpine rock and ice faces The Cryosphere, 5, 977-988, 2011 Author(s): A. Hasler, S. Gruber, and W. Haeberli The thermal condition of high-alpine mountain flanks can be an important determinant of climate change impact on slope stability and correspondingly down-slope hazard regimes. In this study we analyze time-series from 17 shallow temperature-depth profiles at two field sites in steep bedrock and ice. Extending earlier studies that revealed the topographic variations in temperatures, we demonstrate considerable differences of annual mean temperatures for variable surface characteristics and depths within the measured profiles. This implies that measurements and model related to compact and near-vertical bedrock temperatures may deviate considerably from conditions in the majority of bedrock slopes in mountain ranges that are usually non-vertical and fractured. For radiation-exposed faces mean annual temperatures at depth are up to 3 °C lower and permafrost is likely to exist at lower elevations than reflected by estimates based on near-vertical homogeneous cases. Retention of a thin snow cover and ventilation effects in open clefts are most likely responsible for this cooling. The measurements presented or similar data could be used in the future to support the development and testing of models related to the thermal effect of snow-cover and fractures in steep bedrock.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-09-03
    Description: On the influence of model physics on simulations of Arctic and Antarctic sea ice The Cryosphere, 5, 687-699, 2011 Author(s): F. Massonnet, T. Fichefet, H. Goosse, M. Vancoppenolle, P. Mathiot, and C. König Beatty Two hindcast (1983–2007) simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing) are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift) to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i) a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii) the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii) the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv) both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1°).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-12-06
    Description: Optimisation of quasi-3D electrical resistivity imaging – application and inversion for investigating heterogeneous mountain permafrost The Cryosphere Discussions, 5, 3383-3421, 2011 Author(s): D. Schwindt and C. Kneisel This study aimed to optimise the application, efficiency and interpretability of quasi-3D resistivity imaging for investigating the heterogeneous permafrost distribution at mountain sites by a systematic forward modelling approach. A three dimensional geocryologic model, representative for most mountain permafrost settings, was developed. Based on this geocryologic model quasi-3D models were generated by collating synthetic orthogonal 2D arrays, demonstrating the effects of array types and electrode spacing on resolution and interpretability of the inversion results. The effects of minimising the number of 2D arrays per quasi-3D grid were tested by enlarging the spacing between adjacent lines and by reducing the number of perpendicular tie lines with regard to model resolution and loss of information value. Synthetic and measured quasi-3D models were investigated with regard to the lateral and vertical resolution, reliability of inverted resistivity values, the possibility of a quantitative interpretation of resistivities and the response of the inversion process on the validity of quasi-3D models. Results show that setups using orthogonal 2D arrays with electrode spacings of 2 m and 3 m are capable of delineating lateral heterogeneity with high accuracy and also deliver reliable data on active layer thickness. Detection of permafrost thickness, especially if the permafrost base is close to the penetration depth of the setups, and the reliability of absolute resistivity values emerged to be a weakness of the method. Quasi-3D imaging has proven to be a promising tool for investigating permafrost in mountain environments especially for delineating the often small-scale permafrost heterogeneity, and therefore provides an enhanced possibility for aligning permafrost distribution with site specific surface properties and morphological settings.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-12-03
    Description: Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile The Cryosphere, 5, 1099-1113, 2011 Author(s): S. Gascoin, C. Kinnard, R. Ponce, S. Lhermitte, S. MacDonell, and A. Rabatel Quantitative assessment of glacier contribution to present-day streamflow is a prerequisite to the anticipation of climate change impact on water resources in the Dry Andes. In this paper we focus on two glaciated headwater catchments of the Huasco Basin (Chile, 29° S). The combination of glacier monitoring data for five glaciers (Toro 1, Toro 2, Esperanza, Guanaco, Estrecho and Ortigas) with five automatic streamflow records at sites with glacier coverage of 0.4 to 11 % allows the estimation of the mean annual glacier contribution to discharge between 2003/2004 and 2007/2008 hydrological years. In addition, direct manual measurements of glacier runoff were conducted in summer at the snouts of four glaciers, which provide the instantaneous contribution of glacier meltwater to stream runoff during summer. The results show that the mean annual glacier contribution to streamflow ranges between 3.3 and 23 %, which is greater than the glaciated fraction of the catchments. We argue that glacier contribution is partly enhanced by the effect of snowdrift from the non-glacier area to the glacier surface. Glacier mass loss is evident over the study period, with a mean of −0.84 m w.e. yr −1 for the period 2003/2004–2007/2008, and also contributes to increase glacier runoff. An El Niño episode in 2002 resulted in high snow accumulation, modifying the hydrological regime and probably reducing the glacier contribution in favor of seasonal snowmelt during the subsequent 2002/2003 hydrological year. At the hourly timescale, summertime glacier contributions are highly variable in space and time, revealing large differences in effective melting rates between glaciers and glacierets (from 1 mm w.e. h −1 to 6 mm w.e. h −1 ).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-12-03
    Description: Seasonal variations of glacier dynamics at Kronebreen, Svalbard revealed by calving related seismicity The Cryosphere Discussions, 5, 3291-3321, 2011 Author(s): A. Köhler, A. Chapuis, C. Nuth, J. Kohler, and C. Weidle We detect and cluster waveforms of seismic signals recorded close to the calving front of Kronebreen, Svalbard, to identify glacier-induced seismic events and to investigate their relation to calving processes. Single-channel geophone data recorded over several months in 2009 and 2010 are combined with eleven days of direct visual observations of the glacier front. We apply a processing scheme which combines conventional seismic event detection using a sensitive trigger algorithm and unsupervised clustering of all detected signals based on their waveform characteristics by means of Self-Organizing Maps (SOMs). We are able to distinguish between false detections, instrumental artifacts, and three classes of signals which are, with different degrees of uncertainty, emitted by calving activity. About 10 % of the directly observed calving events close to the geophone (
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-12-04
    Description: Recent acceleration of ice loss in the Northern Patagonia Icefield based on an updated decennial evolution The Cryosphere Discussions, 5, 3323-3381, 2011 Author(s): P. López and G. Casassa Ice elevation changes of the Northern Patagonia Icefield (NPI) were analyzed by comparing three Digital Elevation Models (DEM) corresponding to 1975 (constructed based on topographic maps), the SRTM DEM of 2000 yr and a SPOT 5 DEM of 2005. In addition, the glacier length fluctuations and the surface area evolution between 2001 and 2011 of 25 glaciers of the NPI were studied: the information extracted from the Landsat ETM+ satellite image of 11 March 2001 was compared to the measurements performed based on the Landsat ETM+ satellite image of 19 February 2011. From a global point of view, the majority of the studied glaciers thinned, retreated and lost surface between 2001 and 2011, only few glaciers (Leones, Nef, Pared Sur and Soler) located on the eastern side of the NPI have been stable. Glaciers located on the western side of the NPI suffered a stronger wasting compared to the glaciers located on the eastern side. Overall, over the ablation areas of the NPI (below 1150 m a.s.l.) a more rapid thinning of 2.6 m yr −1 occurred between 2000 and 2005 yr compared to the period 1975–2000, in which a mean thinning of 1.7 m yr −1 was measured for the same zones of the NPI. For the whole period (1975–2005) the most important thinning of the ablation areas has been estimated for HPN-1 Glacier (4.4 m yr −1 ) followed by Benito (3.4 m yr −1 ), Fraenkel (2.4 m yr −1 ), Gualas (2.1 m yr −1 ) and Acodado glaciers, all of them located on the western side of the NPI. Between 2001 and 2011, a noteworthy retreat of 1.9 km was experienced by Gualas Glacier and by Reichert Glacier with 1.6 km, both located on the north-western side of the NPI. On the south-western side of the NPI, during the same decennia, Steffen Glacier experienced a remarkable retreat of 1.6 km as well. During the 2001–2011 period, Steffen Glacier more than doubled its rate of retreat (compared to the 1979–2001 period) and experienced the disintegration of its main front as well as a lateral tongue that retreated 3.1 km. The most significant retreat observed on the eastern side was experienced by Colonia Glacier (1 km). Area loss was also relevant during the period 2001–2011. Overall, the icefield experienced a reduction of 50.6 km 2 which represents a 1.3 % relative to the surface area calculated for 2001 yr. The most remarkable surface reduction was observed for HPN-1 Glacier that lost 3.2 % of its surface estimated in 2001, followed by Steffen Glacier (2.8 %). We suggest that the glacier shrinking observed in the NPI is controlled firstly by atmospheric warming, as it has been reported in this area. Nevertheless, updated climatic studies are needed in order to confirm this suggestion. If the detected past climate trends persist, in the future, glaciers of the NPI will continuous or even increase their rate of shrinking generating important consequences for this region like the production of Glacier Lake Outburst Flood events or the decrease of the melt-water runoff in the long-term future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-11-24
    Description: Brief Communication: Greenland's shrinking ice cover: ″fast times″ but not that fast The Cryosphere Discussions, 5, 3207-3219, 2011 Author(s): J. S. Kargel, A. P. Ahlstrøm, R. B. Alley, J. L. Bamber, T. J. Benham, J. E. Box, C. Chen, P. Christoffersen, M. Citterio, J. G. Cogley, H. Jiskoot, G. J. Leonard, P. Morin, T. Scambos, T. Sheldon, and I. Willis A map of Greenland in the 13th edition (2011) of the Times Comprehensive Atlas of the World made headlines because the publisher's media release mistakenly stated that the permanent ice cover had shrunk 15 % since the previous 10th edition (1999) revision. The claimed shrinkage was immediately challenged by glaciologists, then retracted by the publisher. Here we show: (1) accurate maps of ice extent based on 1978/1987 aerial surveys and recent MODIS imaging; and (2) shrinkage at 0.019 % a −1 in ∼ 50 000 km 2 of ice in a part of east Greenland that is shown as ice-free in the Times Atlas .
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-11-29
    Description: Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML The Cryosphere, 5, 1057-1081, 2011 Author(s): S. Fujita, P. Holmlund, I. Andersson, I. Brown, H. Enomoto, Y. Fujii, K. Fujita, K. Fukui, T. Furukawa, M. Hansson, K. Hara, Y. Hoshina, M. Igarashi, Y. Iizuka, S. Imura, S. Ingvander, T. Karlin, H. Motoyama, F. Nakazawa, H. Oerter, L. E. Sjöberg, S. Sugiyama, S. Surdyk, J. Ström, R. Uemura, and F. Wilhelms To better understand the spatio-temporal variability of the glaciological environment in Dronning Maud Land (DML), East Antarctica, a 2800-km-long Japanese-Swedish traverse was carried out. The route includes ice divides between two ice-coring sites at Dome Fuji and EPICA DML. We determined the surface mass balance (SMB) averaged over various time scales in the late Holocene based on studies of snow pits and firn cores, in addition to radar data. We find that the large-scale distribution of the SMB depends on the surface elevation and continentality, and that the SMB differs between the windward and leeward sides of ice divides for strong-wind events. We suggest that the SMB is highly influenced by interactions between the large-scale surface topography of ice divides and the wind field of strong-wind events that are often associated with high-precipitation events. Local variations in the SMB are governed by the local surface topography, which is influenced by the bedrock topography. In the eastern part of DML, the accumulation rate in the second half of the 20th century is found to be higher by ~15 % than averages over longer periods of 722 a or 7.9 ka before AD 2008. A similar increasing trend has been reported for many inland plateau sites in Antarctica with the exception of several sites on the leeward side of the ice divides.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-11-29
    Description: Sensitivity of a distributed temperature-radiation index melt model based on a four melt season AWS record from Hurd Peninsula glaciers, Livingston Island, Antarctica The Cryosphere Discussions, 5, 3221-3258, 2011 Author(s): U. Y. Jonsell, F. J. Navarro, M. Bañón, J. J. Lapazaran, and J. Otero We use an automatic weather station and mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do in general balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 0.14 m w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 °C increase results in 56 % higher melt rates.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-12-01
    Description: Albedo of the ice-covered Weddell and Bellingshausen Sea The Cryosphere Discussions, 5, 3259-3289, 2011 Author(s): A. I. Weiss, J. C. King, T. A. Lachlan-Cope, and R. S. Ladkin This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo which were conducted in the sea ice areas of the Weddell and Bellingshausen Sea show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of α i = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the Western Weddell Sea was α i = 0.75 ± 0.05. In the Southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of α i = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow-covered pack ice had the highest albedo values. All sea ice areas consist of a mixture of a large variability of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations don't work well in particular for areas with new, young ice. We determined typical linear temperature-albedo functions for three sea ice areas adjacent to the Antarctic Peninsula, which are reflecting the differences in the mixture of ice age, thickness and sea ice surface cover.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-11-16
    Description: Preliminary assessment of model parametric uncertainty in projections of Greenland Ice Sheet behavior The Cryosphere Discussions, 5, 3175-3205, 2011 Author(s): P. J. Applegate, N. Kirchner, E. J. Stone, K. Keller, and R. Greve Lack of knowledge about the values of ice sheet model input parameters introduces substantial uncertainty into projections of Greenland Ice Sheet contributions to future sea level rise. Computer models of ice sheet behavior provide one of several means of estimating future sea level rise due to mass loss from ice sheets. Such models have many input parameters whose values are not well known. Recent studies have investigated the effects of these parameters on model output, but the range of potential future sea level increases due to model parametric uncertainty has not been characterized. Here, we demonstrate that this range is large, using a 100-member perturbed-physics ensemble with the SICOPOLIS ice sheet model. Each model run is spun up over 125 000 yr using geological forcings, and subsequently driven into the future using an asymptotically increasing air temperature anomaly curve. All modeled ice sheets lose mass after 2005 AD. After culling the ensemble to include only members that give reasonable ice volumes in 2005 AD, the range of projected sea level rise values in 2100 AD is 30 % or more of the median. Data on past ice sheet behavior can help reduce this uncertainty, but none of our ensemble members produces a reasonable ice volume change during the mid-Holocene, relative to the present. This problem suggests that the model's exponential relation between temperature and precipitation does not hold during the Holocene, or that the central-Greenland temperature forcing curve used to drive the model is not representative of conditions around the ice margin at this time (among other possibilities). Our simulations also lack certain observed physical processes that may tend to enhance the real ice sheet's response. Regardless, this work has implications for other studies that use ice sheet models to project or hindcast the behavior of the Greenland ice sheet.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-11-23
    Description: Glacier changes in the Pascua-Lama region, Chilean Andes (29° S): recent mass balance and 50 yr surface area variations The Cryosphere, 5, 1029-1041, 2011 Author(s): A. Rabatel, H. Castebrunet, V. Favier, L. Nicholson, and C. Kinnard Since 2003, a monitoring program has been conducted on several glaciers and glacierets in the Pascua-Lama region of the Chilean Andes (29° S/70° W; 5000 m a.s.l.), permitting the study of glaciological processes on ice bodies in a subtropical, arid, high-elevation area where no measurements were previously available. In this paper we present: (1) six years of glaciological surface mass balance measurements from four ice bodies in the area, including a discussion of the nature of the studied glaciers and glacierets and characterization of the importance of winter mass balance to annual mass balance variability; and (2) changes in surface area of twenty ice bodies in the region since 1955, reconstructed from aerial photographs and satellite images, which shows that the total glaciated surface area reduced by ~29% between 1955 and 2007, and that the rate of surface area shrinkage increased in the late 20th century. Based on these datasets we present a first interpretation of glacier changes in relation with climatic parameters at both local and regional scales.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-11-15
    Description: The multiphase physics of sea ice: a review for model developers The Cryosphere, 5, 989-1009, 2011 Author(s): E. C. Hunke, D. Notz, A. K. Turner, and M. Vancoppenolle Rather than being solid throughout, sea ice contains liquid brine inclusions, solid salts, microalgae, trace elements, gases, and other impurities which all exist in the interstices of a porous, solid ice matrix. This multiphase structure of sea ice arises from the fact that the salt that exists in seawater cannot be incorporated into lattice sites in the pure ice component of sea ice, but remains in liquid solution. Depending on the ice permeability (determined by temperature, salinity and gas content), this brine can drain from the ice, taking other sea ice constituents with it. Thus, sea ice salinity and microstructure are tightly interconnected and play a significant role in polar ecosystems and climate. As large-scale climate modeling efforts move toward "earth system" simulations that include biological and chemical cycles, renewed interest in the multiphase physics of sea ice has strengthened research initiatives to observe, understand and model this complex system. This review article provides an overview of these efforts, highlighting known difficulties and requisite observations for further progress in the field. We focus on mushy layer theory, which describes general multiphase materials, and on numerical approaches now being explored to model the multiphase evolution of sea ice and its interaction with chemical, biological and climate systems.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-11-15
    Description: Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada The Cryosphere Discussions, 5, 3129-3173, 2011 Author(s): K.-K. Kang, C. R. Duguay, and S. E. L. Howell Time series of brightness temperatures ( T B ) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) are examined to determine ice phenological parameters on the two largest lakes of northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL). T B measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenological parameters on GBL and GSL over seven ice seasons (2002–2009). Analysis of the spatio-temporal patterns of each parameter at the pixel level reveals that: (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A cross-comparison of dates for several ice phenological parameters derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-10-15
    Description: Retrieval of snow grain size and albedo of western Himalayan snow cover using satellite data The Cryosphere, 5, 831-847, 2011 Author(s): H. S. Negi and A. Kokhanovsky In the present study we describe the retrievals of snow grain size and spectral albedo (plane and spherical albedo) for western Himalayan snow cover using Hyperion sensor data. The asymptotic radiative transfer (ART) theory was explored for the snow retrievals. To make the methodology operational only five spectral bands (440, 500, 1050, 1240 and 1650 nm) of Hyperion were used for snow parameters retrieval. The bi-spectral method (440 nm in the visible and 1050/1240 nm in the NIR region) was used to retrieve snow grain size. Spectral albedos were retrieved using satellite reflectances and estimated grain size. A good agreement was observed between retrieved snow parameters and ground observed snow-meteorological conditions. The satellite retrieved grain sizes were compared with field spectroradiometer retrieved grain sizes and close results were found for lower Himalayan snow. The wavelength 1240 nm was found to be more suitable compared to 1050 nm for grain size retrieval along the steep slopes. The methodology was able to retrieve the spatial variations in snow parameters in different parts of western Himalaya which are due to snow climatic and terrain conditions of Himalaya. This methodology is of importance for operational snow cover and glacier monitoring in Himalayan region using space-borne and air-borne sensors.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-10-19
    Description: Influence of leads widths distribution on turbulent heat transfer between the ocean and the atmosphere The Cryosphere Discussions, 5, 2765-2797, 2011 Author(s): S. Marcq and J. Weiss Leads are linear-like structures of open water within the sea ice cover that develop as the result of fracturing due to divergence or shear. Through leads, air and water come into contact and directly exchange latent and sensible heat through convective processes driven by the large temperature and moisture differences between them. In the central Arctic, leads only cover 1 to 2% of the ocean during winter, but account for more than 80% of the heat fluxes. Furthermore, narrow leads (several meters) are more than twice as efficient at transmitting turbulent heat than larger ones (several hundreds of meters). We show that lead widths are power law distributed, P(X) ~ X −a with a 〉1, down to very small spatial scales (20 m or below). This implies that the open water fraction is by far dominated by very small leads. Using two classical formulations, which provide first order turbulence closure for the fetch-dependence of heat fluxes, we find that the mean heat fluxes (sensible and latent) over open water are up to 55 % larger when considering the lead width distribution obtained from a SPOT satellite image of the ice cover, compared to the situation where the open water fraction constitutes one unique large lead and the rest of the area is covered by ice, as it is usually considered in climate models at the grid scale. This difference may be even larger if we assume that the power law scaling of lead widths extents down to smaller (~1 m) scales. Such estimations may be a first step towards a subgrid scale parameterization of the spatial distribution of open water for heat fluxes calculations in ocean/sea ice coupled models.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-10-20
    Description: Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta The Cryosphere, 5, 849-867, 2011 Author(s): A. Morgenstern, G. Grosse, F. Günther, I. Fedorova, and L. Schirrmeister Distinctive periglacial landscapes have formed in late-Pleistocene ice-rich permafrost deposits (Ice Complex) of northern Yakutia, Siberia. Thermokarst lakes and thermokarst basins alternate with ice-rich Yedoma uplands. We investigate different thermokarst stages in Ice Complex deposits of the Lena River Delta using remote sensing and geoinformation techniques. The morphometry and spatial distribution of thermokarst lakes on Yedoma uplands, thermokarst lakes in basins, and thermokarst basins are analyzed, and possible dependence upon relief position and cryolithological context is considered. Of these thermokarst stages, developing thermokarst lakes on Yedoma uplands alter ice-rich permafrost the most, but occupy only 2.2% of the study area compared to 20.0% occupied by thermokarst basins. The future potential for developing large areas of thermokarst on Yedoma uplands is limited due to shrinking distances to degradational features and delta channels that foster lake drainage. Further thermokarst development in existing basins is restricted to underlying deposits that have already undergone thaw, compaction, and old carbon mobilization, and to deposits formed after initial lake drainage. Future thermokarst lake expansion is similarly limited in most of Siberia's Yedoma regions covering about 10 6 km 2 , which has to be considered for water, energy, and carbon balances under warming climate scenarios.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-10-20
    Description: Ice shelf flexures modeled with a 2-D elastic flow line model The Cryosphere Discussions, 5, 2841-2863, 2011 Author(s): Y. V. Konovalov Ice shelf flexures modeling was performed using a 2-D finite-difference elastic model, which takes into account sub-ice-shelf sea water flow. The sub-ice water flow was described by the wave equation for the sub-ice-shelf pressure perturbations (Holdsworth and Glynn, 1978). In the model ice shelf flexures result from variations in ocean pressure due to changes in prescribed sea levels. The numerical experiments were performed for a flow line down one of the fast flowing ice streams of the Academy of Sciences Ice Cap. The profile includes a part of the adjacent ice shelf. The numerical experiments were carried out for harmonic incoming pressure perturbations P ' and the ice shelf flexures were obtained for a wide spectrum of the pressure perturbations frequencies, ranging from tidal periods down to periods of a few seconds (0.004..0.02 Hz). The amplitudes of the ice shelf deflections obtained by the model achieve a maxima at about T ≈ 165 s in concordance with previous investigations of the impact of waves on Antarctic ice shelves (Bromirski et al., 2010). The explanation of the effect is found in the solution of the corresponding eigenvalue problem revealing the existence of a resonance at these high frequencies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-10-20
    Description: A minimal model for reconstructing interannual mass balance variability of glaciers in the European Alps The Cryosphere Discussions, 5, 2799-2839, 2011 Author(s): B. Marzeion, M. Hofer, A. H. Jarosch, G. Kaser, and T. Mölg We present a minimal model of the glacier surface mass balance. The model relies solely on monthly precipitation and air temperatures as forcing. We first train the model individually for 15 glaciers with existing mass balance measurements. Based on a cross validation, we present a thorough assessment of the model's performance outside of the training period. The cross validation indicates that our model is robust, and our model's performance compares favorably to that from a less parsimonious model based on seasonal sensitivity characteristics. Then, the model is extended for application on glaciers without existing mass balance measurements, and cross validated using the 15 glaciers above, in order to measure its performance on glaciers not included in the model training. This cross validation indicates that the model retains considerable skill even when applied on glaciers without mass balance measurements. As an exemplary application, the model is then used to reconstruct time series of interannual mass balance variability, covering the past two hundred years, for all glaciers in the European Alps contained in extended format of the world glacier inventory. Based on this reconstruction, we present a spatially detailed attribution of the glaciers' mass balance variability to temperature and precipitation variability.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2011-10-21
    Description: The fate of lake ice in the North American Arctic The Cryosphere, 5, 869-892, 2011 Author(s): L. C. Brown and C. R. Duguay Lakes comprise a large portion of the surface cover in northern North America, forming an important part of the cryosphere. The timing of lake ice phenological events (e.g. break-up/freeze-up) is a useful indicator of climate variability and change, which is of particular relevance in environmentally sensitive areas such as the North American Arctic. Further alterations to the present day ice regime could result in major ecosystem changes, such as species shifts and the disappearance of perennial ice cover. The Canadian Lake Ice Model (CLIMo) was used to simulate lake ice phenology across the North American Arctic from 1961–2100 using two climate scenarios produced by the Canadian Regional Climate Model (CRCM). Results from the 1961–1990 time period were validated using 15 locations across the Canadian Arctic, with both in situ ice cover observations from the Canadian Ice Database as well as additional ice cover simulations using nearby weather station data. Projected changes to the ice cover using the 30-year mean data between 1961–1990 and 2041–2070 suggest a shift in break-up and freeze-up dates for most areas ranging from 10–25 days earlier (break-up) and 0–15 days later (freeze-up). The resulting ice cover durations show mainly a 10–25 day reduction for the shallower lakes (3 and 10 m) and 10–30 day reduction for the deeper lakes (30 m). More extreme reductions of up to 60 days (excluding the loss of perennial ice cover) were shown in the coastal regions compared to the interior continental areas. The mean maximum ice thickness was shown to decrease by 10–60 cm with no snow cover and 5–50 cm with snow cover on the ice. Snow ice was also shown to increase through most of the study area with the exception of the Alaskan coastal areas.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-10-25
    Description: Thermal remote sensing of ice-debris landforms using ASTER The Cryosphere Discussions, 5, 2895-2933, 2011 Author(s): A. Brenning, M. A. Peña, S. Long, and A. Soliman Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potentials of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-11-17
    Description: A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment The Cryosphere, 5, 1011-1028, 2011 Author(s): A. H. MacDougall, B. A. Wheler, and G. E. Flowers Efforts to project the long-term melt of mountain glaciers and ice-caps require that melt models developed and calibrated for well studied locations be transferable over large regions. Here we assess the sensitivity and transferability of parameters within several commonly used melt models for two proximal sites in a dry subarctic environment of northwestern Canada. The models range in complexity from a classical degree-day model to a simplified energy-balance model. Parameter sensitivity is first evaluated by tuning the melt models to the output of an energy balance model forced with idealized inputs. This exercise allows us to explore parameter sensitivity both to glacier geometric attributes and surface characteristics, as well as to meteorological conditions. We then investigate the effect of model tuning with different statistics, including a weighted coefficient of determination ( wR 2 ), the Nash-Sutcliffe efficiency criterion ( E ), mean absolute error (MAE) and root mean squared error (RMSE). Finally we examine model parameter transferability between two neighbouring glaciers over two melt seasons using mass balance data collected in the St. Elias Mountains of the southwest Yukon. The temperature-index model parameters appear generally sensitive to glacier aspect, mean surface elevation, albedo, wind speed, mean annual temperature and temperature lapse rate. The simplified energy balance model parameters are sensitive primarily to snow albedo. Model tuning with E , MAE and RMSE produces similar, or in some cases identical, parameter values. In twelve tests of spatial and/or temporal parameter transferability, the results with the lowest RMSE values with respect to ablation stake measurements were achieved twice with a classical temperature-index (degree-day) model, three times with a temperature-index model in which the melt parameter is a function of potential radiation, and seven times with a simplified energy-balance model. A full energy-balance model produced better results than the other models in nine of twelve cases, though the tuning of this model differs from that of the others.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-11-25
    Description: Permafrost degradation risk zone assessment using simulation models The Cryosphere, 5, 1043-1056, 2011 Author(s): R. P. Daanen, T. Ingeman-Nielsen, S. S. Marchenko, V. E. Romanovsky, N. Foged, M. Stendel, J. H. Christensen, and K. Hornbech Svendsen In this proof-of-concept study we focus on linking large scale climate and permafrost simulations to small scale engineering projects by bridging the gap between climate and permafrost sciences on the one hand and on the other technical recommendation for adaptation of planned infrastructures to climate change in a region generally underlain by permafrost. We present the current and future state of permafrost in Greenland as modelled numerically with the GIPL model driven by HIRHAM climate projections up to 2080. We develop a concept called Permafrost Thaw Potential (PTP), defined as the potential active layer increase due to climate warming and surface alterations. PTP is then used in a simple risk assessment procedure useful for engineering applications. The modelling shows that climate warming will result in continuing wide-spread permafrost warming and degradation in Greenland, in agreement with present observations. We provide examples of application of the risk zone assessment approach for the two towns of Sisimiut and Ilulissat, both classified with high PTP.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-12-01
    Description: Micrometeorological processes driving snow ablation in an Alpine catchment The Cryosphere, 5, 1083-1098, 2011 Author(s): R. Mott, L. Egli, T. Grünewald, N. Dawes, C. Manes, M. Bavay, and M. Lehning Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micro-meteorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological boundary-layer model (Advanced Regional Prediction System) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modeled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances of about 4–6 m. Measurements suggest that mean wind velocities of about 5 m s −1 are required for advective heat transport to increase snow ablation over a long fetch distance of about 20 m. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value of approximately 0.6. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is low. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-10-22
    Description: Spatio-temporal measurements and analysis of snow depth in a rock face The Cryosphere, 5, 893-905, 2011 Author(s): V. Wirz, M. Schirmer, S. Gruber, and M. Lehning Snow in rock faces plays a key role in the alpine environment for permafrost distribution, snow water storage or runoff in spring. However, a detailed assessment of snow depths in steep rock walls has never been attempted. To understand snow distribution in rock faces a high-resolution terrestrial laser scanner (TLS), including a digital camera, was used to obtain interpolated snow depth (HS) data with a grid resolution of one metre. The mean HS, the snow covered area and their evolution in the rock face were compared to a neighbouring smoother catchment and a flat field station at similar elevation. Further we analyzed the patterns of HS distribution in the rock face after different weather periods and investigated the main factors contributing to those distributions. In a first step we could show that with TLS reliable information on surface data of a steep rocky surface can be obtained. In comparison to the flatter sites in the vicinity, mean HS in the rock face was lower during the entire winter, but trends of snow depth changes were similar. We observed repeating accumulation and ablation patterns in the rock face, while maximum snow depth loss always occurred at those places with maximum snow depth gain. Further analysis of the main factors contributing to the snow depth distribution in the rock face revealed terrain-wind-interaction processes to be dominant. Processes related to slope angle seem to play a role, but no simple relationship between slope angle and snow depth was found. Further analyses should involve measurements in rock faces with other characteristics and higher temporal resolutions to be able to distinguish individual processes better. Additionally, the relation of spatial and temporal distribution of snow depth to terrain – wind interactions should be tested.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-10-28
    Description: Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network The Cryosphere Discussions, 5, 2991-3024, 2011 Author(s): A. Rösel, L. Kaleschke, and G. Birnbaum Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron (MLP) to reduce computational costs. Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC) for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors (RMSE) range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with correlations coefficients ranging from R 2 = 0.28 to R 2 = 0.45. The mean annual cycle of the melt pond fraction for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds from the geographical latitude, and has its maximum in mid-July in latitudes between 80° and 88° N. Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ASI-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave algorithms.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-10-28
    Description: Relation between surface topography and sea-salt snow chemistry from Princess Elizabeth Land, East Antarctica The Cryosphere Discussions, 5, 2967-2989, 2011 Author(s): K. Mahalinganathan, M. Thamban, C. M. Laluraj, and B. L. Redkar Previous studies on variability of sea-salt records in Antarctic snow have established an unambiguous relationship with the proximity to the sea and have been directly correlated with the site specific features like elevation and distance from the coast. On the other hand, variations in Cl − /Na + ratio in have been attributed with the reaction mechanisms involving atmospheric acids. In the present study, annual records of Na + , Cl − and SO 4 2− records were investigated using snow cores along a 180 km coast to inland transect in Princess Elizabeth Land, East Antarctica. Exceptionally high Na + concentrations varying between 1000 and 2000 μg l −1 were observed within 50 km of the transect. Large variations in Cl − /Na + ratio were observed within 50 km from the coast. A rapid increase in the elevation (0–1115 m) was noticed up to 50 km from the coast, whereas a steady elevation change (1115–2200 m) occurred between 50 and 180 km. The largest slope of the entire transect was observed (33.7 m km −1 ) between 20 and 30 km and records from this area correspondingly revealed extensive modifications in snow sea-salt chemistry, with Cl − /Na + ratios as low as 0.2. Statistical analysis showed a strong association between the slope of the ice sheet and variation of the sea-salt ions along the transect. While distance from coast accounted for some variability, the altitude by itself seem to have no significant control on the distribution of sea-salt ions. We suggest that the degree of slope of the ice sheet on the coastal regions of Antarctica could have a major influence the sea-salt chemistry.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-09-07
    Description: Surface mass budget and meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during record-warm year 2010 The Cryosphere Discussions, 5, 2319-2347, 2011 Author(s): D. van As, A. Hubbard, B. Hasholt, A. B. Mikkelsen, M. van den Broeke, and R. S. Fausto The year 2010 has been anomalously warm in most of Greenland, most notably in the south and along the western coast. Our study targets the Kangerlussuaq region around 67° N in Southwest Greenland, where the temperature anomalies were record setting. In 2010, the average temperature was 5 °C (2.7 standard deviations) above the 1974–2010 average in the town of Kangerlussuaq. High temperatures were also observed over the ice sheet, with the positive anomaly increasing with altitude. Also surface albedo, from calibrated MODIS measurements, was anomalously low in 2010, chiefly in the upper ablation zone. The low albedo was caused by the high ablation in 2010, which profited in turn from high temperatures, low albedo, and of low wintertime accumulation. The largest melt excess (166%) was found in the upper ablation zone, where higher temperatures and lower albedo contributed equally to the melt anomaly. In total, we estimate that 6.6 km 3 of surface meltwater ran off the ice sheet in the Kangerlussuaq catchment area in 2010, exceeding "normal" year 2009 by 145%. When compared to discharge estimated from discharge measurements in the proglacial river we find good agreement. The time lag between the records is caused by storage within and underneath the ice sheet, and suggests adaption of the subglacial drainage system to meltwater availability, with more efficient drainage occurring after the peak of the melt season.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2011-09-09
    Description: How reversible is sea ice loss? The Cryosphere Discussions, 5, 2349-2363, 2011 Author(s): J. K. Ridley, J. A. Lowe, and H. T. Hewitt It is well accepted that increasing atmospheric CO 2 results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3, is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO 2 is first ramped up to four times pre-industrial levels (4 × CO 2 ) then ramped down back to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO 2 prior to ramping CO 2 down to pre-industrial levels. Against global mean temperature Arctic sea ice area has little hysteresis while the Antarctic sea ice shows significant hysteresis – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the driver of the hysteresis is the hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-09-13
    Description: Hydrologic controls on coastal suspended sediment plumes around the Greenland ice sheet The Cryosphere Discussions, 5, 2365-2407, 2011 Author(s): V. W. Chu, L. C. Smith, A. K. Rennermalm, R. R. Forster, and J. E. Box Rising sea levels and increased surface melting of the Greenland ice sheet have heightened the need for direct observations of meltwater release from the ice edge to ocean. Buoyant sediment plumes that develop in fjords downstream of outlet glaciers are controlled by numerous factors, including meltwater runoff. Here, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery is used to average surface suspended sediment concentration (SSC) in fjords around ~80% of Greenland from 2000–2009. Spatial and temporal patterns in SSC are compared with positive-degree-days (PDD), a proxy for surface melting, from the Polar MM5 regional climate model. Over this decade significant geographic covariance occurred between ice sheet PDD and fjord SSC, with outlet type (land- vs. marine-terminating glaciers) also important. In general, high SSC is associated with high PDD and/or a high proportion of land-terminating glaciers. Unlike previous site-specific studies of the Watson River plume at Kangerlussuaq, temporal covariance is low, suggesting that plume dimensions best capture interannual runoff dynamics whereas SSC allows assessment of long-term conditions across much broader fjord environments around the ice sheet. Remote sensing of both plume charactersitics thus offers a viable approach for observing spatial and temporal patterns of meltwater release exiting the Greenland ice sheet to the global ocean.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-09-17
    Description: Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data The Cryosphere Discussions, 5, 2409-2435, 2011 Author(s): N. Foppa and G. Seiz Snow cover plays a vital role in the Swiss Alps and therefore it is of major interest to determine and understand its variability on different spatiotemporal scales. Within the activities of the National Climate Observing System (GCOS Switzerland) inter-annual variations of snow days over Switzerland were derived from 2000 to 2010 based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. To minimize the impact of cloud cover on the MODIS snow product MOD10C1, we implemented a post-processing technique based on a forward and backward gap-filling approach. Using the proposed methodology it was possible to determine the total number of annual snow days over Switzerland from 2000 to 2010 (SCD MODIS ). The accuracy of the calculated snow days per year were quantitatively evaluated against three in situ snow observation sites representing different climatological regimes (SCD in_situ ). The correlation ( c ) between annual SCD MODIS and SCD in_situ is highest for the lowland regions by ( c = 0.90) with a slightly lower correlation for the Central Alps of 0.82 and a mean absolute difference of −6 to −7 days (SCD in_situ − SCD MODIS ). Differences were further analysed on a monthly and daily resolution over the entire period. The overall agreement between SCD MODIS and SCD in_situ on a daily basis over 10 yr is 88 % to 94 %, depending on the regional characteristics of each validation site. Differences between SCD MODIS and SCD in_situ vary with higher mean absolute differences during the snow accumulation period in autumn and smaller differences after spring, in particularly for the Central Alps. These findings are in agreement with other studies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-09-15
    Description: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet The Cryosphere, 5, 727-740, 2011 Author(s): M. A. Martin, R. Winkelmann, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-09-15
    Description: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description The Cryosphere, 5, 715-726, 2011 Author(s): R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-07-09
    Description: Laboratory study of frazil ice accumulation under wave conditions The Cryosphere Discussions, 5, 1835-1886, 2011 Author(s): S. De la Rosa and S. Maus Ice growth in turbulent seawater is often accompanied by the accumulation of frazil ice crystals at its surface. The thickness and volume fraction of this ice layer play an important role in shaping the gradual transition from a loose to a solid ice cover, however, observations are very sparse. Here we analyse an extensive set of observations of frazil ice, grown in two parallel tanks with controlled wave conditions and thermal forcing, focusing on the first one to two days of grease ice accumulation. The following unresolved issues are addressed: (i) at which volume fraction the frazil crystal rising process starts and how densely they accumulate at the surface, (ii) how the grease ice solid fraction evolves with time until solid ice starts to form and (iii) how do these conditions affect, and are affected by, waves and heat loss from the ice. We obtained estimates of the initial frazil ice solid fraction (0.04–0.05), the maximum solid fraction to which it accumulates (0.24–0.28), as well as the time-scale of packing, at which 95 % of the frazil reaches the maximum solid fraction (12–18 h). Comparison of ice thickness and wave observations also indicates that grease ice first begins to affect the wave field significantly when its thickness exceeds the initial wave amplitude. These results are relevant for modelling frazil ice accumulation and freeze-up of leads, polynyas and the seasonal ice zone.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-07-12
    Description: Favorable climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan The Cryosphere, 5, 539-549, 2011 Author(s): K. Fujita, N. Takeuchi, S. A. Nikitin, A. B. Surazakov, S. Okamoto, V. B. Aizen, and J. Kubota We conducted 2 yr (2005–2007) of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Relative carrier-phase GPS surveys reveal a vertical lowering at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the current state are 289 mm and −3.8 °C at the glacier summit (4600 m a.s.l.), respectively. The good agreement between dynamically derived precipitation and the long-term observed precipitation at a nearby station in the Tien Shan (296 mm at 3614 m a.s.l. for the period 1930–2002) suggests that the glacier has been in a near steady-state in terms of mass supply. The glacier mass-balance, reconstructed based on meteorological data from the Tien Shan station for the past 80 yr, explains the observed fluctuations in glacier extent, particularly the negative mass balance in the 1990s.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-10-22
    Description: Changes in the marine-terminating glaciers of central east Greenland and potential connections to ocean circulation, 2000–2010 The Cryosphere Discussions, 5, 2865-2894, 2011 Author(s): K. M. Walsh, I. M. Howat, Y. Ahn, and E. M. Enderlin Outlet glaciers on the periphery of the Greenland Ice Sheet have undergone substantial changes in the past decade. Limited geophysical observations of the marine-terminating glaciers of eastern Greenland's Geikie Plateau and Blosseville Coast suggest rapid rates of mass loss and short-term variability in ice dynamics since 2002. Glaciers in this region terminate into the Denmark Strait, which is a thermodynamic transition zone between the Arctic and North Atlantic oceans spanning from 66° N to 69° N. We examine time series of thinning, retreat and flow speed of 38 marine-terminating glaciers along the central east Greenland coast from 2000 to 2010 and compare this record with coastal sea surface temperatures to investigate a potential relationship between warming of the sea surface and increased melt at the glacier termini. We find that glacial retreat, thinning and acceleration have been more pronounced throughout the Denmark Strait, supporting our hypothesis that ocean warming associated with shifts in the Irminger and East Greenland currents are causing increased melt at the ice-ocean interface.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-10-25
    Description: Variability and changes of Arctic sea ice draft distribution – submarine sonar measurements revisited The Cryosphere, 5, 917-929, 2011 Author(s): A. Oikkonen and J. Haapala Changes in the mean sea ice thickness and concentration in the Arctic are well known. However, quantitative information about changes in the ice thickness distribution and the composition of the pack ice is lacking. In this paper we determine the ice draft distributions, mean and modal thicknesses, and their regional and seasonal variability in the Arctic for the time period 1975–2000. We compare characteristics of the Arctic pack ice for the years 1975–1987 and 1988–2000. These periods represent different large-scale atmospheric circulation modes and sea ice circulation patterns, most evident in clearly weaker Beaufort Gyre and stronger as well as westward shifted Transpolar Drift during the later period. The comparison of these two periods reveals that the peak of sea ice draft distributions has narrowed and shifted toward thinner ice, with reductions in both mean and modal ice draft. These noticeable changes are attributed to the loss of thick, mostly deformed ice. Springtime, loss of ice volume with draft greater than 5 m exceeds 35 % in all regions except the Nansen Basin, with as much as 45 % or more at the North Pole and in the Eastern Arctic. Autumn volume reduction, mostly of deformed ice, exceeds 40 % in the Canada Basin only, but is above 30 % also in the Beaufort and Chukchi Seas. During the later period, the volume of ice category consisting thin, mostly level first-year ice, is clearly larger than during the former period, especially in the spring. In the Beaufort Sea region, changes in the composition of ice cover have resulted in a shift of modal draft from level multiyear ice draft range to values of level first-year ice. The regional and seasonal variability of sea ice draft has decreased, since the thinning has been most pronounced in regions with the thickest pack ice (the Western Arctic), and during the spring (0.6–0.8 m per decade).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-10-25
    Description: The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica The Cryosphere, 5, 931-944, 2011 Author(s): A. Humbert and D. Steinhage This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-11-04
    Description: Longitudinal surface structures (flowstripes) on Antarctic glaciers The Cryosphere Discussions, 5, 3085-3112, 2011 Author(s): N. F. Glasser and G. H. Gudmundsson Longitudinal surface structures (''flowstripes'') are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems (the Lambert Glacier/Amery Ice Shelf area, outlet glaciers in the Ross Sea sector, ice-shelf tributary glaciers on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area). Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1) as relatively wide flow stripes within glacier flow units and (2) as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-11-03
    Description: Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland The Cryosphere, 5, 961-975, 2011 Author(s): G. Aðalgeirsdóttir, S. Guðmundsson, H. Björnsson, F. Pálsson, T. Jóhannesson, H. Hannesdóttir, S. Þ. Sigurðsson, and E. Berthier The Little Ice Age maximum extent of glaciers in Iceland was reached about 1890 AD and most glaciers in the country have retreated during the 20th century. A model for the surface mass balance and the flow of glaciers is used to reconstruct the 20th century retreat history of Hoffellsjökull, a south-flowing outlet glacier of the ice cap Vatnajökull, which is located close to the southeastern coast of Iceland. The bedrock topography was surveyed with radio-echo soundings in 2001. A wealth of data are available to force and constrain the model, e.g. surface elevation maps from ~1890, 1936, 1946, 1989, 2001, 2008 and 2010, mass balance observations conducted in 1936–1938 and after 2001, energy balance measurements after 2001, and glacier surface velocity derived by kinematic and differential GPS surveys and correlation of SPOT5 images. The approximately 20% volume loss of this glacier in the period 1895–2010 is realistically simulated with the model. After calibration of the model with past observations, it is used to simulate the future response of the glacier during the 21st century. The mass balance model was forced with an ensemble of temperature and precipitation scenarios derived from 10 global and 3 regional climate model simulations using the A1B emission scenario. If the average climate of 2000–2009 is maintained into the future, the volume of the glacier is projected to be reduced by 30% with respect to the present at the end of this century. If the climate warms, as suggested by most of the climate change scenarios, the model projects this glacier to almost disappear by the end of the 21st century. Runoff from the glacier is predicted to increase for the next 30–40 yr and decrease after that as a consequence of the diminishing ice-covered area.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-10-15
    Description: Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline The Cryosphere, 5, 821-829, 2011 Author(s): L. H. Smedsrud, A. Sirevaag, K. Kloster, A. Sorteberg, and S. Sandven Arctic sea ice area has been decreasing for the past two decades. Apart from melting, the southward drift through Fram Strait is the main ice loss mechanism. We present high resolution sea ice drift data across 79° N from 2004 to 2010. Ice drift has been derived from radar satellite data and corresponds well with variability in local geostrophic wind. The underlying East Greenland current contributes with a constant southward speed close to 5 cm s −1 , and drives around a third of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25% larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice area export likely has a significant influence on the summer sea ice variability and we find low values in the 1960's, the late 1980's and 1990's, and particularly high values during 2005–2008. The study highlights the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice during the last decades.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-10-19
    Description: Refreezing on the Greenland ice sheet: a comparison of parameterizations The Cryosphere Discussions, 5, 2723-2764, 2011 Author(s): C. H. Reijmer, M. R. van den Broeke, J. Ettema, and L. B. Stap Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of the Regional Atmospheric Climate Model (RACMO2), applied to the Greenland ice sheet. In RACMO2, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt) of RACMO2. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-10-22
    Description: Ice stream or not? Radio-echo sounding of Carlson Inlet, West Antarctica The Cryosphere, 5, 907-916, 2011 Author(s): E. C. King The Antarctic Ice Sheet loses mass to the surrounding ocean mainly by drainage through a network of ice streams: fast-flowing glaciers bounded on either side by ice flowing one or two orders of magnitude more slowly. Ice streams flow despite low driving stress because of low basal resistance but are known to cease flowing if the basal conditions change, which can take place when subglacial sediment becomes dewatered by freezing or by a change in hydraulic pathways. Carlson Inlet, Antarctica has been interpreted as a stagnated ice stream, based on surface and basal morphology and shallow radar reflection profiling. To resolve the question of whether the flow history of Carlson Inlet has changed in the past, I conducted a ground-based radar survey of Carlson Inlet, the adjacent part of Rutford Ice Stream, and Talutis Inlet, West Antarctica. This survey provides details of the internal ice stratigraphy and allows the flow history to be interpreted. Tight folding of isochrones in Rutford Ice Stream and Talutis Inlet is interpreted to be the result of lateral compression during convergent flow from a wide catchment into a narrow, fast-flowing trunk. In contrast, the central part of Carlson Inlet has gently-folded isochrones that drape over the bed topography, suggestive of local accumulation and slow flow. A 1-D thermo-mechanical model was used to estimate the age of the ice. I conclude that the ice in the centre of Carlson Inlet has been near-stagnant for between 3500 and 6800 yr and that fast flow has not occurred there during that time period.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-10-27
    Description: Transfer function models to quantify the delay between air and ground temperatures in thawed active layers The Cryosphere Discussions, 5, 2935-2966, 2011 Author(s): E. Zenklusen Mutter, J. Blanchet, and M. Phillips Air temperatures influence ground temperatures with a certain delay, which increases with depth. Borehole temperatures measured at 0.5 m depth in Alpine permafrost and air temperatures measured at or near the boreholes have been used to model this dependency. Statistical transfer function models have been fitted to the daily difference series of air and ground temperatures measured at seven different permafrost sites in the Swiss Alps. The relation between air and ground temperature is influenced by various factors such as ground surface cover, snow depth, water or ground ice content. To avoid complications induced by the insulating properties of the snow cover and by phase changes in the ground, only the mostly snow-free summer period when the ground at 0.5 m depth is thawed has been considered here. All summers from 2006 to 2009 have been analysed, with the main focus on summer 2006. The results reveal that in summer 2006 daily air temperature changes influence ground temperatures at 0.5 m depth with a delay ranging from one to six days, depending on the site. The fastest response times are found for a very coarse grained, blocky rock glacier site whereas slower response times are found for blocky scree slopes with smaller grain sizes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-10-27
    Description: Modeling the impact of wintertime rain events on the thermal regime of permafrost The Cryosphere, 5, 945-959, 2011 Author(s): S. Westermann, J. Boike, M. Langer, T. V. Schuler, and B. Etzelmüller In this study, we present field measurements and numerical process modeling from western Svalbard showing that the ground surface temperature below the snow is impacted by strong wintertime rain events. During such events, rain water percolates to the bottom of the snow pack, where it freezes and releases latent heat. In the winter season 2005/2006, on the order of 20 to 50% of the wintertime precipitation fell as rain, thus confining the surface temperature to close to 0 °C for several weeks. The measured average ground surface temperature during the snow-covered period is −0.6 °C, despite of a snow surface temperature of on average −8.5 °C. For the considered period, the temperature threshold below which permafrost is sustainable on long timescales is exceeded. We present a simplified model of rain water infiltration in the snow coupled to a transient permafrost model. While small amounts of rain have only minor impact on the ground surface temperature, strong rain events have a long-lasting impact. We show that consecutively applying the conditions encountered in the winter season 2005/2006 results in the formation of an unfrozen zone in the soil after three to five years, depending on the prescribed soil properties. If water infiltration in the snow is disabled in the model, more time is required for the permafrost to reach a similar state of degradation.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-11-01
    Description: Worldwide widespread decadal-scale decrease of glacier speed revealed using repeat optical satellite images The Cryosphere Discussions, 5, 3025-3051, 2011 Author(s): T. Heid and A. Kääb Matching of repeat optical satellite images to derive glacier velocities is an approach that is much used within glaciology. Lately, focus has been put into developing, improving, automating and comparing different image matching methods. This makes it now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have decreased their speeds over the last decades, Pamir by 43 % in average per decade, Caucasus by 8 % in average per decade, Penny Ice Cap by 25 % in average per decade, Alaska Range by 11 % in average per decade and Patagonia by 20 % in average per decade. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-11-03
    Description: Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula The Cryosphere Discussions, 5, 3053-3084, 2011 Author(s): V. Zagorodnov, O. Nagornov, T. A. Scambos, A. Muto, E. Mosley-Thompson, E. C. Pettit, and S. Tyuflin Two ice core boreholes of 143.74 m and 447.65 m (bedrock) were drilled during the 2009–2010 austral summer on the Bruce Plateau at a location named LARISSA Site Beta (66°02' S, 64°04' W, 1975.5 m a.s.l.). Both boreholes were logged with thermistors shortly after drilling. The shallow borehole was instrumented for 4 months with a series of resistance thermometers with satellite uplink. Surface temperature proxy data derived from an inversion of the borehole temperature profiles are compared to available multi-decadal records from weather stations and ice cores located along a latitudinal transect of the Antarctic Peninsula to West Antarctica. The LARISSA Site Beta profiles show temperatures decreasing from the surface downward through the upper third of the ice, and warming thereafter to the bed. The average temperature for the most recent year is −14.78 °C (measured at 15 m depth, abbreviated T 15 . A minimum temperature of −15.8 °C is measured at 173 m depth and basal temperature is estimated to be −10.2 °C. Current mean annual temperature and the gradient in the lower part of the measured temperature profile have a best fit with an accumulation rate of 1.9 × 10 3 kg m −2 a −1 and basal heat flux ( q ) of 88 mW m −2 , if steady-state conditions are assumed. However, the mid-level temperature variations show that recent temperature has varied significantly. Reconstructed surface temperatures ( T s = T 15 over the last 200 yr are derived by an inversion technique. From this, we find that cold temperatures (minimum T s =−16.2 °C) prevailed from ~1920 to ~1940, followed by a gradual rise of temperature to −14.2 °C around 1995, then cooling over the following decade and warming in the last few years. The coldest period was preceded by a relatively warm 19th century at T 15 ≥ −15 °C. To facilitate regional comparisons of the surface temperature history, we use our T 15 data and nearby weather station records to refine estimates of lapse rates (altitudinal, adjusted for latitude: Γ a(l)) . Good temporal and spatial consistency of Γ a(l)) over the last 35 yr are observed, implying that the climate trends observed here are regional and consistent over a broad altitude range.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-03-06
    Description: Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar The Cryosphere, 5, 139-149, 2011 Author(s): K. Bælum and D. I. Benn Proglacial icings accumulate in front of many High Arctic glaciers during the winter months, as water escapes from englacial or subglacial storage. Such icings have been interpreted as evidence for warm-based subglacial conditions, but several are now known to occur in front of cold-based glaciers. In this study, we investigate the drainage system of Tellbreen, a 3.5 km long glacier in central Spitsbergen, where a large proglacial icing develops each winter, to determine the location and geometry of storage elements. Digital elevation models (DEMs) of the glacier surface and bed were constructed using maps, differential GPS and ground penetrating radar (GPR). Rates of surface lowering indicate that the glacier has a long-term mass balance of −0.6 ± 0.2 m/year. Englacial and subglacial drainage channels were mapped using GPR, showing that Tellbreen has a diverse drainage system that is capable of storing, transporting and releasing water year round. In the upper part of the glacier, drainage is mainly via supraglacial channels. These transition downglacier into shallow englacial "cut and closure" channels, formed by the incision and roof closure of supraglacial channels. Below thin ice near the terminus, these channels reach the bed and contain stored water throughout the winter months. Even though no signs of temperate ice were detected and the bed is below pressure-melting point, Tellbreen has a surface-fed, channelized subglacial drainage system, which allows significant storage and delayed discharge.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-03-11
    Description: Spatial and temporal variability in summer snow pack in Dronning Maud Land, Antarctica The Cryosphere, 5, 187-201, 2011 Author(s): T. Vihma, O.-P. Mattila, R. Pirazzini, and M. M. Johansson To quantify the spatial and temporal variability in the snow pack, field measurements were carried out during four summers in Dronning Maud Land, Antarctica. Data from a 310-km-long transect revealed the largest horizontal gradients in snow density, temperature, and hardness in the escarpment region. On the local scale, day-to-day temporal variability dominated the standard deviation of snow temperature, while the diurnal cycle was of second significance, and horizontal variability on the scale of 0.4 to 10 m was least important. In the uppermost 0.2 m, the snow temperature was correlated with the air temperature over the previous 6–12 h, whereas at the depths of 0.3 to 0.5 m the most important time scale was 3 days. Cloud cover and radiative fluxes affected the snow temperature in the uppermost 0.30 m and the snow density in the uppermost 0.10 m. Both on the intra-pit and transect scales, the ratio of horizontal to temporal variability increased with depth. The horizontal standard deviation of snow density increased rapidly between the scales of 0.4 and 2 m, and more gradually from 10 to 100 m. Inter-annual variations in snow temperature and density were due to inter-annual differences in air temperature and the timing of the precipitation events.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-03-22
    Description: Evidence of accelerated englacial warming in the Monte Rosa area, Switzerland/Italy The Cryosphere, 5, 231-243, 2011 Author(s): M. Hoelzle, G. Darms, M. P. Lüthi, and S. Suter A range of englacial temperature measurements was acquired in the Monte Rosa area at the border of Switzerland and Italy in the years 1982, 1991, 1994, 1995, 1999, 2000, 2003, 2007 and 2008. Englacial temperatures revealed no evidence of warming at the firn saddle of Colle Gnifetti at 4452 m a.s.l. between 1982 and 1991, the 1991 to 2000 period showed an increase of 0.05 °C per year at a depth of 20 m. From 2000 to 2008 a further increase of 1.3 °C or 0.16 °C per year was observed, indicating that the amount of infiltrating and refreezing meltwater at Colle Gnifetti has probably increased since 2000. The measured temperatures give clear evidence of firn warming since 1991. This is confirmed by five existing boreholes with measured temperature down to bedrock, which were drilled in 1982, 1995, 2003 and 2005. All the observed temperature profiles show a slight bending to warmer temperatures in their uppermost part indicating a warming of the firn, which can be related to the observed atmospheric warming in the 20th century. However, the drilling sites on Colle Gnifetti are still located in the recrystallisation-infiltration zone. A much stronger warming of 6.8 °C or 0.4 °C per year was found at locations beneath Colle Gnifetti on Grenzgletscher from 1991 to 2008. This warming is one order of magnitude greater than the atmospheric warming and can be explained only by a strong increase in the latent heat input by infiltrating and refreezing meltwater. The observations indicate that since 1991, an important firn area beneath Colle Gnifetti has already undergone a firn facies change from the recrystallisation-infiltration to the cold infiltration zone due to an increasing supply of surface melt energy.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-03-02
    Description: Brief communication "Application of mobile laser scanning in snow cover profiling" The Cryosphere, 5, 135-138, 2011 Author(s): S. Kaasalainen, H. Kaartinen, A. Kukko, K. Anttila, and A. Krooks We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application). We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS) campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-03-02
    Description: Temperature variability and thermal offset in steep alpine rock and ice faces The Cryosphere Discussions, 5, 721-753, 2011 Author(s): A. Hasler, S. Gruber, and W. Haeberli The thermal condition of high-alpine mountain flanks can be an important determinant of climate change impact on slope stability and correspondingly down-slope hazard regimes. In this study we analyze new time-series from 17 shallow temperature-depth profiles at two field sites in steep bedrock and ice. Extending earlier studies that revealed the topographic variations in temperatures, we demonstrate considerable differences of annual mean temperatures for variable surface characteristics and depths within the measured profiles. This implies that measurements and models related to compact and near-vertical bedrock temperatures may deviate considerably from conditions in the majority of bedrock slopes in mountain ranges that are usually non-vertical and fractured. For radiation-exposed faces, for instance, mean annual temperatures at depth are up to 3 °C lower and permafrost is likely to exist at lower elevations than reflected by current estimates based on the near-vertical case. Retention of thin snow cover and ventilation effects in open clefts are most likely responsible for this cooling. The presented or similar data could be used in the future to support the development and testing of models related to the thermal influence of snow-cover and fractures in steep bedrock. This would allow generalizing the here-presented findings.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-03-02
    Description: The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula The Cryosphere, 5, 125-134, 2011 Author(s): H. Rott, F. Müller, T. Nagler, and D. Floricioiu The outlet glaciers to the embayment of the Larsen-B Ice Shelf started to accelerate soon after the ice shelf disintegrated in March 2002. We analyse high resolution radar images of the TerraSAR-X satellite, launched in June 2007, to map the motion of outlet glaciers in detail. The frontal velocities are used to estimate the calving fluxes for 2008/2009. As reference for pre-collapse conditions, when the glaciers were in balanced state, the ice fluxes through the same gates are computed using ice motion maps derived from interferometric data of the ERS-1/ERS-2 satellites in 1995 and 1999. Profiles of satellite laser altimetry from ICESat, crossing the terminus of several glaciers, indicate considerable glacier thinning between 2003 and 2007/2008. This is taken into account for defining the calving cross sections. The difference between the pre- and post-collapse fluxes provides an estimate on the mass imbalance. For the Larsen-B embayment the 2008 mass deficit is estimated at 4.34 ± 1.64 Gt a −1 , significantly lower than previously published values. The ice flow acceleration follows a similar pattern on the various glaciers, gradually decreasing in magnitude with distance upstream from the calving front. This suggests stress perturbation at the glacier front being the main factor for acceleration. So far there are no signs of slow-down indicating that dynamic thinning and frontal retreat will go on.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-03-03
    Description: Changes in seasonal snow cover in Hindu Kush-Himalayan region The Cryosphere Discussions, 5, 755-777, 2011 Author(s): D. R. Gurung, A. V. Kulkarni, A. Giriraj, K. S. Aung, B. Shrestha, and J. Srinivasan The changes in seasonal snow covered area in the Hindu Kush-Himalayan (HKH) region have been examined using Moderate – resolution Imaging Spectroradiometer (MODIS) 8-day standard snow products. The average snow covered area of the HKH region based on satellite data from 2000 to 2010 is 0.76 million km 2 which is 18.23% of the total geographical area of the region. The linear trend in annual snow cover from 2000 to 2010 is −1.25±1.13%. This is in consistent with earlier reported decline of the decade from 1990 to 2001. A similar trend for western, central and eastern HKH region is 8.55±1.70%, +1.66% ± 2.26% and 0.82±2.50%, respectively. The snow covered area in spring for HKH region indicates a declining trend (−1.04±0.97%). The amount of annual snowfall is correlated with annual seasonal snow cover for the western Himalaya, indicating that changes in snow cover are primarily due to interannual variations in circulation patterns. Snow cover trends over a decade were also found to vary across seasonally and the region. Snow cover trends for western HKH are positive for all seasons. In central HKH the trend is positive (+15.53±5.69%) in autumn and negative (−03.68±3.01) in winter. In eastern HKH the trend is positive in summer (+3.35±1.62%) and autumn (+7.74±5.84%). The eastern and western region of HKH has an increasing trend of 10% to 12%, while the central region has a declining trend of 12% to 14% in the decade between 2000 and 2010. Snow cover depletion curve plotted for the hydrological year 2000–2001 reveal peaks in the month of February with subsidiary peaks observed in November and December in all three regions of the HKH.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-03-08
    Description: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet The Cryosphere Discussions, 5, 779-809, 2011 Author(s): M. van den Broeke, R. van de Wal, and P. Smeets We present the seasonal cycle and interannual variability of the surface energy balance (SEB) in the ablation zone of the west Greenland ice sheet, using seven years (September 2003–August 2010) of hourly observations from three automatic weather stations (AWS). The AWS are situated along the 67° N latitude circle at elevations of 490 m a.s.l. (S5), 1020 m a.s.l. (S6) and 1520 m a.s.l. (S9) at distances of 6, 38 and 88 km from the ice sheet margin. The hourly AWS data are fed into a model that calculates all SEB components and melt rate; the model allows for shortwave radiation penetration in ice and time-varying surface momentum roughness. Snow depth is prescribed from albedo and sonic height ranger observations. Modelled and observed surface temperatures for non-melting conditions agree very well, with RMSE's of 0.97–1.26 K. Modelled and observed ice melt rates at the two lowest sites also show very good agreement, both for total cumulative and 10-day cumulated amounts. Melt frequencies and melt rates at the AWS sites are discussed. Although absorbed shortwave radiation is the most important energy source for melt at all three sites, interannual melt variability at the lowest site is driven mainly by variability in the turbulent flux of sensible heat. This is explained by the quasi-constant summer albedo in the lower ablation zone, limiting the influence of the melt-albedo feedback, and the proximity of the snow free tundra, which heats up considerably in summer.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-03-09
    Description: The surface energy balance of a polygonal tundra site in northern Siberia – Part 1: Spring to fall The Cryosphere, 5, 151-171, 2011 Author(s): M. Langer, S. Westermann, S. Muster, K. Piel, and J. Boike In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-03-10
    Description: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density The Cryosphere, 5, 173-186, 2011 Author(s): L. S. Sørensen, S. B. Simonsen, K. Nielsen, P. Lucas-Picher, G. Spada, G. Adalgeirsdottir, R. Forsberg, and C. S. Hvidberg ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance of the Greenland ice sheet. Firn dynamics and surface densities are important factors that contribute to the mass change derived from remote-sensing altimetry. The volume change derived from ICESat data is corrected for changes in firn compaction over the observation period, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by the application of a simple surface density model, in which some of the ice dynamics are accounted for. The firn compaction and density models are driven by the HIRHAM5 regional climate model, forced by the ERA-Interim re-analysis product, at the lateral boundaries. We find annual mass loss estimates of the Greenland ice sheet in the range of 191 ± 23 Gt yr −1 to 240 ± 28 Gt yr −1 for the period October 2003 to March 2008. These results are in good agreement with several other studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-03-12
    Description: Modelling the temperature evolution of permafrost and seasonal frost in southern Norway during the 20th and 21st century The Cryosphere Discussions, 5, 811-854, 2011 Author(s): T. Hipp, B. Etzelmüller, H. Farbrot, and T. V. Schuler A heat flow model was used to simulate both past and future ground temperatures of mountain permafrost in Southern Norway. A reconstructed air temperature series back to 1860 was used to evaluate the permafrost evolution since the end of the Little Ice Age in the region. The impact of a changing climate on discontinuous mountain permafrost until 2100 is predicted by using downscaled temperatures from an ensemble of downscaled climate models for the A1B scenario. From 13 borehole locations two consecutive years of ground temperature, air temperature and snow cover data are available for model calibration and validation. The boreholes are located at different elevations and in substrates having different thermal properties. With an increase of air temperature of ~+1.5 °C over 1860–2010 and an additional warming of +2.8 °C towards 2100 in air temperature, we simulate the evolution of ground temperatures for the borehole locations. According to model results, the active-layer thickness has increased since 1860 by about 0.5–5 m and 〉10 m for the sites Juvvass and Tron, respectively. The simulations also suggest that at an elevation of about 1900 m a.s.l. permafrost will degrade until the end of this century with a likelihood of 55–75% given the chosen A1B scenario.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-03-17
    Description: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty The Cryosphere, 5, 219-229, 2011 Author(s): R. D. Brown and D. A. Robinson An update is provided of Northern Hemisphere (NH) spring (March, April) snow cover extent (SCE) over the 1922–2010 period incorporating the new climate data record (CDR) version of the NOAA weekly SCE dataset, with annual 95% confidence intervals estimated from regression analysis and intercomparison of multiple datasets. The uncertainty analysis indicates a 95% confidence interval in NH spring SCE of ±5–10% over the pre-satellite period and ±3–5% over the satellite era. The multi-dataset analysis shows larger uncertainties monitoring spring SCE over Eurasia (EUR) than North America (NA) due to the more complex regional character of the snow cover variability and larger between-dataset variability over northern Europe and north-central Russia. Trend analysis of the updated SCE series provides evidence that NH spring snow cover extent has undergone significant reductions over the past ~90 yr and that the rate of decrease has accelerated over the past 40 yr. The rate of decrease in March and April NH SCE over the 1970–2010 period is ~0.8 million km 2 per decade corresponding to a 7% and 11% decrease in NH March and April SCE respectively from pre-1970 values. In March, most of the change is being driven by Eurasia (NA trends are not significant) but both continents exhibit significant SCE reductions in April. The observed trends in SCE are being mainly driven by warmer air temperatures, with NH mid-latitude air temperatures explaining ~50% of the variance in NH spring snow cover over the 89-yr period analyzed. However, there is also evidence that changes in atmospheric circulation around 1980 involving the North Atlantic Oscillation and Scandinavian pattern have contributed to reductions in March SCE over Eurasia.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-03-17
    Description: A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere The Cryosphere Discussions, 5, 885-950, 2011 Author(s): D. A. Dixon, P. A. Mayewski, E. Korotkikh, S. B. Sneed, M. J. Handley, D. S. Introne, and T. A. Scambos This is the first study to measure more than 25 chemical constituents in the surface snow and firn across extensive regions of Antarctica. It is also the first to report total-Cs concentrations. We present major ion, trace element, heavy metal, rare earth element and oxygen isotope data from a series of surface snow samples and shallow firn sections collected along four US ITASE traverses across East and West Antarctica. In each sample we measure dissolved concentrations of Na + , K + , Mg 2+ , Ca 2+ , Cl − , NO 3 − , SO 4 2− , and MS − using ion chromatography and total concentrations of Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg, Li, and K using inductively coupled plasma sector field mass spectrometry. We also measure δ 18 O by isotope ratio mass spectrometry. The 2002/2003 traverse began at Byrd Surface Camp, West Antarctica, and ended close to South Pole, East Antarctica. The 2003/2004 traverse began at South Pole, passed through AGO4 in central East Antarctica before turning north and finishing at Taylor Dome. The combined 2006/2007 and 2007/2008 traverses started out at Taylor Dome and headed south, passing through the Byrd Glacier drainage basin and ending at South Pole. In this study, we utilize satellite remote sensing measurements of microwave backscatter and grain size to assist in the identification of glaze/dune areas across Antarctica and show how chemical concentrations are higher in these areas, precluding them from containing useful high-resolution chemical climate records. The majority of the non-glaze/dune samples in this study exhibit similar, or lower, concentrations to those from previous studies. Consequently, the results presented here comprise a conservative baseline for Antarctic surface snow chemical concentrations. The elements Cd, Pb, Bi, As, and Li are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Global volcanic outgassing accounts for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd in East Antarctica. Nonetheless, global volcanic outgassing cannot account for the enriched values of Pb or As. Local volcanic outgassing from Mount Erebus may account for a significant fraction of the As and Cd in West Antarctica and for a significant fraction in East Antarctic glaze/dune areas. However, despite potential contributions from local and global volcanic sources, significant concentrations of Pb, Cd, and As remain across much of Antarctica. Most importantly, this study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-03-22
    Description: The "tipping" temperature within Subglacial Lake Ellsworth, West Antarctica and its implications for lake access The Cryosphere Discussions, 5, 1003-1020, 2011 Author(s): M. Thoma, K. Grosfeld, C. Mayer, A. M. Smith, J. Woodward, and N. Ross We present results from new geophysical data allowing 3-D modelling of the water flow within Subglacial Lake Ellsworth (SLE), West Antarctica. Our simulations indicate that this lake has a novel temperature distribution due to significantly thinner ice than other surveyed subglacial lakes. The critical pressure boundary (tipping depth), established from the semi-empirical Equation of State, defines whether the lake's flow regime is convective or stratified. It passes through SLE and separates different temperature (and flow) regimes on either side of the lake. Our results have implications for the location of proposed access holes into SLE, the choice of which will depend on scientific or operational priorities. If an understanding of subglacial lake water properties and dynamics is the priority, holes are required in a basal freezing area at the North end of the lake. This would be the preferred priority suggested by this paper, requiring temperature and salinity profiles in the water column. A location near the Southern end, where bottom currents are lowest, is optimum for detecting the record of life in the bed sediments; to minimise operational risk and maximise the time span of a bed sediment core, a location close to the middle of the lake, where the basal interface is melting and the lake bed is at its deepest, remains the best choice. Considering potential lake-water salinity and ice-density variations, we estimate the critical tipping depth , separating different temperature regimes within subglacial lakes, to be in about 2900 to 3045 m depth.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-03-30
    Description: Ice-stream response to ocean tides and the form of the basal sliding law The Cryosphere, 5, 259-270, 2011 Author(s): G. H. Gudmundsson The response of ice streams to ocean tides is investigated. Numerical modelling experiments are conducted using a two-dimensional flow-line model of coupled ice-stream and ice-shelf flow. The model includes all components of the equilibrium equations, and uses a non-linear viscoelastic constitutive equation for ice. Basal sliding is simulated with a Weertman type sliding law where basal sliding is proportional to some power of the basal shear stress. The response of ice-streams to tidal forcing is found to be profoundly affected by mechanical conditions at the bed. For a non-linear sliding law, a non-linear interaction between the two main semi-diurnal tidal constituents (M2 and S2) can give rise to a significant perturbation in ice-stream flow at the lunisolar synodic fortnightly (MSf) tidal period of 14.76 days. For a linear sliding law, in contrast, no such modulation in flow at the MSf frequency is found. For vertical ocean tides of the type observed on Filchner-Ronne Ice Shelf (FRIS), the amplitude of the horizontal modulation in ice-stream flow at the MSf frequency resulting from a non-linear interaction between the S2 and M2 tidal constitutes can be larger than the direct response at the S2 and the M2 frequencies. In comparison the non-linear interaction between K1 and O1 tidal components is weak. As a consequence, modelled ice-stream response to mixed oceanic tides of the type found on FRIS is stronger at the MSf period of 14.76 days than at both the semi-diurnal and diurnal frequencies, while at the same time almost absent at the similar Mf period of 13.66 days. The model results compare favourably with measurements of tidally induced flow variations on Rutford Ice Stream (RIS), West Antarctica. On RIS a strong tidal response is found at the MSf frequency with a smaller response at the semi-diurnal and diurnal frequencies, and almost no response at the Mf frequency. A non-linear viscous sliding law appears to have the potential to fully explain these observations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-03-12
    Description: Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin The Cryosphere, 5, 203-217, 2011 Author(s): H. S. Negi and A. Kokhanovsky In the present paper, spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART) theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% differences. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The retrieved snow grain sizes using different models based on the ART theory were compared for various snow types and it was observed that the grain size model using two channel method (one in visible and another in NIR region) can work well for the Himalayan seasonal snow and it was found consistent with temporal changes in grain size. This method can work very well for clean, dry snow as in the upper Himalaya, but sometimes, due to the low reflectances (
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-03-24
    Description: The mass and energy balance of ice within the Eisriesenwelt cave, Austria The Cryosphere, 5, 245-257, 2011 Author(s): F. Obleitner and C. Spötl Meteorological measurements were performed in a prominent ice cave (Eisriesenwelt, Austria) during a full annual cycle. The data show the basic features of a dynamically ventilated cave system with a well distinguished winter and summer regime. The calculated energy balance of the cave ice is largely determined by the input of long-wave radiation originating at the host rock surface. On average the turbulent fluxes withdraw energy from the surface. This is more pronounced during winter due to enhanced circulation and lower humidity. During summer the driving gradients reverse sign and the associated fluxes provide energy for melt. About 4 cm of ice were lost at the measurement site during a reference year. This was due to some sublimation during winter, while the major loss resulted from melt during summer. Small amounts of accumulation occurred during spring due to refreezing of seepage water. These results are largely based on employing a numerical mass and energy balance model. Sensitivity studies prove reliability of the calculated energy balance regarding diverse measurement uncertainties and show that the annual mass balance of the ice strongly depends on cave air temperature during summer and the availability of seepage water in spring.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-02-26
    Description: Glacier changes on Sierra Velluda massif, Chile (37° S): mountain glaciers of an intensively-used mid-latitude landscape The Cryosphere Discussions, 5, 685-720, 2011 Author(s): A. Fernández, A. Santana, E. Jaque, C. Martínez, and R. Sáez The central-southern section of Chile is defined as one of the Latin American hot spots in the last IPCC Report due to the impact of glacier retreat on water resources, the transitional character of the climate, and its importance in terms of agricultural and forestry activities. In order to provide a better understanding of glacier behavior in this zone, this paper analyzes the volumetric changes of glaciers in the Sierra Velluda, located in the upper Bío Bío River Basin. Bibliographic sources, satellite images, and DEMs were used to estimate frontal, areal, and volumetric changes. An analysis of significance was performed in order to provide accurate estimations of the fluctuations. The results indicate that Sierra Velluda glaciers have suffered a significant reduction since the 1960s, despite some short periods of positive fluctuations. A maximum position of a glacier for the year 1828 was identified, which is in concordance with other proxies registered elsewhere in Chile. These changes agree with measurements of glacier fluctuation elsewhere in Chile. While short-term fluctuations are consistent with the inter-annual precipitation variability, lake levels records, and a warm phase of the El Niño Southern Oscillation (ENSO), the general shrinkage agrees with the shift of the ENSO (PDO) in 1976. Therefore, it is proposed that Sierra Velluda's glaciers are highly sensitive to high frequency climatic fluctuations and even to inter-annual variability. Considering that models project a reduction in Andean precipitation and an altitudinal increase in the 0 °C isotherm, these ice bodies are expected to continue to shrink.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-02-25
    Description: Comparison of direct and geodetic mass balances on a multi-annual time scale The Cryosphere, 5, 107-124, 2011 Author(s): A. Fischer The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a −1 , the mean annual direct mass balance −0.4 m w.e. a −1 . The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR) data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-02-08
    Description: Characterization of glacier debris cover via in situ and optical remote sensing methods: a case study in the Khumbu Himalaya, Nepal The Cryosphere Discussions, 5, 499-564, 2011 Author(s): K. A. Casey, A. Kääb, and D. I. Benn Field spectrometry and physical samples of debris, snow and ice were collected from the ablation zones of Ngozumpa and Khumbu glaciers of the Khumbu Himalaya, Nepal in November and December 2009. Field acquired spectral reflectances and mineral and chemical composition of samples were used as ground truth for comparison with satellite optical remote sensing data. Supraglacial debris was characterized by several optical remote sensing methods, including hyperspectral reflectance analysis, multispectral band composites and indices, spectral angle relationships, thermal band temperature and emissivity analysis, as well as repeat image derived glacier velocity and theoretical supraglacial particle transport. Supraglacial mineral components were identified and mineral abundances were estimated on Khumbu Himalayan glaciers. Mass flux was estimated by false color composites and glacier velocity displacement fields. Supraglacial temperatures were compared with mineral abundances, implying potential parameters to estimate differential melt. Overall, glaciologic implications of debris cover characterizations are applicable to (1) glacier energy balance, (2) glacial kinematics and (3) mapping glacial extent. The methods presented can be used in synergy to improve supraglacial debris quantification and reduce errors associated with debris covered ice extent mapping, surface radiative properties, as well as debris covered ice mass flux and loss estimations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-02-17
    Description: Retrieval of snow grain size and albedo of Western Himalayan snow cover using satellite data The Cryosphere Discussions, 5, 605-653, 2011 Author(s): H. S. Negi and A. Kokhanovsky In the present study we describe the retrievals of snow grain size and spectral albedo (plane and spherical albedo) for Western Himalayan snow cover using Hyperion sensor data. The asymptotic radiative transfer (ART) theory was explored for the snow retrievals. To make the methodology operational only five spectral bands (440, 500, 1050, 1240 and 1650 nm) of Hyperion were used for snow parameters retrieval. The bi-spectral method (440 nm in the visible and 1050/1240 nm in the NIR region) was used to retrieve snow grain size. Spectral albedos were retrieved using satellite reflectances and estimated grain size. A good agreement was observed between retrieved snow parameters and ground observed snow-meteorological conditions. The satellite retrieved grain sizes were compared with field spectroradiometer retrieved grain sizes and close results were found for Lower Himalayan snow. The wavelength 1240 nm was found to be more suitable compared to 1050 nm for grain size retrieval along the steep slopes. The methodology was able to retrieve the spatial variations in snow parameters in different parts of Western Himalaya which are due to snow climatic and terrain conditions of Himalaya. This methodology is of importance for operational snow cover and glacier monitoring in Himalayan region using space-borne and air-borne sensors.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-01-26
    Description: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain The Cryosphere Discussions, 5, 307-338, 2011 Author(s): S. Gubler, J. Fiddes, S. Gruber, and M. Keller Measurements of environmental variables are often used to validate and calibrate physically-based models. Depending on their application, models are used at different scales, ranging from few meters to tens of kilometers. Environmental variables can vary strongly within the grid cells of these models. Validating a model with a single measurement is therefore delicate and susceptible to induce bias in further model applications. To address the question of uncertainty associated with scale in permafrost models, we present data of 390 spatially-distributed ground surface temperature measurements recorded in terrain of high topographic variability in the Swiss Alps. We illustrate a way to program, deploy and refind a large number of measurement devices efficiently, and present a strategy to reduce data loss reported in earlier studies. Data after the first year of deployment is presented. The measurements represent the variability of ground surface temperatures at two different scales ranging from few meters to some kilometers. On the larger scale, the dependence of mean annual ground surface temperature on elevation, slope, aspect and ground cover type is modelled with a linear regression model. Sampled mean annual ground surface temperatures vary from −4 °C to 5 °C within an area of 16 km 2 subject to elevational differences of approximately 1000 m. The measurements also indicate that mean annual ground surface temperatures vary up to 6 °C (i.e., from −2 °C to 4 °C) even within an elevational band of 300 m. Furthermore, variations can be high (up to 2.5 °C) at distances of less than 14 m in homogeneous terrain. The effect of this high variability of an environmental variable on model validation and applications in alpine regions is discussed.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2011-02-03
    Description: Some fundamentals of handheld snow surface thermography The Cryosphere, 5, 55-66, 2011 Author(s): C. Shea and B. Jamieson This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-02-05
    Description: Record mass loss from Greenland's best-observed local glacier The Cryosphere Discussions, 5, 461-477, 2011 Author(s): S. H. Mernild, N. T. Knudsen, W. H. Lipscomb, J. C. Yde, J. K. Malmros, B. H. Jakobsen, and B. Hasholt Warming in the Arctic during the past several decades has caused glaciers to thin and retreat, resulting in increased freshwater runoff to the ocean. Local glaciers peripheral to the ice sheet are also retreating, but few mass-balance observations are available to quantify that retreat and determine the extent to which these glaciers are out of equilibrium with present-day climate. Here, we document record mass loss in 2009/2010 for the Mittivakkat Glacier (henceforth MG), the only local glacier in Greenland for which there exist long-term observations of both the surface mass balance and glacier front fluctuations. We attribute this mass loss to record high mean summer (June–August) and higher-than-average winter (September–May) temperatures and to lower-than-average winter precipitation. Also, we use the 15-year mass-balance record to estimate present-day and equilibrium accumulation-area ratios for the MG. We show that the glacier is significantly out of balance and will likely lose approximately 70% of its current area and 80% of its volume even in the absence of further climate changes. Temperature records from coastal stations in Southeast Greenland suggest that recent MG mass losses are not merely a local phenomenon, but are indicative of glacier changes in the broader region. Mass-balance observations for the MG therefore provide unique documentation of the general retreat of Southeast Greenland's local glaciers under ongoing climate warming.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-02-18
    Description: Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-based interpolation scheme The Cryosphere Discussions, 5, 655-684, 2011 Author(s): J. L. Roberts, R. C. Warner, D. Young, A. Wright, T. D. van Ommen, D. D. Blankenship, M. Siegert, N. W. Young, I. E. Tabacco, A. Forieri, A. Passerini, A. Zirizzotti, and M. Frezzotti Ice thickness data over much of East Antarctica are sparse and irregularly distributed. This poses difficulties for reconstructing the homogeneous coverage needed to properly assess underlying sub-glacial morphology and fundamental geometric constraints on sea level rise. Here we introduce a new physically-based ice thickness interpolation scheme and apply this to existing ice thickness data in the Aurora Subglacial Basin region. The skill and robustness of the new reconstruction is demonstrated by comparison with new data from the ICECAP project. The interpolated morphology shows an extensive marine-based ice sheet, with considerably more area below sea-level than shown by prior studies. It also shows deep features connecting the coastal grounding zone with the deepest regions in the interior. This has implications for ice sheet response to a warming ocean and underscores the importance of obtaining additional high resolution data in these marginal zones for modelling ice sheet evolution.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-01-29
    Description: Geophysical evidence for soft bed sliding at Jakobshavn Isbrae, West Greenland The Cryosphere Discussions, 5, 339-366, 2011 Author(s): A. E. Block and R. E. Bell Jakobshavn Isbrae is Greenland's fastest moving outlet glacier and a major contributor to sea level rise. We analyze new gravity and magnetic profiles across the glacier, extending from the mouth of the outlet fjord to 64 km inland of the 2008 grounding line. Our results provide new insights into Jakobshavn Isbrae's geologic underpinnings and controls on the basal velocities. Earlier studies of basal processes minimized basal slip as a fast flow mechanism. Currently, velocities are up to double those considered in these studies, necessitating a reanalysis of the basal conditions. The gravity field along the glacier's main trunk cannot be attributed to the gravitational effect of bed topography and the overlying ice sheet. We interpret the remaining gravity signal as evidence of up to 2400 m of low density sediment beneath the main trunk. Examining recent velocities, we find basal slip is a major contributor to ice flow along most of the sediment filled trough. Within 54 km of the grounding line, only isolated 1–3 km wide regions have velocities that possibly result solely from internal deformation of the ice. We conclude soft bed sliding over the thick sediment wedge beneath Jakobshavn Isbrae is the dominant mechanism of fast flow.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-02-01
    Description: Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra The Cryosphere Discussions, 5, 367-400, 2011 Author(s): S. Endrizzi, W. L. Quinton, and P. Marsh In the arctic tundra the ground is normally composed by a relatively thin organic soil layer, overlying mineral sediment. Subsurface water drainage generally occurs in the organic layer for its high hydraulic conductivity. However, the organic layer shows significant decrease of hydraulic conductivity with depth. The position and the topography of the frost table, which here acts as a relatively impermeable surface, are therefore crucial in determining the hillslope drainage rate. This work aims at understanding how the topography of the ground surface affects the spatial variability of the depth of thaw in a 1 km 2 low-elevation arctic tundra basin with a fine resolution model that fully couples energy and water flow processes. The simulations indicate that the spatial patterns of ground thaw are not dominated by slope and aspect, but are instead entirely controlled by the spatial distribution of soil moisture, which is determined by subsurface flow patterns. Measured thaw depths have a similar range of variability to the simulated values for each stage of active layer development, although the model slightly overestimated the depth of thaw.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-02-01
    Description: Ice genesis and its long-term mass balance and dynamics in Scărişoara Ice Cave, Romania The Cryosphere, 5, 45-53, 2011 Author(s): A. Perşoiu and A. Pazdur The paleoclimatic significance of the perennial ice deposit in Scărişoara Ice Cave has been remarked on since the early 20th century, but a lack of understanding of the processes involved in the genesis, age and long-term dynamics and volume fluctuations of ice hampered all attempts to extract valuable data on past climate and vegetation changes. In this paper, we present a model of ice genesis and dynamics, based on stable isotopes, ice level monitoring (modern and archived) and radiocarbon dating of organic matter found in the ice. Ice in this cave mostly consists of layers of lake ice, produced as liquid water freezes from top to bottom in mid-autumn, and floor ice, produced as inflow water in winter freezes on top of the lake ice. This mechanism was also acting in the past, during the Medieval Warm Period and the Little Ice Age. The ice block is not stable in shape and volume, being continuously modified by ablation on top and sides, basal melting and lateral flow. Radiocarbon dating shows that the ice block is older than 1000 years, but ice flow and differential basal melting suggesting that the ice could be much older.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-02-02
    Description: Glacial debris cover and melt water production for glaciers in the Altay, Russia The Cryosphere Discussions, 5, 401-430, 2011 Author(s): C. Mayer, A. Lambrecht, W. Hagg, and Y. Narozhny Glaciers are important water storages on a seasonal and long-term time scale. Where high mountains are surrounded by arid lowlands, glacier runoff is an important source of water during the growing season. This situation can be found in the Altay mountains in Southern Siberia, where the recent glacierization of 〉700 km 2 is subject to continuous mass loss, even though the shrinking is comparably slow. The glacier retreat is accompanied by an extension of supra-glacial moraine, which itself strongly influences ablation rates. To quantify these effects, the spatial evolution of debris cover since 1952 was analysed for three glaciers in the North Chuya Ridge using satellite and airborne imagery. In summer 2007, an ablation experiment was carried out on debris covered parts of Maliy Aktru glacier. Thermistors in different depths within the moraine provided data to calculate thermal resistance of the debris. A set of ablation stakes was installed at locations with differing debris thickness and observed regularly throughout the entire melt season. Air temperature from an AWS was used to calculate degree day factors in dependence of the debris thickness. To take into account the shading effect of surrounding walls and peaks, the potential solar radiation and its evolution throughout the summer was determined from a digital elevation model. This allows us to extrapolate our measurements from Maliy Aktru to the other two glaciers of the Aktru basin and to estimate basin melt rates. In addition accumulated ice melt was derived for 12 glaciers in the North Chuya Range. Changes in summer runoff from the 1960s are compared to the results from our melt model and the evolution of debris cover is analysed in respect to the melt activity.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-02-02
    Description: A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus The Cryosphere Discussions, 5, 431-459, 2011 Author(s): A. Lambrecht, C. Mayer, W. Hagg, V. Popovnin, A. Rezepkin, N. Lomidze, and D. Svanadze The glacier coverage in the Caucasus Mountains underwent considerable changes during the last decades. Besides a reduction in glacier area which in some areas is comparable to area changes in the European Alps, also the concentration of supra-glacial debris increased on many glaciers. Only a few glaciers in the Caucasus are monitored on a regular basis, while for most areas no field measurements are available on a continuous basis. In this study the regional differences between the well studied Adyl-su basin on the northern slope of the Caucasus is compared with a similar basin in the South (Zopkhito basin). Special focus is laid on the effect of supra-glacial debris cover on the melt conditions during the ablation season. Systematic differences can be shown for the distribution and temporal increase of the debris cover on the glaciers. While in the Adyl-su basin an extensive debris cover on the glacier tongues is common, only some low lying glacier tongues in the Zopkhito basin show considerable supra-glacial debris. Also the temporal increase in debris cover is decidedly stronger in the North. Field experiments show that the thermal resistance of the debris cover is somewhat higher than in other glacerised regions in the world. A simple ablation model which includes the effect of the debris cover on ice melt indicates considerably stronger melt rates in the northern basin, despite the much more widespread debris distribution. This is due to the different meteorological conditions with more frequent cloud cover and precipitation in the South. Still ablation is strongly influenced in both basins by the occurrence of supra-glacial debris cover, reducing the total amount of melt on the glacier by about 20%. Especially in the lower tongue areas this effect mitigates the area loss of the glaciers considerably.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-02-08
    Description: In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft The Cryosphere Discussions, 5, 479-498, 2011 Author(s): M. Tedesco and N. Steiner We report concurrent in-situ multi-spectral and depth measurements over a supraglacial lake in West Greenland, collected by means of a remotely controlled boat equipped with a GPS, a sonar and a spectrometer. We focus our attention on the analysis of some of the key parameters widely used for multispectral spaceborne bathymetry, namely the lake bottom albedo and the water attenuation coefficient. The analysis of in-situ data highlights the exponential trend of the water-leaving reflectance with lake depth. The values of the attenuation factor are obtained from in-situ data and compared with those computed using approaches proposed in the literature. Also, the values of the lake bottom albedo from in-situ measurements are compared with those obtained from the analysis of reflectance of shallow-waters. Finally, we quantify the error between in-situ measured and satellite-estimated lake depth values for the lake under study.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-02-05
    Description: Modeling the temperature evolution of Svalbard permafrost during the 20th and 21st century The Cryosphere, 5, 67-79, 2011 Author(s): B. Etzelmüller, T. V. Schuler, K. Isaksen, H. H. Christiansen, H. Farbrot, and R. Benestad Variations in ground thermal conditions in Svalbard were studied based on measurements and modelling. Ground temperature data from boreholes were used to calibrate a transient heat flow model describing depth and time variations in temperatures. The model was subsequently forced with historical surface air temperature records and possible future temperatures downscaled from multiple global climate models. We discuss ground temperature development since the early 20th century, and the thermal responses in relation to ground characteristics and snow cover. The modelled ground temperatures show a gradual increase between 1912 and 2010, by about 1.5 °C to 2 °C at 20 m depth. The active layer thickness (ALT) is modelled to have increased slightly, with the rate of increase depending on water content of the near-surface layers. The used scenario runs predict a significant increase in ground temperatures and an increase of ALT depending on soil characteristics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-02-15
    Description: Comparison of direct and geodetic mass balances on an annual time scale The Cryosphere Discussions, 5, 565-604, 2011 Author(s): A. Fischer, H. Schneider, G. Merkel, and R. Sailer Very accurate airborne laserscanning (ALS) elevation data was used to calculate the annual volume changes for Hintereisferner and Kesselwandferner in the Ötztal Alps, Austria for 2001/2002–2008/2009. The comparison of the altitude of 51 recently GPS surveyed ground control points showed that the accuracy of the ALS DEMs is better than 0.3 m. The geodetic mass balance was calculated from the volume change using detailed maps of the firn cover and applying corrections for the seasonal snow cover. The maximum snow height at the time of the elevation data flight was 0.5 m averaged over the glacier surface. The volume change data was compared to in situ mass balance data for the total area and at the stakes. For the total period of 8 yr, the difference between the geodetic and the direct mass balance is 2.398 m w.e. on Hintereisferner and 1.380 m w.e. on Kesselwandferner, corresponding to about two times the mean annual mass balance. The vertical ice flow velocity was measured and found to be on the same order of magnitude as the mass balance at KWF. This is an indicator that volume change data does not allow the calculation of ablation or accumulation rates without detailed measurements or models of the vertical ice flow velocity. Therefore, only direct mass balance data allow process studies or investigation of the climatic controls of the resulting mass changes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-02-17
    Description: An improved bathymetry compilation for the Bellingshausen Sea, Antarctica, to inform ice-sheet and ocean models The Cryosphere, 5, 95-106, 2011 Author(s): A. G. C. Graham, F. O. Nitsche, and R. D. Larter The southern Bellingshausen Sea (SBS) is a rapidly-changing part of West Antarctica, where oceanic and atmospheric warming has led to the recent basal melting and break-up of the Wilkins ice shelf, the dynamic thinning of fringing glaciers, and sea-ice reduction. Accurate sea-floor morphology is vital for understanding the continued effects of each process upon changes within Antarctica's ice sheets. Here we present a new bathymetric grid for the SBS compiled from shipborne multibeam echo-sounder, spot-sounding and sub-ice measurements. The 1-km grid is the most detailed compilation for the SBS to-date, revealing large cross-shelf troughs, shallow banks, and deep inner-shelf basins that continue inland of coastal ice shelves. The troughs now serve as pathways which allow warm deep water to access the ice sheet in the SBS. Our dataset highlights areas still lacking bathymetric constraint, as well as regions for further investigation, including the likely routes of palaeo-ice streams. The new compilation is a major improvement upon previous grids and will be a key dataset for incorporating into simulations of ocean circulation, ice-sheet change and history. It will also serve forecasts of ice stability and future sea-level contributions from ice loss in West Antarctica, required for the next IPCC assessment report in 2013.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-02-17
    Description: First investigations of an ice core from Eisriesenwelt cave (Austria) The Cryosphere, 5, 81-93, 2011 Author(s): B. May, C. Spötl, D. Wagenbach, Y. Dublyansky, and J. Liebl Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ 18 O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ 18 O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...